Annotation of OpenXM/src/asir-doc/parts/groebner.texi, Revision 1.18
1.18 ! noro 1: @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.17 2006/09/06 23:53:31 noro Exp $
1.2 noro 2: \BJP
1.1 noro 3: @node $B%0%l%V%J4pDl$N7W;;(B,,, Top
4: @chapter $B%0%l%V%J4pDl$N7W;;(B
1.2 noro 5: \E
6: \BEG
7: @node Groebner basis computation,,, Top
8: @chapter Groebner basis computation
9: \E
1.1 noro 10:
11: @menu
1.2 noro 12: \BJP
1.1 noro 13: * $BJ,;6I=8=B?9`<0(B::
14: * $B%U%!%$%k$NFI$_9~$_(B::
15: * $B4pK\E*$JH!?t(B::
16: * $B7W;;$*$h$SI=<($N@)8f(B::
17: * $B9`=g=x$N@_Dj(B::
1.13 noro 18: * Weight::
1.1 noro 19: * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::
20: * $B4pDlJQ49(B::
1.5 noro 21: * Weyl $BBe?t(B::
1.1 noro 22: * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::
1.2 noro 23: \E
24: \BEG
25: * Distributed polynomial::
26: * Reading files::
27: * Fundamental functions::
28: * Controlling Groebner basis computations::
29: * Setting term orderings::
1.13 noro 30: * Weight::
1.2 noro 31: * Groebner basis computation with rational function coefficients::
32: * Change of ordering::
1.5 noro 33: * Weyl algebra::
1.2 noro 34: * Functions for Groebner basis computation::
35: \E
1.1 noro 36: @end menu
37:
1.2 noro 38: \BJP
1.1 noro 39: @node $BJ,;6I=8=B?9`<0(B,,, $B%0%l%V%J4pDl$N7W;;(B
40: @section $BJ,;6I=8=B?9`<0(B
1.2 noro 41: \E
42: \BEG
43: @node Distributed polynomial,,, Groebner basis computation
44: @section Distributed polynomial
45: \E
1.1 noro 46:
47: @noindent
1.2 noro 48: \BJP
1.1 noro 49: $BJ,;6I=8=B?9`<0$H$O(B, $BB?9`<0$NFbIt7A<0$N0l$D$G$"$k(B. $BDL>o$NB?9`<0(B
50: (@code{type} $B$,(B 2) $B$O(B, $B:F5"I=8=$H8F$P$l$k7A<0$GI=8=$5$l$F$$$k(B. $B$9$J$o(B
51: $B$A(B, $BFCDj$NJQ?t$r<gJQ?t$H$9$k(B 1 $BJQ?tB?9`<0$G(B, $B$=$NB>$NJQ?t$O(B, $B$=$N(B 1 $BJQ(B
52: $B?tB?9`<0$N78?t$K(B, $B<gJQ?t$r4^$^$J$$B?9`<0$H$7$F8=$l$k(B. $B$3$N78?t$,(B, $B$^$?(B,
53: $B$"$kJQ?t$r<gJQ?t$H$9$kB?9`<0$H$J$C$F$$$k$3$H$+$i:F5"I=8=$H8F$P$l$k(B.
1.2 noro 54: \E
55: \BEG
56: A distributed polynomial is a polynomial with a special internal
57: representation different from the ordinary one.
58:
59: An ordinary polynomial (having @code{type} 2) is internally represented
60: in a format, called recursive representation.
61: In fact, it is represented as an uni-variate polynomial with respect to
62: a fixed variable, called main variable of that polynomial,
63: where the other variables appear in the coefficients which may again
64: polynomials in such variables other than the previous main variable.
65: A polynomial in the coefficients is again represented as
66: an uni-variate polynomial in a certain fixed variable,
67: the main variable. Thus, by this recursive structure of polynomial
68: representation, it is called the `recursive representation.'
69: \E
1.1 noro 70:
71: @iftex
72: @tex
1.2 noro 73: \JP $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$
74: \EG $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$
1.1 noro 75: @end tex
76: @end iftex
77: @ifinfo
78: @example
79: (x+y+z)^2 = 1 x^2 + (2 y + (2 z)) x + ((2 z) y + (1 z^2 ))
80: @end example
81: @end ifinfo
82:
83: @noindent
1.2 noro 84: \BJP
1.1 noro 85: $B$3$l$KBP$7(B, $BB?9`<0$r(B, $BJQ?t$NQQ@Q$H78?t$N@Q$NOB$H$7$FI=8=$7$?$b$N$rJ,;6(B
86: $BI=8=$H8F$V(B.
1.2 noro 87: \E
88: \BEG
89: On the other hand,
90: we call a representation the distributed representation of a polynomial,
91: if a polynomial is represented, according to its original meaning,
92: as a sum of monomials,
93: where a monomial is the product of power product of variables
94: and a coefficient. We call a polynomial, represented in such an
95: internal format, a distributed polynomial. (This naming may sounds
96: something strange.)
97: \E
1.1 noro 98:
99: @iftex
100: @tex
1.2 noro 101: \JP $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$
102: \EG $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$
1.1 noro 103: @end tex
104: @end iftex
105: @ifinfo
106: @example
107: (x+y+z)^2 = 1 x^2 + 2 xy + 2 xz + 1 y^2 + 2 yz +1 z^2$
108: @end example
109: @end ifinfo
110:
111: @noindent
1.2 noro 112: \BJP
1.1 noro 113: $B%0%l%V%J4pDl7W;;$K$*$$$F$O(B, $BC19`<0$KCmL\$7$FA`:n$r9T$&$?$aB?9`<0$,J,;6I=8=(B
114: $B$5$l$F$$$kJ}$,$h$j8zN($N$h$$1i;;$,2DG=$K$J$k(B. $B$3$N$?$a(B, $BJ,;6I=8=B?9`<0$,(B,
115: $B<1JL;R(B 9 $B$N7?$H$7$F(B @b{Asir} $B$N%H%C%W%l%Y%k$+$iMxMQ2DG=$H$J$C$F$$$k(B.
116: $B$3$3$G(B, $B8e$N@bL@$N$?$a$K(B, $B$$$/$D$+$N8@MU$rDj5A$7$F$*$/(B.
1.2 noro 117: \E
118: \BEG
119: For computation of Groebner basis, efficient operation is expected if
120: polynomials are represented in a distributed representation,
121: because major operations for Groebner basis are performed with respect
122: to monomials.
123: From this view point, we provide the object type distributed polynomial
124: with its object identification number 9, and objects having such a type
125: are available by @b{Asir} language.
126:
127: Here, we provide several definitions for the later description.
128: \E
1.1 noro 129:
130: @table @b
1.2 noro 131: \BJP
1.1 noro 132: @item $B9`(B (term)
133: $BJQ?t$NQQ@Q(B. $B$9$J$o$A(B, $B78?t(B 1 $B$NC19`<0$N$3$H(B. @b{Asir} $B$K$*$$$F$O(B,
1.2 noro 134: \E
135: \BEG
136: @item term
137: The power product of variables, i.e., a monomial with coefficient 1.
138: In an @b{Asir} session, it is displayed in the form like
139: \E
1.1 noro 140:
141: @example
142: <<0,1,2,3,4>>
143: @end example
144:
1.2 noro 145: \BJP
1.1 noro 146: $B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. $B$3$NNc$O(B, 5 $BJQ?t$N9`(B
147: $B$r<($9(B. $B3FJQ?t$r(B @code{a}, @code{b}, @code{c}, @code{d}, @code{e} $B$H$9$k$H(B
148: $B$3$N9`$O(B @code{b*c^2*d^3*e^4} $B$rI=$9(B.
1.2 noro 149: \E
150: \BEG
151: and also can be input in such a form.
152: This example shows a term in 5 variables. If we assume the 5 variables
153: as @code{a}, @code{b}, @code{c}, @code{d}, and @code{e},
154: the term represents @code{b*c^2*d^3*e^4} in the ordinary expression.
155: \E
1.1 noro 156:
1.2 noro 157: \BJP
1.1 noro 158: @item $B9`=g=x(B (term order)
159: $BJ,;6I=8=B?9`<0$K$*$1$k9`$O(B, $B<!$N@-<A$rK~$?$9A4=g=x$K$h$j@0Ns$5$l$k(B.
1.2 noro 160: \E
161: \BEG
162: @item term order
163: Terms are ordered according to a total order with the following properties.
164: \E
1.1 noro 165:
166: @enumerate
167: @item
1.2 noro 168: \JP $BG$0U$N9`(B @code{t} $B$KBP$7(B @code{t} > 1
169: \EG For all @code{t} @code{t} > 1.
1.1 noro 170:
171: @item
1.2 noro 172: \JP @code{t}, @code{s}, @code{u} $B$r9`$H$9$k;~(B, @code{t} > @code{s} $B$J$i$P(B @code{tu} > @code{su}
173: \EG For all @code{t}, @code{s}, @code{u} @code{t} > @code{s} implies @code{tu} > @code{su}.
1.1 noro 174: @end enumerate
175:
1.2 noro 176: \BJP
1.1 noro 177: $B$3$N@-<A$rK~$?$9A4=g=x$r9`=g=x$H8F$V(B. $B$3$N=g=x$OJQ?t=g=x(B ($BJQ?t$N%j%9%H(B)
178: $B$H9`=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) $B$K$h$j;XDj$5$l$k(B.
1.2 noro 179: \E
180: \BEG
181: Such a total order is called a term ordering. A term ordering is specified
182: by a variable ordering (a list of variables) and a type of term ordering
183: (an integer, a list or a matrix).
184: \E
1.1 noro 185:
1.2 noro 186: \BJP
1.1 noro 187: @item $BC19`<0(B (monomial)
188: $B9`$H78?t$N@Q(B.
1.2 noro 189: \E
190: \BEG
191: @item monomial
192: The product of a term and a coefficient.
193: In an @b{Asir} session, it is displayed in the form like
194: \E
1.1 noro 195:
196: @example
197: 2*<<0,1,2,3,4>>
198: @end example
199:
1.2 noro 200: \JP $B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B.
201: \EG and also can be input in such a form.
1.1 noro 202:
1.2 noro 203: \BJP
1.1 noro 204: @itemx $BF,C19`<0(B (head monomial)
205: @item $BF,9`(B (head term)
206: @itemx $BF,78?t(B (head coefficient)
207: $BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B
208: $B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B
209: $B$H8F$V(B.
1.2 noro 210: \E
211: \BEG
212: @itemx head monomial
213: @item head term
214: @itemx head coefficient
215:
216: Monomials in a distributed polynomial is sorted by a total order.
217: In such representation, we call the monomial that is maximum
218: with respect to the order the head monomial, and its term and coefficient
219: the head term and the head coefficient respectively.
220: \E
1.1 noro 221: @end table
222:
1.2 noro 223: \BJP
1.1 noro 224: @node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B
225: @section $B%U%!%$%k$NFI$_9~$_(B
1.2 noro 226: \E
227: \BEG
228: @node Reading files,,, Groebner basis computation
229: @section Reading files
230: \E
1.1 noro 231:
232: @noindent
1.2 noro 233: \BJP
1.1 noro 234: $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B
1.5 noro 235: @code{dp_gr_mod_main()}, @code{dp_gr_f_main()}
236: $B$J$k(B 3 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B
1.1 noro 237: $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.
238: $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B
239: $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B
1.5 noro 240: $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B.
1.2 noro 241: \E
242: \BEG
1.5 noro 243: Facilities for computing Groebner bases are
244: @code{dp_gr_main()}, @code{dp_gr_mod_main()}and @code{dp_gr_f_main()}.
245: To call these functions,
246: it is necessary to set several parameters correctly and it is convenient
247: to use a set of interface functions provided in the library file
248: @samp{gr}.
1.2 noro 249: The facilities will be ready to use after you load the package by
250: @code{load()}. The package @samp{gr} is placed in the standard library
1.5 noro 251: directory of @b{Asir}.
1.2 noro 252: \E
1.1 noro 253:
254: @example
255: [0] load("gr")$
256: @end example
257:
1.2 noro 258: \BJP
1.1 noro 259: @node $B4pK\E*$JH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
260: @section $B4pK\E*$JH!?t(B
1.2 noro 261: \E
262: \BEG
263: @node Fundamental functions,,, Groebner basis computation
264: @section Fundamental functions
265: \E
1.1 noro 266:
267: @noindent
1.2 noro 268: \BJP
1.1 noro 269: @samp{gr} $B$G$O?tB?$/$NH!?t$,Dj5A$5$l$F$$$k$,(B, $BD>@\(B
270: $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N%H%C%W%l%Y%k$O<!$N(B 3 $B$D$G$"$k(B.
271: $B0J2<$G(B, @var{plist} $B$OB?9`<0$N%j%9%H(B, @var{vlist} $B$OJQ?t(B ($BITDj85(B) $B$N%j%9%H(B,
272: @var{order} $B$OJQ?t=g=x7?(B, @var{p} $B$O(B @code{2^27} $BL$K~$NAG?t$G$"$k(B.
1.2 noro 273: \E
274: \BEG
275: There are many functions and options defined in the package @samp{gr}.
276: Usually not so many of them are used. Top level functions for Groebner
277: basis computation are the following three functions.
278:
279: In the following description, @var{plist}, @var{vlist}, @var{order}
280: and @var{p} stand for a list of polynomials, a list of variables
281: (indeterminates), a type of term ordering and a prime less than
282: @code{2^27} respectively.
283: \E
1.1 noro 284:
285: @table @code
286: @item gr(@var{plist},@var{vlist},@var{order})
287:
1.2 noro 288: \BJP
1.1 noro 289: Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar
290: strategy $B$*$h$S(B Traverso $B$K$h$k(B trace-lifting $B$rMQ$$$?(B Buchberger $B%"%k(B
291: $B%4%j%:%`$K$h$kM-M}?t78?t%0%l%V%J4pDl7W;;H!?t(B. $B0lHL$K$O$3$NH!?t$rMQ$$$k(B.
1.2 noro 292: \E
293: \BEG
294: Function that computes Groebner bases over the rationals. The
295: algorithm is Buchberger algorithm with useless pair elimination
296: criteria by Gebauer-Moeller, sugar strategy and trace-lifting by
297: Traverso. For ordinary computation, this function is used.
298: \E
1.1 noro 299:
300: @item hgr(@var{plist},@var{vlist},@var{order})
301:
1.2 noro 302: \BJP
1.1 noro 303: $BF~NOB?9`<0$r@F<!2=$7$?8e(B @code{gr()} $B$N%0%l%V%J4pDl8uJd@8@.It$K$h$j8u(B
304: $BJd@8@.$7(B, $BHs@F<!2=(B, interreduce $B$7$?$b$N$r(B @code{gr()} $B$N%0%l%V%J4pDl(B
305: $B%A%'%C%/It$G%A%'%C%/$9$k(B. 0 $B<!85%7%9%F%`(B ($B2r$N8D?t$,M-8B8D$NJ}Dx<07O(B)
306: $B$N>l9g(B, sugar strategy $B$,78?tKDD%$r0z$-5/$3$9>l9g$,$"$k(B. $B$3$N$h$&$J>l(B
307: $B9g(B, strategy $B$r@F<!2=$K$h$k(B strategy $B$KCV$-49$($k$3$H$K$h$j78?tKDD%$r(B
308: $BM^@)$9$k$3$H$,$G$-$k>l9g$,B?$$(B.
1.2 noro 309: \E
310: \BEG
311: After homogenizing the input polynomials a candidate of the \gr basis
312: is computed by trace-lifting. Then the candidate is dehomogenized and
313: checked whether it is indeed a Groebner basis of the input. Sugar
314: strategy often causes intermediate coefficient swells. It is
315: empirically known that the combination of homogenization and supresses
316: the swells for such cases.
317: \E
1.1 noro 318:
319: @item gr_mod(@var{plist},@var{vlist},@var{order},@var{p})
320:
1.2 noro 321: \BJP
1.1 noro 322: Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar
323: strategy $B$*$h$S(B Buchberger $B%"%k%4%j%:%`$K$h$k(B GF(p) $B78?t%0%l%V%J4pDl7W(B
324: $B;;H!?t(B.
1.2 noro 325: \E
326: \BEG
327: Function that computes Groebner bases over GF(@var{p}). The same
328: algorithm as @code{gr()} is used.
329: \E
1.1 noro 330:
331: @end table
332:
1.2 noro 333: \BJP
1.1 noro 334: @node $B7W;;$*$h$SI=<($N@)8f(B,,, $B%0%l%V%J4pDl$N7W;;(B
335: @section $B7W;;$*$h$SI=<($N@)8f(B
1.2 noro 336: \E
337: \BEG
338: @node Controlling Groebner basis computations,,, Groebner basis computation
339: @section Controlling Groebner basis computations
340: \E
1.1 noro 341:
342: @noindent
1.2 noro 343: \BJP
1.1 noro 344: $B%0%l%V%J4pDl$N7W;;$K$*$$$F(B, $B$5$^$6$^$J%Q%i%a%?@_Dj$r9T$&$3$H$K$h$j7W;;(B,
345: $BI=<($r@)8f$9$k$3$H$,$G$-$k(B. $B$3$l$i$O(B, $BAH$_9~$_H!?t(B @code{dp_gr_flags()}
346: $B$K$h$j@_Dj;2>H$9$k$3$H$,$G$-$k(B. $BL50z?t$G(B @code{dp_gr_flags()} $B$r<B9T$9$k(B
347: $B$H(B, $B8=:_@_Dj$5$l$F$$$k%Q%i%a%?$,(B, $BL>A0$HCM$N%j%9%H$GJV$5$l$k(B.
1.2 noro 348: \E
349: \BEG
350: One can cotrol a Groebner basis computation by setting various parameters.
351: These parameters can be set and examined by a built-in function
352: @code{dp_gr_flags()}. Without argument it returns the current settings.
353: \E
1.1 noro 354:
355: @example
356: [100] dp_gr_flags();
1.5 noro 357: [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
358: ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
1.1 noro 359: [101]
360: @end example
361:
1.2 noro 362: \BJP
1.1 noro 363: $B0J2<$G(B, $B3F%Q%i%a%?$N0UL#$r@bL@$9$k(B. on $B$N>l9g$H$O(B, $B%Q%i%a%?$,(B 0 $B$G$J$$>l9g$r(B
364: $B$$$&(B. $B$3$l$i$N%Q%i%a%?$N=i4|CM$OA4$F(B 0 (off) $B$G$"$k(B.
1.2 noro 365: \E
366: \BEG
367: The return value is a list which contains the names of parameters and their
368: values. The meaning of the parameters are as follows. `on' means that the
369: parameter is not zero.
370: \E
1.1 noro 371:
372: @table @code
373: @item NoSugar
1.2 noro 374: \BJP
1.1 noro 375: on $B$N>l9g(B, sugar strategy $B$NBe$o$j$K(B Buchberger$B$N(B normal strategy $B$,MQ(B
376: $B$$$i$l$k(B.
1.2 noro 377: \E
378: \BEG
379: If `on', Buchberger's normal strategy is used instead of sugar strategy.
380: \E
1.1 noro 381:
382: @item NoCriB
1.2 noro 383: \JP on $B$N>l9g(B, $BITI,MWBP8!=P5,=`$N$&$A(B, $B5,=`(B B $B$rE,MQ$7$J$$(B.
384: \EG If `on', criterion B among the Gebauer-Moeller's criteria is not applied.
1.1 noro 385:
386: @item NoGC
1.2 noro 387: \JP on $B$N>l9g(B, $B7k2L$,%0%l%V%J4pDl$K$J$C$F$$$k$+$I$&$+$N%A%'%C%/$r9T$o$J$$(B.
388: \BEG
389: If `on', the check that a Groebner basis candidate is indeed a Groebner basis,
390: is not executed.
391: \E
1.1 noro 392:
393: @item NoMC
1.2 noro 394: \BJP
1.1 noro 395: on $B$N>l9g(B, $B7k2L$,F~NO%$%G%"%k$HF1Ey$N%$%G%"%k$G$"$k$+$I$&$+$N%A%'%C%/(B
396: $B$r9T$o$J$$(B.
1.2 noro 397: \E
398: \BEG
399: If `on', the check that the resulting polynomials generates the same ideal as
400: the ideal generated by the input, is not executed.
401: \E
1.1 noro 402:
403: @item NoRA
1.2 noro 404: \BJP
1.1 noro 405: on $B$N>l9g(B, $B7k2L$r(B reduced $B%0%l%V%J4pDl$K$9$k$?$a$N(B
406: interreduce $B$r9T$o$J$$(B.
1.2 noro 407: \E
408: \BEG
409: If `on', the interreduction, which makes the Groebner basis reduced, is not
410: executed.
411: \E
1.1 noro 412:
413: @item NoGCD
1.2 noro 414: \BJP
1.1 noro 415: on $B$N>l9g(B, $BM-M}<078?t$N%0%l%V%J4pDl7W;;$K$*$$$F(B, $B@8@.$5$l$?B?9`<0$N(B,
416: $B78?t$N(B content $B$r$H$i$J$$(B.
1.2 noro 417: \E
418: \BEG
419: If `on', content removals are not executed during a Groebner basis computation
420: over a rational function field.
421: \E
1.1 noro 422:
423: @item Top
1.2 noro 424: \JP on $B$N>l9g(B, normal form $B7W;;$K$*$$$FF,9`>C5n$N$_$r9T$&(B.
425: \EG If `on', Only the head term of the polynomial being reduced is reduced.
1.1 noro 426:
1.2 noro 427: @comment @item Interreduce
428: @comment \BJP
429: @comment on $B$N>l9g(B, $BB?9`<0$r@8@.$9$kKh$K(B, $B$=$l$^$G@8@.$5$l$?4pDl$r$=$NB?9`<0$K(B
430: @comment $B$h$k(B normal form $B$GCV$-49$($k(B.
431: @comment \E
432: @comment \BEG
433: @comment If `on', intermediate basis elements are reduced by using a newly generated
434: @comment basis element.
435: @comment \E
1.1 noro 436:
437: @item Reverse
1.2 noro 438: \BJP
1.1 noro 439: on $B$N>l9g(B, normal form $B7W;;$N:]$N(B reducer $B$r(B, $B?7$7$/@8@.$5$l$?$b$N$rM%(B
440: $B@h$7$FA*$V(B.
1.2 noro 441: \E
442: \BEG
443: If `on', the selection strategy of reducer in a normal form computation
444: is such that a newer reducer is used first.
445: \E
1.1 noro 446:
447: @item Print
1.2 noro 448: \JP on $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$K$*$1$k$5$^$6$^$J>pJs$rI=<($9$k(B.
449: \BEG
450: If `on', various informations during a Groebner basis computation is
451: displayed.
452: \E
1.1 noro 453:
1.7 noro 454: @item PrintShort
455: \JP on $B$G!"(BPrint $B$,(B off $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$N>pJs$rC;=L7A$GI=<($9$k(B.
456: \BEG
457: If `on' and Print is `off', short information during a Groebner basis computation is
458: displayed.
459: \E
460:
1.1 noro 461: @item Stat
1.2 noro 462: \BJP
1.1 noro 463: on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B
464: $B$l$k%G!<%?$NFb(B, $B=87W%G!<%?$N$_$,I=<($5$l$k(B.
1.2 noro 465: \E
466: \BEG
467: If `on', a summary of informations is shown after a Groebner basis
468: computation. Note that the summary is always shown if @code{Print} is `on'.
469: \E
1.1 noro 470:
471: @item ShowMag
1.2 noro 472: \BJP
1.1 noro 473: on $B$G(B @code{Print} $B$,(B on $B$J$i$P(B, $B@8@.$,@8@.$5$l$kKh$K(B, $B$=$NB?9`<0$N(B
474: $B78?t$N%S%C%HD9$NOB$rI=<($7(B, $B:G8e$K(B, $B$=$l$i$NOB$N:GBgCM$rI=<($9$k(B.
1.2 noro 475: \E
476: \BEG
477: If `on' and @code{Print} is `on', the sum of bit length of
478: coefficients of a generated basis element, which we call @var{magnitude},
479: is shown after every normal computation. After comleting the
480: computation the maximal value among the sums is shown.
481: \E
1.1 noro 482:
1.7 noro 483: @item Content
484: @itemx Multiple
1.2 noro 485: \BJP
1.7 noro 486: 0 $B$G$J$$M-M}?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B
487: @code{Content} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B
488: $B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Content} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B
489: GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Content} $B$r(B 2 $BDxEY(B
1.1 noro 490: $B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B.
1.7 noro 491: backward compatibility $B$N$?$a!"(B@code{Multiple} $B$G@0?tCM$r;XDj$G$-$k(B.
1.2 noro 492: \E
493: \BEG
1.7 noro 494: If a non-zero rational number, in a normal form computation
1.2 noro 495: over the rationals, the integer content of the polynomial being
1.7 noro 496: reduced is removed when its magnitude becomes @code{Content} times
1.2 noro 497: larger than a registered value, which is set to the magnitude of the
498: input polynomial. After each content removal the registered value is
1.7 noro 499: set to the magnitude of the resulting polynomial. @code{Content} is
1.2 noro 500: equal to 1, the simiplification is done after every normal form computation.
1.7 noro 501: It is empirically known that it is often efficient to set @code{Content} to 2
1.2 noro 502: for the case where large integers appear during the computation.
1.7 noro 503: An integer value can be set by the keyword @code{Multiple} for
504: backward compatibility.
1.2 noro 505: \E
1.1 noro 506:
507: @item Demand
1.2 noro 508:
509: \BJP
1.1 noro 510: $B@5Ev$J%G%#%l%/%H%jL>(B ($BJ8;zNs(B) $B$rCM$K;}$D$H$-(B, $B@8@.$5$l$?B?9`<0$O%a%b%j(B
511: $BCf$K$*$+$l$:(B, $B$=$N%G%#%l%/%H%jCf$K%P%$%J%j%G!<%?$H$7$FCV$+$l(B, $B$=$NB?9`(B
512: $B<0$rMQ$$$k(B normal form $B7W;;$N:](B, $B<+F0E*$K%a%b%jCf$K%m!<%I$5$l$k(B. $B3FB?(B
513: $B9`<0$O(B, $BFbIt$G$N%$%s%G%C%/%9$r%U%!%$%kL>$K;}$D%U%!%$%k$K3JG<$5$l$k(B.
514: $B$3$3$G;XDj$5$l$?%G%#%l%/%H%j$K=q$+$l$?%U%!%$%k$O<+F0E*$K$O>C5n$5$l$J$$(B
515: $B$?$a(B, $B%f!<%6$,@UG$$r;}$C$F>C5n$9$kI,MW$,$"$k(B.
1.2 noro 516: \E
517: \BEG
518: If the value (a character string) is a valid directory name, then
519: generated basis elements are put in the directory and are loaded on
520: demand during normal form computations. Each elements is saved in the
521: binary form and its name coincides with the index internally used in
522: the computation. These binary files are not removed automatically
523: and one should remove them by hand.
524: \E
1.1 noro 525: @end table
526:
527: @noindent
1.2 noro 528: \JP @code{Print} $B$,(B 0 $B$G$J$$>l9g<!$N$h$&$J%G!<%?$,I=<($5$l$k(B.
529: \EG If @code{Print} is `on', the following informations are shown.
1.1 noro 530:
531: @example
532: [93] gr(cyclic(4),[c0,c1,c2,c3],0)$
533: mod= 99999989, eval = []
534: (0)(0)<<0,2,0,0>>(2,3),nb=2,nab=5,rp=2,sugar=2,mag=4
535: (0)(0)<<0,1,2,0>>(1,2),nb=3,nab=6,rp=2,sugar=3,mag=4
536: (0)(0)<<0,1,1,2>>(0,1),nb=4,nab=7,rp=3,sugar=4,mag=6
537: .
538: (0)(0)<<0,0,3,2>>(5,6),nb=5,nab=8,rp=2,sugar=5,mag=4
539: (0)(0)<<0,1,0,4>>(4,6),nb=6,nab=9,rp=3,sugar=5,mag=4
540: (0)(0)<<0,0,2,4>>(6,8),nb=7,nab=10,rp=4,sugar=6,mag=6
541: ....gb done
542: reduceall
543: .......
544: membercheck
545: (0,0)(0,0)(0,0)(0,0)
546: gbcheck total 8 pairs
547: ........
1.5 noro 548: UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)
549: PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
550: D=12 ZR=5 NZR=6 Max_mag=6
1.1 noro 551: [94]
552: @end example
553:
554: @noindent
1.2 noro 555: \BJP
1.1 noro 556: $B:G=i$KI=<($5$l$k(B @code{mod}, @code{eval} $B$O(B, trace-lifting $B$GMQ$$$i$l$kK!(B
557: $B$G$"$k(B. @code{mod} $B$OAG?t(B, @code{eval} $B$OM-M}<078?t$N>l9g$KMQ$$$i$l$k(B
558: $B?t$N%j%9%H$G$"$k(B.
1.2 noro 559: \E
560: \BEG
561: In this example @code{mod} and @code{eval} indicate moduli used in
562: trace-lifting. @code{mod} is a prime and @code{eval} is a list of integers
563: used for evaluation when the ground field is a field of rational functions.
564: \E
1.1 noro 565:
566: @noindent
1.2 noro 567: \JP $B7W;;ESCf$GB?9`<0$,@8@.$5$l$kKh$K<!$N7A$N%G!<%?$,I=<($5$l$k(B.
568: \EG The following information is shown after every normal form computation.
1.1 noro 569:
570: @example
571: (TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M
572: @end example
573:
574: @noindent
1.2 noro 575: \JP $B$=$l$i$N0UL#$O<!$NDL$j(B.
576: \EG Meaning of each component is as follows.
1.1 noro 577:
578: @table @code
1.2 noro 579: \BJP
1.1 noro 580: @item TNF
1.2 noro 581:
1.1 noro 582: normal form $B7W;;;~4V(B ($BIC(B)
583:
584: @item TCONT
1.2 noro 585:
1.1 noro 586: content $B7W;;;~4V(B ($BIC(B)
587:
588: @item HT
1.2 noro 589:
1.1 noro 590: $B@8@.$5$l$?B?9`<0$NF,9`(B
591:
592: @item INDEX
1.2 noro 593:
1.1 noro 594: S-$BB?9`<0$r9=@.$9$kB?9`<0$N%$%s%G%C%/%9$N%Z%"(B
595:
596: @item NB
1.2 noro 597:
1.1 noro 598: $B8=:_$N(B, $B>iD9@-$r=|$$$?4pDl$N?t(B
599:
600: @item NAB
1.2 noro 601:
1.1 noro 602: $B8=:_$^$G$K@8@.$5$l$?4pDl$N?t(B
603:
604: @item RP
1.2 noro 605:
1.1 noro 606: $B;D$j$N%Z%"$N?t(B
607:
608: @item S
1.2 noro 609:
1.1 noro 610: $B@8@.$5$l$?B?9`<0$N(B sugar $B$NCM(B
611:
612: @item M
1.2 noro 613:
1.1 noro 614: $B@8@.$5$l$?B?9`<0$N78?t$N%S%C%HD9$NOB(B (@code{ShowMag} $B$,(B on $B$N;~$KI=<($5$l$k(B. )
1.2 noro 615: \E
616: \BEG
617: @item TNF
618:
619: CPU time for normal form computation (second)
620:
621: @item TCONT
622:
623: CPU time for content removal(second)
624:
625: @item HT
626:
627: Head term of the generated basis element
628:
629: @item INDEX
630:
631: Pair of indices which corresponds to the reduced S-polynomial
632:
633: @item NB
634:
635: Number of basis elements after removing redundancy
636:
637: @item NAB
638:
639: Number of all the basis elements
640:
641: @item RP
642:
643: Number of remaining pairs
644:
645: @item S
646:
647: Sugar of the generated basis element
648:
649: @item M
650:
651: Magnitude of the genrated basis element (shown if @code{ShowMag} is `on'.)
652: \E
1.1 noro 653: @end table
654:
655: @noindent
1.2 noro 656: \BJP
1.1 noro 657: $B:G8e$K(B, $B=87W%G!<%?$,I=<($5$l$k(B. $B0UL#$O<!$NDL$j(B.
658: ($B;~4V$NI=<($K$*$$$F(B, $B?t;z$,(B 2 $B$D$"$k$b$N$O(B, $B7W;;;~4V$H(B GC $B;~4V$N%Z%"$G$"$k(B.)
1.2 noro 659: \E
660: \BEG
661: The summary of the informations shown after a Groebner basis
662: computation is as follows. If a component shows timings and it
663: contains two numbers, they are a pair of time for computation and time
664: for garbage colection.
665: \E
1.1 noro 666:
667: @table @code
1.2 noro 668: \BJP
1.1 noro 669: @item UP
1.2 noro 670:
1.1 noro 671: $B%Z%"$N%j%9%H$NA`:n$K$+$+$C$?;~4V(B
672:
673: @item SP
1.2 noro 674:
1.1 noro 675: $BM-M}?t>e$N(B S-$BB?9`<07W;;;~4V(B
676:
677: @item SPM
1.2 noro 678:
1.1 noro 679: $BM-8BBN>e$N(B S-$BB?9`<07W;;;~4V(B
680:
681: @item NF
1.2 noro 682:
1.1 noro 683: $BM-M}?t>e$N(B normal form $B7W;;;~4V(B
684:
685: @item NFM
1.2 noro 686:
1.1 noro 687: $BM-8BBN>e$N(B normal form $B7W;;;~4V(B
688:
689: @item ZNFM
1.2 noro 690:
1.1 noro 691: @code{NFM} $B$NFb(B, 0 $B$X$N(B reduction $B$K$+$+$C$?;~4V(B
692:
693: @item PZ
1.2 noro 694:
1.1 noro 695: content $B7W;;;~4V(B
696:
697: @item NP
1.2 noro 698:
1.1 noro 699: $BM-M}?t78?tB?9`<0$N78?t$KBP$9$k>jM>1i;;$N7W;;;~4V(B
700:
701: @item MP
1.2 noro 702:
1.1 noro 703: S-$BB?9`<0$r@8@.$9$k%Z%"$NA*Br$K$+$+$C$?;~4V(B
704:
705: @item RA
1.2 noro 706:
1.1 noro 707: interreduce $B7W;;;~4V(B
708:
709: @item MC
1.2 noro 710:
1.1 noro 711: trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7%C%W7W;;;~4V(B
712:
713: @item GC
1.2 noro 714:
1.1 noro 715: $B7k2L$N%0%l%V%J4pDl8uJd$N%0%l%V%J4pDl%A%'%C%/;~4V(B
716:
717: @item T
1.2 noro 718:
1.1 noro 719: $B@8@.$5$l$?%Z%"$N?t(B
720:
721: @item B, M, F, D
1.2 noro 722:
1.1 noro 723: $B3F(B criterion $B$K$h$j=|$+$l$?%Z%"$N?t(B
724:
725: @item ZR
1.2 noro 726:
1.1 noro 727: 0 $B$K(B reduce $B$5$l$?%Z%"$N?t(B
728:
729: @item NZR
1.2 noro 730:
1.1 noro 731: 0 $B$G$J$$B?9`<0$K(B reduce $B$5$l$?%Z%"$N?t(B
732:
733: @item Max_mag
1.2 noro 734:
1.1 noro 735: $B@8@.$5$l$?B?9`<0$N(B, $B78?t$N%S%C%HD9$NOB$N:GBgCM(B
1.2 noro 736: \E
737: \BEG
738: @item UP
739:
740: Time to manipulate the list of critical pairs
741:
742: @item SP
743:
744: Time to compute S-polynomials over the rationals
745:
746: @item SPM
747:
748: Time to compute S-polynomials over a finite field
749:
750: @item NF
751:
752: Time to compute normal forms over the rationals
753:
754: @item NFM
755:
756: Time to compute normal forms over a finite field
757:
758: @item ZNFM
759:
760: Time for zero reductions in @code{NFM}
761:
762: @item PZ
763:
764: Time to remove integer contets
765:
766: @item NP
767:
768: Time to compute remainders for coefficients of polynomials with coeffieints
769: in the rationals
770:
771: @item MP
772:
773: Time to select pairs from which S-polynomials are computed
774:
775: @item RA
776:
777: Time to interreduce the Groebner basis candidate
778:
779: @item MC
1.1 noro 780:
1.2 noro 781: Time to check that each input polynomial is a member of the ideal
782: generated by the Groebner basis candidate.
783:
784: @item GC
785:
786: Time to check that the Groebner basis candidate is a Groebner basis
787:
788: @item T
789:
790: Number of critical pairs generated
791:
792: @item B, M, F, D
793:
794: Number of critical pairs removed by using each criterion
795:
796: @item ZR
797:
798: Number of S-polynomials reduced to 0
799:
800: @item NZR
801:
802: Number of S-polynomials reduced to non-zero results
803:
804: @item Max_mag
805:
806: Maximal magnitude among all the generated polynomials
807: \E
1.1 noro 808: @end table
809:
1.2 noro 810: \BJP
1.1 noro 811: @node $B9`=g=x$N@_Dj(B,,, $B%0%l%V%J4pDl$N7W;;(B
812: @section $B9`=g=x$N@_Dj(B
1.2 noro 813: \E
814: \BEG
815: @node Setting term orderings,,, Groebner basis computation
816: @section Setting term orderings
817: \E
1.1 noro 818:
819: @noindent
1.2 noro 820: \BJP
1.1 noro 821: $B9`$OFbIt$G$O(B, $B3FJQ?t$K4X$9$k;X?t$r@.J,$H$9$k@0?t%Y%/%H%k$H$7$FI=8=$5$l(B
822: $B$k(B. $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k:](B, $B3FJQ?t$,$I$N@.J,$KBP1~$9$k$+$r(B
823: $B;XDj$9$k$N$,(B, $BJQ?t%j%9%H$G$"$k(B. $B$5$i$K(B, $B$=$l$i@0?t%Y%/%H%k$NA4=g=x$r(B
824: $B;XDj$9$k$N$,9`=g=x$N7?$G$"$k(B. $B9`=g=x7?$O(B, $B?t(B, $B?t$N%j%9%H$"$k$$$O(B
825: $B9TNs$GI=8=$5$l$k(B.
1.2 noro 826: \E
827: \BEG
828: A term is internally represented as an integer vector whose components
829: are exponents with respect to variables. A variable list specifies the
830: correspondences between variables and components. A type of term ordering
831: specifies a total order for integer vectors. A type of term ordering is
832: represented by an integer, a list of integer or matrices.
833: \E
1.1 noro 834:
835: @noindent
1.2 noro 836: \JP $B4pK\E*$J9`=g=x7?$H$7$F<!$N(B 3 $B$D$,$"$k(B.
837: \EG There are following three fundamental types.
1.1 noro 838:
839: @table @code
1.2 noro 840: \JP @item 0 (DegRevLex; @b{$BA4<!?t5U<-=q<0=g=x(B})
841: \EG @item 0 (DegRevLex; @b{total degree reverse lexicographic ordering})
1.1 noro 842:
1.2 noro 843: \BJP
1.1 noro 844: $B0lHL$K(B, $B$3$N=g=x$K$h$k%0%l%V%J4pDl7W;;$,:G$b9bB.$G$"$k(B. $B$?$@$7(B,
845: $BJ}Dx<0$r2r$/$H$$$&L\E*$KMQ$$$k$3$H$O(B, $B0lHL$K$O$G$-$J$$(B. $B$3$N(B
846: $B=g=x$K$h$k%0%l%V%J4pDl$O(B, $B2r$N8D?t$N7W;;(B, $B%$%G%"%k$N%a%s%P%7%C%W$d(B,
847: $BB>$NJQ?t=g=x$X$N4pDlJQ49$N$?$a$N%=!<%9$H$7$FMQ$$$i$l$k(B.
1.2 noro 848: \E
849: \BEG
850: In general, computation by this ordering shows the fastest speed
851: in most Groebner basis computations.
852: However, for the purpose to solve polynomial equations, this type
853: of ordering is, in general, not so suitable.
854: The Groebner bases obtained by this ordering is used for computing
855: the number of solutions, solving ideal membership problem and seeds
856: for conversion to other Groebner bases under different ordering.
857: \E
1.1 noro 858:
1.2 noro 859: \JP @item 1 (DegLex; @b{$BA4<!?t<-=q<0=g=x(B})
860: \EG @item 1 (DegLex; @b{total degree lexicographic ordering})
1.1 noro 861:
1.2 noro 862: \BJP
1.1 noro 863: $B$3$N=g=x$b(B, $B<-=q<0=g=x$KHf$Y$F9bB.$K%0%l%V%J4pDl$r5a$a$k$3$H$,$G$-$k$,(B,
864: @code{DegRevLex} $B$HF1MMD>@\$=$N7k2L$rMQ$$$k$3$H$O:$Fq$G$"$k(B. $B$7$+$7(B,
865: $B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k:]$K(B, $B@F<!2=8e$K$3$N=g=x$G%0%l%V%J4pDl(B
866: $B$r5a$a$F$$$k(B.
1.2 noro 867: \E
868: \BEG
869: By this type term ordering, Groebner bases are obtained fairly faster
870: than Lex (lexicographic) ordering, too.
871: Alike the @code{DegRevLex} ordering, the result, in general, cannot directly
872: be used for solving polynomial equations.
873: It is used, however, in such a way
874: that a Groebner basis is computed in this ordering after homogenization
875: to obtain the final lexicographic Groebner basis.
876: \E
1.1 noro 877:
1.2 noro 878: \JP @item 2 (Lex; @b{$B<-=q<0=g=x(B})
879: \EG @item 2 (Lex; @b{lexicographic ordering})
1.1 noro 880:
1.2 noro 881: \BJP
1.1 noro 882: $B$3$N=g=x$K$h$k%0%l%V%J4pDl$O(B, $BJ}Dx<0$r2r$/>l9g$K:GE,$N7A$N4pDl$rM?$($k$,(B
883: $B7W;;;~4V$,$+$+$j2a$.$k$N$,FqE@$G$"$k(B. $BFC$K(B, $B2r$,M-8B8D$N>l9g(B, $B7k2L$N(B
884: $B78?t$,6K$a$FD9Bg$JB?G\D9?t$K$J$k>l9g$,B?$$(B. $B$3$N>l9g(B, @code{gr()},
885: @code{hgr()} $B$K$h$k7W;;$,6K$a$FM-8z$K$J$k>l9g$,B?$$(B.
1.2 noro 886: \E
887: \BEG
888: Groebner bases computed by this ordering give the most convenient
889: Groebner bases for solving the polynomial equations.
890: The only and serious shortcoming is the enormously long computation
891: time.
892: It is often observed that the number coefficients of the result becomes
893: very very long integers, especially if the ideal is 0-dimensional.
894: For such a case, it is empirically true for many cases
895: that i.e., computation by
896: @code{gr()} and/or @code{hgr()} may be quite effective.
897: \E
1.1 noro 898: @end table
899:
900: @noindent
1.2 noro 901: \BJP
1.1 noro 902: $B$3$l$i$rAH$_9g$o$;$F%j%9%H$G;XDj$9$k$3$H$K$h$j(B, $BMM!9$J>C5n=g=x$,;XDj$G$-$k(B.
903: $B$3$l$O(B,
1.2 noro 904: \E
905: \BEG
906: By combining these fundamental orderingl into a list, one can make
907: various term ordering called elimination orderings.
908: \E
1.1 noro 909:
910: @code{[[O1,L1],[O2,L2],...]}
911:
912: @noindent
1.2 noro 913: \BJP
1.1 noro 914: $B$G;XDj$5$l$k(B. @code{Oi} $B$O(B 0, 1, 2 $B$N$$$:$l$+$G(B, @code{Li} $B$OJQ?t$N8D(B
915: $B?t$rI=$9(B. $B$3$N;XDj$O(B, $BJQ?t$r@hF,$+$i(B @code{L1}, @code{L2} , ...$B8D(B
916: $B$:$D$NAH$KJ,$1(B, $B$=$l$>$l$NJQ?t$K4X$7(B, $B=g$K(B @code{O1}, @code{O2},
917: ...$B$N9`=g=x7?$GBg>.$,7hDj$9$k$^$GHf3S$9$k$3$H$r0UL#$9$k(B. $B$3$N7?$N(B
918: $B=g=x$O0lHL$K>C5n=g=x$H8F$P$l$k(B.
1.2 noro 919: \E
920: \BEG
921: In this example @code{Oi} indicates 0, 1 or 2 and @code{Li} indicates
922: the number of variables subject to the correspoinding orderings.
923: This specification means the following.
924:
925: The variable list is separated into sub lists from left to right where
926: the @code{i}-th list contains @code{Li} members and it corresponds to
927: the ordering of type @code{Oi}. The result of a comparison is equal
928: to that for the leftmost different sub components. This type of ordering
929: is called an elimination ordering.
930: \E
1.1 noro 931:
932: @noindent
1.2 noro 933: \BJP
1.1 noro 934: $B$5$i$K(B, $B9TNs$K$h$j9`=g=x$r;XDj$9$k$3$H$,$G$-$k(B. $B0lHL$K(B, @code{n} $B9T(B
935: @code{m} $BNs$N<B?t9TNs(B @code{M} $B$,<!$N@-<A$r;}$D$H$9$k(B.
1.2 noro 936: \E
937: \BEG
938: Furthermore one can specify a term ordering by a matix.
939: Suppose that a real @code{n}, @code{m} matrix @code{M} has the
940: following properties.
941: \E
1.1 noro 942:
943: @enumerate
944: @item
1.2 noro 945: \JP $BD9$5(B @code{m} $B$N@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B @code{Mv=0} $B$H(B @code{v=0} $B$OF1CM(B.
946: \BEG
947: For all integer verctors @code{v} of length @code{m} @code{Mv=0} is equivalent
948: to @code{v=0}.
949: \E
1.1 noro 950:
951: @item
1.2 noro 952: \BJP
1.1 noro 953: $BHsIi@.J,$r;}$DD9$5(B @code{m} $B$N(B 0 $B$G$J$$@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B,
954: @code{Mv} $B$N(B 0 $B$G$J$$:G=i$N@.J,$OHsIi(B.
1.2 noro 955: \E
956: \BEG
957: For all non-negative integer vectors @code{v} the first non-zero component
958: of @code{Mv} is non-negative.
959: \E
1.1 noro 960: @end enumerate
961:
962: @noindent
1.2 noro 963: \BJP
1.1 noro 964: $B$3$N;~(B, 2 $B$D$N%Y%/%H%k(B @code{t}, @code{s} $B$KBP$7(B,
965: @code{t>s} $B$r(B, @code{M(t-s)} $B$N(B 0 $B$G$J$$:G=i$N@.J,$,HsIi(B,
966: $B$GDj5A$9$k$3$H$K$h$j9`=g=x$,Dj5A$G$-$k(B.
1.2 noro 967: \E
968: \BEG
969: Then we can define a term ordering such that, for two vectors
970: @code{t}, @code{s}, @code{t>s} means that the first non-zero component
971: of @code{M(t-s)} is non-negative.
972: \E
1.1 noro 973:
974: @noindent
1.2 noro 975: \BJP
1.1 noro 976: $B9`=g=x7?$O(B, @code{gr()} $B$J$I$N0z?t$H$7$F;XDj$5$l$kB>(B, $BAH$_9~$_H!?t(B
977: @code{dp_ord()} $B$G;XDj$5$l(B, $B$5$^$6$^$JH!?t$N<B9T$N:]$K;2>H$5$l$k(B.
1.2 noro 978: \E
979: \BEG
980: Types of term orderings are used as arguments of functions such as
981: @code{gr()}. It is also set internally by @code{dp_ord()} and is used
982: during executions of various functions.
983: \E
1.1 noro 984:
985: @noindent
1.2 noro 986: \BJP
1.1 noro 987: $B$3$l$i$N=g=x$N6qBNE*$JDj5A$*$h$S%0%l%V%J4pDl$K4X$9$k99$K>\$7$$2r@b$O(B
988: @code{[Becker,Weispfenning]} $B$J$I$r;2>H$N$3$H(B.
1.2 noro 989: \E
990: \BEG
991: For concrete definitions of term ordering and more information
992: about Groebner basis, refer to, for example, the book
993: @code{[Becker,Weispfenning]}.
994: \E
1.1 noro 995:
996: @noindent
1.2 noro 997: \JP $B9`=g=x7?$N@_Dj$NB>$K(B, $BJQ?t$N=g=x<+BN$b7W;;;~4V$KBg$-$J1F6A$rM?$($k(B.
998: \BEG
999: Note that the variable ordering have strong effects on the computation
1000: time as well as the choice of types of term orderings.
1001: \E
1.1 noro 1002:
1003: @example
1004: [90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$
1005: [91] gr(B,[x,y,z,t],2);
1006: [x^2-2*y^7+(-41*t^2-13*t-1)*y^2+(2*t^17-12*t^14+42*t^12+30*t^11-168*t^9
1007: -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y
1008: +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5
1009: -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,
1.5 noro 1010: (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11
1011: +84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y
1012: +(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4
1013: +27*t^3-16*t^2-30*t+7)*z^4,
1014: (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2
1015: -6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5
1016: +10*t^4-36*t^3-11*t^2-5*t+9)*z^2,
1.1 noro 1017: -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7
1.5 noro 1018: -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21
1019: +20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11
1020: -400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2
1021: -12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2
1022: -10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,
1.1 noro 1023: -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,
1.5 noro 1024: 2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y
1025: +(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,
1.1 noro 1026: z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,
1027: -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,
1.5 noro 1028: -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4]
1.1 noro 1029: [93] gr(B,[t,z,y,x],2);
1030: [x^10-t,x^8-z,x^31-x^6-x-y]
1031: @end example
1032:
1033: @noindent
1.2 noro 1034: \BJP
1.1 noro 1035: $BJQ?t=g=x(B @code{[x,y,z,t]} $B$K$*$1$k%0%l%V%J4pDl$O(B, $B4pDl$N?t$bB?$/(B, $B$=$l$>$l$N(B
1036: $B<0$bBg$-$$(B. $B$7$+$7(B, $B=g=x(B @code{[t,z,y,x]} $B$K$b$H$G$O(B, @code{B} $B$,$9$G$K(B
1037: $B%0%l%V%J4pDl$H$J$C$F$$$k(B. $BBg;(GD$K$$$($P(B, $B<-=q<0=g=x$G%0%l%V%J4pDl$r5a$a$k(B
1038: $B$3$H$O(B, $B:8B&$N(B ($B=g=x$N9b$$(B) $BJQ?t$r(B, $B1&B&$N(B ($B=g=x$NDc$$(B) $BJQ?t$G=q$-I=$9(B
1039: $B$3$H$G$"$j(B, $B$3$NNc$N>l9g$O(B, @code{t}, @code{z}, @code{y} $B$,4{$K(B
1040: @code{x} $B$GI=$5$l$F$$$k$3$H$+$i$3$N$h$&$J6KC<$J7k2L$H$J$C$?$o$1$G$"$k(B.
1041: $B<B:]$K8=$l$k7W;;$K$*$$$F$O(B, $B$3$N$h$&$KA*$V$Y$-JQ?t=g=x$,L@$i$+$G$"$k(B
1042: $B$3$H$O>/$J$/(B, $B;n9T:x8m$,I,MW$J>l9g$b$"$k(B.
1.2 noro 1043: \E
1044: \BEG
1045: As you see in the above example, the Groebner base under variable
1046: ordering @code{[x,y,z,t]} has a lot of bases and each base itself is
1047: large. Under variable ordering @code{[t,z,y,x]}, however, @code{B} itself
1048: is already the Groebner basis.
1049: Roughly speaking, to obtain a Groebner base under the lexicographic
1050: ordering is to express the variables on the left (having higher order)
1051: in terms of variables on the right (having lower order).
1052: In the example, variables @code{t}, @code{z}, and @code{y} are already
1053: expressed by variable @code{x}, and the above explanation justifies
1054: such a drastic experimental results.
1055: In practice, however, optimum ordering for variables may not known
1056: beforehand, and some heuristic trial may be inevitable.
1.13 noro 1057: \E
1058:
1059: \BJP
1060: @node Weight ,,, $B%0%l%V%J4pDl$N7W;;(B
1061: @section Weight
1062: \E
1063: \BEG
1064: @node Weight,,, Groebner basis computation
1065: @section Weight
1066: \E
1067: \BJP
1068: $BA0@a$G>R2p$7$?9`=g=x$O(B, $B3FJQ?t$K(B weight ($B=E$_(B) $B$r@_Dj$9$k$3$H$G(B
1069: $B$h$j0lHLE*$J$b$N$H$J$k(B.
1070: \E
1071: \BEG
1.14 noro 1072: Term orderings introduced in the previous section can be generalized
1.13 noro 1073: by setting a weight for each variable.
1074: \E
1075: @example
1076: [0] dp_td(<<1,1,1>>);
1077: 3
1078: [1] dp_set_weight([1,2,3])$
1079: [2] dp_td(<<1,1,1>>);
1080: 6
1081: @end example
1082: \BJP
1083: $BC19`<0$NA4<!?t$r7W;;$9$k:](B, $B%G%U%)%k%H$G$O(B
1084: $B3FJQ?t$N;X?t$NOB$rA4<!?t$H$9$k(B. $B$3$l$O3FJQ?t$N(B weight $B$r(B 1 $B$H(B
1085: $B9M$($F$$$k$3$H$KAjEv$9$k(B. $B$3$NNc$G$O(B, $BBh0l(B, $BBhFs(B, $BBh;0JQ?t$N(B
1086: weight $B$r$=$l$>$l(B 1,2,3 $B$H;XDj$7$F$$$k(B. $B$3$N$?$a(B, @code{<<1,1,1>>}
1087: $B$NA4<!?t(B ($B0J2<$G$O$3$l$rC19`<0$N(B weight $B$H8F$V(B) $B$,(B @code{1*1+1*2+1*3=6} $B$H$J$k(B.
1088: weight $B$r@_Dj$9$k$3$H$G(B, $BF1$89`=g=x7?$N$b$H$G0[$J$k9`=g=x$,Dj5A$G$-$k(B.
1089: $BNc$($P(B, weight $B$r$&$^$/@_Dj$9$k$3$H$G(B, $BB?9`<0$r(B weighted homogeneous
1090: $B$K$9$k$3$H$,$G$-$k>l9g$,$"$k(B.
1091: \E
1092: \BEG
1093: By default, the total degree of a monomial is equal to
1094: the sum of all exponents. This means that the weight for each variable
1095: is set to 1.
1096: In this example, the weights for the first, the second and the third
1097: variable are set to 1, 2 and 3 respectively.
1098: Therefore the total degree of @code{<<1,1,1>>} under this weight,
1099: which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}.
1.14 noro 1100: By setting weights, different term orderings can be set under a type of
1101: term ordeing. In some case a polynomial can
1102: be made weighted homogeneous by setting an appropriate weight.
1.13 noro 1103: \E
1104:
1105: \BJP
1106: $B3FJQ?t$KBP$9$k(B weight $B$r$^$H$a$?$b$N$r(B weight vector $B$H8F$V(B.
1107: $B$9$Y$F$N@.J,$,@5$G$"$j(B, $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $BA4<!?t$N(B
1108: $BBe$o$j$KMQ$$$i$l$k$b$N$rFC$K(B sugar weight $B$H8F$V$3$H$K$9$k(B.
1109: sugar strategy $B$K$*$$$F(B, $BA4<!?t$NBe$o$j$K;H$o$l$k$+$i$G$"$k(B.
1110: $B0lJ}$G(B, $B3F@.J,$,I,$:$7$b@5$H$O8B$i$J$$(B weight vector $B$O(B,
1111: sugar weight $B$H$7$F@_Dj$9$k$3$H$O$G$-$J$$$,(B, $B9`=g=x$N0lHL2=$K$O(B
1112: $BM-MQ$G$"$k(B. $B$3$l$i$O(B, $B9TNs$K$h$k9`=g=x$N@_Dj$K$9$G$K8=$l$F(B
1113: $B$$$k(B. $B$9$J$o$A(B, $B9`=g=x$rDj5A$9$k9TNs$N3F9T$,(B, $B0l$D$N(B weight vector
1114: $B$H8+$J$5$l$k(B. $B$^$?(B, $B%V%m%C%/=g=x$O(B, $B3F%V%m%C%/$N(B
1115: $BJQ?t$KBP1~$9$k@.J,$N$_(B 1 $B$GB>$O(B 0 $B$N(B weight vector $B$K$h$kHf3S$r(B
1116: $B:G=i$K9T$C$F$+$i(B, $B3F%V%m%C%/Kh$N(B tie breaking $B$r9T$&$3$H$KAjEv$9$k(B.
1117: \E
1118:
1119: \BEG
1120: A list of weights for all variables is called a weight vector.
1121: A weight vector is called a sugar weight vector if
1122: its elements are all positive and it is used for computing
1123: a weighted total degree of a monomial, because such a weight
1124: is used instead of total degree in sugar strategy.
1125: On the other hand, a weight vector whose elements are not necessarily
1126: positive cannot be set as a sugar weight, but it is useful for
1127: generalizing term order. In fact, such a weight vector already
1128: appeared in a matrix order. That is, each row of a matrix defining
1129: a term order is regarded as a weight vector. A block order
1130: is also considered as a refinement of comparison by weight vectors.
1131: It compares two terms by using a weight vector whose elements
1132: corresponding to variables in a block is 1 and 0 otherwise,
1133: then it applies a tie breaker.
1.14 noro 1134: \E
1135:
1136: \BJP
1137: weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B
1138: $B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B
1139: $B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $B<!$N$h$&$J7A$G$b(B
1140: $B9`=g=x$,;XDj$G$-$k(B.
1141: \E
1142: \BEG
1143: A weight vector can be set by using @code{dp_set_weight()}.
1144: However it is more preferable if a weight vector can be set
1145: together with other parapmeters such as a type of term ordering
1146: and a variable order. This is realized as follows.
1147: \E
1.13 noro 1148:
1.14 noro 1149: @example
1150: [64] B=[x+y+z-6,x*y+y*z+z*x-11,x*y*z-6]$
1151: [65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0);
1152: [z^3-6*z^2+11*z-6,x+y+z-6,-y^2+(-z+6)*y-z^2+6*z-11]
1153: [66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]);
1154: [x^3-6*x^2+11*x-6,x+y+z-6,-x^2+(-y+6)*x-y^2+6*y-11]
1155: [67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]);
1156: [x+y+z-6,x^3-6*x^2+11*x-6,-x^2+(-y+6)*x-y^2+6*y-11]
1157: @end example
1158:
1159: \BJP
1160: $B$$$:$l$NNc$K$*$$$F$b(B, $B9`=g=x$O(B option $B$H$7$F;XDj$5$l$F$$$k(B.
1161: $B:G=i$NNc$G$O(B @code{v} $B$K$h$jJQ?t=g=x$r(B, @code{sugarweight} $B$K$h$j(B
1162: sugar weight vector $B$r(B, @code{order}$B$K$h$j9`=g=x7?$r;XDj$7$F$$$k(B.
1163: $BFs$DL\$NNc$K$*$1$k(B @code{order} $B$N;XDj$O(B matrix order $B$HF1MM$G$"$k(B.
1164: $B$9$J$o$A(B, $B;XDj$5$l$?(B weight vector $B$r:8$+$i=g$K;H$C$F(B weight $B$NHf3S(B
1165: $B$r9T$&(B. $B;0$DL\$NNc$bF1MM$G$"$k$,(B, $B$3$3$G$O(B weight vector $B$NMWAG$r(B
1166: $BJQ?tKh$K;XDj$7$F$$$k(B. $B;XDj$,$J$$$b$N$O(B 0 $B$H$J$k(B. $B;0$DL\$NNc$G$O(B,
1167: @code{order} $B$K$h$k;XDj$G$O9`=g=x$,7hDj$7$J$$(B. $B$3$N>l9g$K$O(B,
1168: tie breaker $B$H$7$FA4<!?t5U<-=q<0=g=x$,<+F0E*$K@_Dj$5$l$k(B.
1169: $B$3$N;XDjJ}K!$O(B, @code{dp_gr_main}, @code{dp_gr_mod_main} $B$J$I(B
1170: $B$NAH$_9~$_4X?t$G$N$_2DG=$G$"$j(B, @code{gr} $B$J$I$N%f!<%6Dj5A4X?t(B
1171: $B$G$OL$BP1~$G$"$k(B.
1172: \E
1173: \BEG
1174: In each example, a term ordering is specified as options.
1175: In the first example, a variable order, a sugar weight vector
1176: and a type of term ordering are specified by options @code{v},
1177: @code{sugarweight} and @code{order} respectively.
1178: In the second example, an option @code{order} is used
1179: to set a matrix ordering. That is, the specified weight vectors
1180: are used from left to right for comparing terms.
1181: The third example shows a variant of specifying a weight vector,
1182: where each component of a weight vector is specified variable by variable,
1183: and unspecified components are set to zero. In this example,
1184: a term order is not determined only by the specified weight vector.
1185: In such a case a tie breaker by the graded reverse lexicographic ordering
1186: is set automatically.
1187: This type of a term ordering specification can be applied only to builtin
1188: functions such as @code{dp_gr_main()}, @code{dp_gr_mod_main()}, not to
1189: user defined functions such as @code{gr()}.
1.2 noro 1190: \E
1.1 noro 1191:
1.2 noro 1192: \BJP
1.1 noro 1193: @node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B
1194: @section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B
1.2 noro 1195: \E
1196: \BEG
1197: @node Groebner basis computation with rational function coefficients,,, Groebner basis computation
1198: @section Groebner basis computation with rational function coefficients
1199: \E
1.1 noro 1200:
1201: @noindent
1.2 noro 1202: \BJP
1.1 noro 1203: @code{gr()} $B$J$I$N%H%C%W%l%Y%kH!?t$O(B, $B$$$:$l$b(B, $BF~NOB?9`<0%j%9%H$K(B
1204: $B8=$l$kJQ?t(B ($BITDj85(B) $B$H(B, $BJQ?t%j%9%H$K8=$l$kJQ?t$rHf3S$7$F(B, $BJQ?t%j%9%H$K(B
1205: $B$J$$JQ?t$,F~NOB?9`<0$K8=$l$F$$$k>l9g$K$O(B, $B<+F0E*$K(B, $B$=$NJQ?t$r(B, $B78?t(B
1206: $BBN$N85$H$7$F07$&(B.
1.2 noro 1207: \E
1208: \BEG
1209: Such variables that appear within the input polynomials but
1210: not appearing in the input variable list are automatically treated
1211: as elements in the coefficient field
1212: by top level functions, such as @code{gr()}.
1213: \E
1.1 noro 1214:
1215: @example
1216: [64] gr([a*x+b*y-c,d*x+e*y-f],[x,y],2);
1217: [(-e*a+d*b)*x-f*b+e*c,(-e*a+d*b)*y+f*a-d*c]
1218: @end example
1219:
1220: @noindent
1.2 noro 1221: \BJP
1.1 noro 1222: $B$3$NNc$G$O(B, @code{a}, @code{b}, @code{c}, @code{d} $B$,78?tBN$N85$H$7$F(B
1223: $B07$o$l$k(B. $B$9$J$o$A(B, $BM-M}H!?tBN(B
1224: @b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}) $B>e$N(B 2 $BJQ?tB?9`<04D(B
1225: @b{F}[@code{x},@code{y}] $B$K$*$1$k%0%l%V%J4pDl$r5a$a$k$3$H$K$J$k(B.
1226: $BCm0U$9$Y$-$3$H$O(B,
1227: $B78?t$,BN$H$7$F07$o$l$F$$$k$3$H$G$"$k(B. $B$9$J$o$A(B, $B78?t$N4V$KB?9`<0(B
1228: $B$H$7$F$N6&DL0x;R$,$"$C$?>l9g$K$O(B, $B7k2L$+$i$=$N0x;R$O=|$+$l$F$$$k(B
1229: $B$?$a(B, $BM-M}?tBN>e$NB?9`<04D>e$NLdBj$H$7$F9M$($?>l9g$N7k2L$H$O0lHL(B
1230: $B$K$O0[$J$k(B. $B$^$?(B, $B<g$H$7$F7W;;8zN(>e$NLdBj$N$?$a(B, $BJ,;6I=8=B?9`<0(B
1231: $B$N78?t$H$7$F<B:]$K5v$5$l$k$N$OB?9`<0$^$G$G$"$k(B. $B$9$J$o$A(B, $BJ,Jl$r(B
1232: $B;}$DM-M}<0$OJ,;6I=8=B?9`<0$N78?t$H$7$F$O5v$5$l$J$$(B.
1.2 noro 1233: \E
1234: \BEG
1235: In this example, variables @code{a}, @code{b}, @code{c}, and @code{d}
1236: are treated as elements in the coefficient field.
1237: In this case, a Groebner basis is computed
1238: on a bi-variate polynomial ring
1239: @b{F}[@code{x},@code{y}]
1240: over rational function field
1241: @b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}).
1242: Notice that coefficients are considered as a member in a field.
1243: As a consequence, polynomial factors common to the coefficients
1244: are removed so that the result, in general, is different from
1245: the result that would be obtained when the problem is considered
1246: as a computation of Groebner basis over a polynomial ring
1247: with rational function coefficients.
1248: And note that coefficients of a distributed polynomial are limited
1249: to numbers and polynomials because of efficiency.
1250: \E
1.1 noro 1251:
1.2 noro 1252: \BJP
1.1 noro 1253: @node $B4pDlJQ49(B,,, $B%0%l%V%J4pDl$N7W;;(B
1254: @section $B4pDlJQ49(B
1.2 noro 1255: \E
1256: \BEG
1257: @node Change of ordering,,, Groebner basis computation
1258: @section Change of orderng
1259: \E
1.1 noro 1260:
1261: @noindent
1.2 noro 1262: \BJP
1.1 noro 1263: $B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k>l9g(B, $BD>@\(B @code{gr()} $B$J$I$r5/F0$9$k(B
1264: $B$h$j(B, $B0lC6B>$N=g=x(B ($BNc$($PA4<!?t5U<-=q<0=g=x(B) $B$N%0%l%V%J4pDl$r7W;;$7$F(B,
1265: $B$=$l$rF~NO$H$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$kJ}$,8zN($,$h$$>l9g(B
1266: $B$,$"$k(B. $B$^$?(B, $BF~NO$,2?$i$+$N=g=x$G$N%0%l%V%J4pDl$K$J$C$F$$$k>l9g(B, $B4pDl(B
1267: $BJQ49$H8F$P$l$kJ}K!$K$h$j(B, Buchberger $B%"%k%4%j%:%`$K$h$i$:$K8zN(NI$/(B
1268: $B<-=q<0=g=x$N%0%l%V%J4pDl$,7W;;$G$-$k>l9g$,$"$k(B. $B$3$N$h$&$JL\E*$N$?$a$N(B
1269: $BH!?t$,(B, $B%f!<%6Dj5AH!?t$H$7$F(B @samp{gr} $B$K$$$/$D$+Dj5A$5$l$F$$$k(B.
1270: $B0J2<$N(B 2 $B$D$NH!?t$O(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$G(B
1271: $B4{$K%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0%j%9%H(B @var{gbase} $B$r(B, $BJQ?t=g=x(B
1272: @var{vlist2} $B$K$*$1$k<-=q<0=g=x$N%0%l%V%J4pDl$KJQ49$9$kH!?t$G$"$k(B.
1.2 noro 1273: \E
1274: \BEG
1275: When we compute a lex order Groebner basis, it is often efficient to
1276: compute it via Groebner basis with respect to another order such as
1277: degree reverse lex order, rather than to compute it directory by
1278: @code{gr()} etc. If we know that an input is a Groebner basis with
1279: respect to an order, we can apply special methods called change of
1280: ordering for a Groebner basis computation with respect to another
1281: order, without using Buchberger algorithm. The following two functions
1282: are ones for change of ordering such that they convert a Groebner
1283: basis @var{gbase} with respect to the variable order @var{vlist1} and
1284: the order type @var{order} into a lex Groebner basis with respect
1285: to the variable order @var{vlist2}.
1286: \E
1.1 noro 1287:
1288: @table @code
1289: @item tolex(@var{gbase},@var{vlist1},@var{order},@var{vlist2})
1290:
1.2 noro 1291: \BJP
1.1 noro 1292: $B$3$NH!?t$O(B, @var{gbase} $B$,M-M}?tBN>e$N%7%9%F%`$N>l9g$K$N$_;HMQ2DG=$G$"$k(B.
1293: $B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B, $BM-8BBN>e$G7W;;$5$l$?%0%l%V%J4pDl(B
1294: $B$r?w7?$H$7$F(B, $BL$Dj78?tK!$*$h$S(B Hensel $B9=@.$K$h$j5a$a$k$b$N$G$"$k(B.
1.2 noro 1295: \E
1296: \BEG
1297: This function can be used only when @var{gbase} is an ideal over the
1298: rationals. The input @var{gbase} must be a Groebner basis with respect
1299: to the variable order @var{vlist1} and the order type @var{order}. Moreover
1300: the ideal generated by @var{gbase} must be zero-dimensional.
1301: This computes the lex Groebner basis of @var{gbase}
1302: by using the modular change of ordering algorithm. The algorithm first
1303: computes the lex Groebner basis over a finite field. Then each element
1304: in the lex Groebner basis over the rationals is computed with undetermined
1305: coefficient method and linear equation solving by Hensel lifting.
1306: \E
1.1 noro 1307:
1308: @item tolex_tl(@var{gbase},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1309:
1.2 noro 1310: \BJP
1.1 noro 1311: $B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B Buchberger $B%"%k%4%j%:%`$K$h$j5a(B
1312: $B$a$k$b$N$G$"$k$,(B, $BF~NO$,$"$k=g=x$K$*$1$k%0%l%V%J4pDl$G$"$k>l9g$N(B
1313: trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $BF,78?t$N@-<A$rMxMQ$7$F(B,
1314: $B:G=*E*$J%0%l%V%J4pDl%A%'%C%/(B, $B%$%G%"%k%a%s%P%7%C%W%A%'%C%/$r>JN,$7$F$$(B
1315: $B$k$?$a(B, $BC1$K(BBuchberger $B%"%k%4%j%:%`$r7+$jJV$9$h$j8zN($h$/7W;;$G$-$k(B.
1316: $B99$K(B, $BF~NO$,(B 0 $B<!85%7%9%F%`$N>l9g(B, $B<+F0E*$K$b$&(B 1 $B$D$NCf4VE*$J9`=g=x$r(B
1317: $B7PM3$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$k(B. $BB?$/$N>l9g(B, $B$3$NJ}K!$O(B,
1318: $BD>@\<-=q<0=g=x$N7W;;$r9T$&$h$j8zN($,$h$$(B. ($B$b$A$m$sNc30$"$j(B. )
1319: $B0z?t(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, @code{hgr()} $B$HF1MM$K@F<!2=$r7PM3$7$F(B
1320: $B7W;;$r9T$&(B.
1.2 noro 1321: \E
1322: \BEG
1323: This function computes the lex Groebner basis of @var{gbase}. The
1324: input @var{gbase} must be a Groebner basis with respect to the
1325: variable order @var{vlist1} and the order type @var{order}.
1326: Buchberger algorithm with trace lifting is used to compute the lex
1327: Groebner basis, however the Groebner basis check and the ideal
1328: membership check can be omitted by using several properties derived
1329: from the fact that the input is a Groebner basis. So it is more
1330: efficient than simple repetition of Buchberger algorithm. If the input
1331: is zero-dimensional, this function inserts automatically a computation
1332: of Groebner basis with respect to an elimination order, which makes
1333: the whole computation more efficient for many cases. If @var{homo} is
1334: not equal to 0, homogenization is used in each step.
1335: \E
1.1 noro 1336: @end table
1337:
1338: @noindent
1.2 noro 1339: \BJP
1.1 noro 1340: $B$=$NB>(B, 0 $B<!85%7%9%F%`$KBP$7(B, $BM?$($i$l$?B?9`<0$N:G>.B?9`<0$r5a$a$k(B
1341: $BH!?t(B, 0 $B<!85%7%9%F%`$N2r$r(B, $B$h$j%3%s%Q%/%H$KI=8=$9$k$?$a$NH!?t$J$I$,(B
1342: @samp{gr} $B$GDj5A$5$l$F$$$k(B. $B$3$l$i$K$D$$$F$O8D!9$NH!?t$N@bL@$r;2>H$N$3$H(B.
1.2 noro 1343: \E
1344: \BEG
1345: For zero-dimensional systems, there are several fuctions to
1346: compute the minimal polynomial of a polynomial and or a more compact
1347: representation for zeros of the system. They are all defined in @samp{gr}.
1348: Refer to the sections for each functions.
1349: \E
1.1 noro 1350:
1.2 noro 1351: \BJP
1.6 noro 1352: @node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
1353: @section Weyl $BBe?t(B
1354: \E
1355: \BEG
1356: @node Weyl algebra,,, Groebner basis computation
1357: @section Weyl algebra
1358: \E
1359:
1360: @noindent
1361:
1362: \BJP
1363: $B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B
1364: $B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B
1365: $B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B,
1366: Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B
1367: $B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$K<BAu$5$l$F$$$k(B.
1368:
1369: $BBN(B @code{K} $B>e$N(B @code{n} $B<!85(B Weyl $BBe?t(B
1370: @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} $B$O(B
1371: \E
1372:
1373: \BEG
1374: So far we have explained Groebner basis computation in
1375: commutative polynomial rings. However Groebner basis can be
1376: considered in more general non-commutative rings.
1377: Weyl algebra is one of such rings and
1378: Risa/Asir implements fundamental operations
1379: in Weyl algebra and Groebner basis computation in Weyl algebra.
1380:
1381: The @code{n} dimensional Weyl algebra over a field @code{K},
1382: @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} is a non-commutative
1383: algebra which has the following fundamental relations:
1384: \E
1385:
1386: @code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}),
1387: @code{Di*xi-xi*Di=1}
1388:
1389: \BJP
1390: $B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B
1391: $B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B,
1392: @code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B
1393: $B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B.
1394: Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B
1395: @code{<<i1,@dots{},in,j1,@dots{},jn>>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B
1396: $BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-}
1397: $B$K$h$j(B
1398: $B<B9T$G$-$k$,(B, $B>h;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B
1399: $B$K$h$j<B9T$9$k(B.
1400: \E
1401:
1402: \BEG
1403: @code{D} is the ring of differential operators whose coefficients
1404: are polynomials in @code{K[x1,@dots{},xn]} and
1405: @code{Di} denotes the differentiation with respect to @code{xi}.
1406: According to the commutation relation,
1407: elements of @code{D} can be represented as a @code{K}-linear combination
1408: of monomials @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn}.
1409: In Risa/Asir, this type of monomial is represented
1410: by @code{<<i1,@dots{},in,j1,@dots{},jn>>} as in the case of commutative
1411: polynomial.
1412: That is, elements of @code{D} are represented by distributed polynomials.
1413: Addition and subtraction can be done by @code{+}, @code{-},
1414: but multiplication is done by calling @code{dp_weyl_mul()} because of
1415: the non-commutativity of @code{D}.
1416: \E
1417:
1418: @example
1419: [0] A=<<1,2,2,1>>;
1420: (1)*<<1,2,2,1>>
1421: [1] B=<<2,1,1,2>>;
1422: (1)*<<2,1,1,2>>
1423: [2] A*B;
1424: (1)*<<3,3,3,3>>
1425: [3] dp_weyl_mul(A,B);
1426: (1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>>
1427: +(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>>
1428: @end example
1429:
1430: \BJP
1431: $B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B,
1432: $B<!$N4X?t$,MQ0U$7$F$"$k(B.
1433: \E
1434: \BEG
1435: The following functions are avilable for Groebner basis computation
1436: in Weyl algebra:
1437: \E
1438: @code{dp_weyl_gr_main()},
1439: @code{dp_weyl_gr_mod_main()},
1440: @code{dp_weyl_gr_f_main()},
1441: @code{dp_weyl_f4_main()},
1442: @code{dp_weyl_f4_mod_main()}.
1443: \BJP
1444: $B$^$?(B, $B1~MQ$H$7$F(B, global b $B4X?t$N7W;;$,<BAu$5$l$F$$$k(B.
1445: \E
1446: \BEG
1447: Computation of the global b function is implemented as an application.
1448: \E
1449:
1450: \BJP
1.1 noro 1451: @node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
1452: @section $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1.2 noro 1453: \E
1454: \BEG
1455: @node Functions for Groebner basis computation,,, Groebner basis computation
1456: @section Functions for Groebner basis computation
1457: \E
1.1 noro 1458:
1459: @menu
1460: * gr hgr gr_mod::
1461: * lex_hensel lex_tl tolex tolex_d tolex_tl::
1462: * lex_hensel_gsl tolex_gsl tolex_gsl_d::
1463: * gr_minipoly minipoly::
1464: * tolexm minipolym::
1.6 noro 1465: * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main::
1466: * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main::
1.17 noro 1467: * nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace::
1.1 noro 1468: * dp_gr_flags dp_gr_print::
1469: * dp_ord::
1.18 ! noro 1470: * dp_set_weight dp_set_top_weight dp_weyl_set_weight::
1.1 noro 1471: * dp_ptod::
1472: * dp_dtop::
1473: * dp_mod dp_rat::
1474: * dp_homo dp_dehomo::
1475: * dp_ptozp dp_prim::
1.18 ! noro 1476: * dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod::
1.1 noro 1477: * dp_hm dp_ht dp_hc dp_rest::
1478: * dp_td dp_sugar::
1479: * dp_lcm::
1480: * dp_redble::
1481: * dp_subd::
1482: * dp_mbase::
1483: * dp_mag::
1484: * dp_red dp_red_mod::
1485: * dp_sp dp_sp_mod::
1486: * p_nf p_nf_mod p_true_nf p_true_nf_mod ::
1487: * p_terms::
1488: * gb_comp::
1489: * katsura hkatsura cyclic hcyclic::
1490: * dp_vtoe dp_etov::
1491: * lex_hensel_gsl tolex_gsl tolex_gsl_d::
1.3 noro 1492: * primadec primedec::
1.5 noro 1493: * primedec_mod::
1.10 noro 1494: * bfunction bfct generic_bfct ann ann0::
1.1 noro 1495: @end menu
1496:
1.2 noro 1497: \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1498: \EG @node gr hgr gr_mod,,, Functions for Groebner basis computation
1.1 noro 1499: @subsection @code{gr}, @code{hgr}, @code{gr_mod}, @code{dgr}
1500: @findex gr
1501: @findex hgr
1502: @findex gr_mod
1503: @findex dgr
1504:
1505: @table @t
1506: @item gr(@var{plist},@var{vlist},@var{order})
1507: @itemx hgr(@var{plist},@var{vlist},@var{order})
1508: @itemx gr_mod(@var{plist},@var{vlist},@var{order},@var{p})
1509: @itemx dgr(@var{plist},@var{vlist},@var{order},@var{procs})
1.2 noro 1510: \JP :: $B%0%l%V%J4pDl$N7W;;(B
1511: \EG :: Groebner basis computation
1.1 noro 1512: @end table
1513:
1514: @table @var
1515: @item return
1.2 noro 1516: \JP $B%j%9%H(B
1517: \EG list
1.4 noro 1518: @item plist vlist procs
1.2 noro 1519: \JP $B%j%9%H(B
1520: \EG list
1.1 noro 1521: @item order
1.2 noro 1522: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
1523: \EG number, list or matrix
1.1 noro 1524: @item p
1.2 noro 1525: \JP 2^27 $BL$K~$NAG?t(B
1526: \EG prime less than 2^27
1.1 noro 1527: @end table
1528:
1529: @itemize @bullet
1.2 noro 1530: \BJP
1.1 noro 1531: @item
1532: $BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B.
1533: @item
1534: $B$$$:$l$b(B, $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist}, $B9`=g=x7?(B
1535: @var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a$k(B. @code{gr()}, @code{hgr()}
1536: $B$O(B $BM-M}?t78?t(B, @code{gr_mod()} $B$O(B GF(@var{p}) $B78?t$H$7$F7W;;$9$k(B.
1537: @item
1538: @var{vlist} $B$OITDj85$N%j%9%H(B. @var{vlist} $B$K8=$l$J$$ITDj85$O(B,
1539: $B78?tBN$KB0$9$k$H8+$J$5$l$k(B.
1540: @item
1541: @code{gr()}, trace-lifting ($B%b%8%e%i1i;;$rMQ$$$?9bB.2=(B) $B$*$h$S(B sugar
1542: strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B
1543: $B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B.
1544: @item
1.16 fujiwara 1545: @code{dgr()} $B$O(B, @code{gr()}, @code{hgr()} $B$r(B
1.1 noro 1546: $B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B,
1547: $B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B
1548: $B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B.
1549: @item
1550: @code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B
1551: CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B.
1.12 takayama 1552: @item
1553: $BB?9`<0%j%9%H(B @var{plist} $B$NMWAG$,J,;6I=8=B?9`<0$N>l9g$O(B
1554: $B7k2L$bJ,;6I=8=B?9`<0$N%j%9%H$G$"$k(B.
1555: $B$3$N>l9g(B, $B0z?t$NJ,;6B?9`<0$OM?$($i$l$?=g=x$K=>$$(B @code{dp_sort} $B$G(B
1556: $B%=!<%H$5$l$F$+$i7W;;$5$l$k(B.
1557: $BB?9`<0%j%9%H$NMWAG$,J,;6I=8=B?9`<0$N>l9g$b(B
1558: $BJQ?t$N?tJ,$NITDj85$N%j%9%H$r(B @var{vlist} $B0z?t$H$7$FM?$($J$$$H$$$1$J$$(B
1559: ($B%@%_!<(B).
1.2 noro 1560: \E
1561: \BEG
1562: @item
1563: These functions are defined in @samp{gr} in the standard library
1564: directory.
1565: @item
1566: They compute a Groebner basis of a polynomial list @var{plist} with
1567: respect to the variable order @var{vlist} and the order type @var{order}.
1568: @code{gr()} and @code{hgr()} compute a Groebner basis over the rationals
1569: and @code{gr_mod} computes over GF(@var{p}).
1570: @item
1571: Variables not included in @var{vlist} are regarded as
1572: included in the ground field.
1573: @item
1574: @code{gr()} uses trace-lifting (an improvement by modular computation)
1575: and sugar strategy.
1576: @code{hgr()} uses trace-lifting and a cured sugar strategy
1577: by using homogenization.
1578: @item
1579: @code{dgr()} executes @code{gr()}, @code{dgr()} simultaneously on
1580: two process in a child process list @var{procs} and returns
1581: the result obtained first. The results returned from both the process
1582: should be equal, but it is not known in advance which method is faster.
1583: Therefore this function is useful to reduce the actual elapsed time.
1584: @item
1585: The CPU time shown after an exection of @code{dgr()} indicates
1586: that of the master process, and most of the time corresponds to the time
1587: for communication.
1.12 takayama 1588: @item
1589: When the elements of @var{plist} are distributed polynomials,
1590: the result is also a list of distributed polynomials.
1591: In this case, firstly the elements of @var{plist} is sorted by @code{dp_sort}
1592: and the Grobner basis computation is started.
1593: Variables must be given in @var{vlist} even in this case
1594: (these variables are dummy).
1.2 noro 1595: \E
1.1 noro 1596: @end itemize
1597:
1598: @example
1599: [0] load("gr")$
1600: [64] load("cyclic")$
1601: [74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
1602: [c4^15+122*c4^10-122*c4^5-1,...]
1603: [75] GM=gr_mod(cyclic(5),[c0,c1,c2,c3,c4],2,31991)$
1604: 24628*c4^15+29453*c4^10+2538*c4^5+7363
1605: [76] (G[0]*24628-GM[0])%31991;
1606: 0
1607: @end example
1608:
1609: @table @t
1.2 noro 1610: \JP @item $B;2>H(B
1611: \EG @item References
1.6 noro 1612: @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
1.1 noro 1613: @fref{dp_ord}.
1614: @end table
1615:
1.2 noro 1616: \JP @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1617: \EG @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, Functions for Groebner basis computation
1.1 noro 1618: @subsection @code{lex_hensel}, @code{lex_tl}, @code{tolex}, @code{tolex_d}, @code{tolex_tl}
1619: @findex lex_hensel
1620: @findex lex_tl
1621: @findex tolex
1622: @findex tolex_d
1623: @findex tolex_tl
1624:
1625: @table @t
1626: @item lex_hensel(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1627: @itemx lex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2 noro 1628: \JP :: $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B
1629: \EG:: Groebner basis computation with respect to a lex order by change of ordering
1.1 noro 1630: @item tolex(@var{plist},@var{vlist1},@var{order},@var{vlist2})
1631: @itemx tolex_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs})
1632: @itemx tolex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2 noro 1633: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B
1634: \EG :: Groebner basis computation with respect to a lex order by change of ordering, starting from a Groebner basis
1.1 noro 1635: @end table
1636:
1637: @table @var
1638: @item return
1.2 noro 1639: \JP $B%j%9%H(B
1640: \EG list
1.4 noro 1641: @item plist vlist1 vlist2 procs
1.2 noro 1642: \JP $B%j%9%H(B
1643: \EG list
1.1 noro 1644: @item order
1.2 noro 1645: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
1646: \EG number, list or matrix
1.1 noro 1647: @item homo
1.2 noro 1648: \JP $B%U%i%0(B
1649: \EG flag
1.1 noro 1650: @end table
1651:
1652: @itemize @bullet
1.2 noro 1653: \BJP
1.1 noro 1654: @item
1655: $BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B.
1656: @item
1657: @code{lex_hensel()}, @code{lex_tl()} $B$O(B,
1658: $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B
1659: @var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a(B, $B$=$l$r(B, $BJQ?t=g=x(B @var{vlist2}
1660: $B$N<-=q<0=g=x%0%l%V%J4pDl$KJQ49$9$k(B.
1661: @item
1662: @code{tolex()}, @code{tolex_tl()} $B$O(B,
1663: $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$K4X$9$k%0%l%V%J4pDl$G$"$k(B
1664: $BB?9`<0%j%9%H(B @var{plist} $B$rJQ?t=g=x(B @var{vlist2} $B$N<-=q<0=g=x%0%l%V%J(B
1665: $B4pDl$KJQ49$9$k(B.
1666: @code{tolex_d()} $B$O(B, @code{tolex()} $B$K$*$1$k(B, $B3F4pDl$N7W;;$r(B, $B;R%W%m%;%9(B
1667: $B%j%9%H(B @var{procs} $B$N3F%W%m%;%9$KJ,;67W;;$5$;$k(B.
1668: @item
1669: @code{lex_hensel()}, @code{lex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B
1670: $B7W;;$O<!$N$h$&$K9T$o$l$k(B. (@code{[Noro,Yokoyama]} $B;2>H(B.)
1671: @enumerate
1672: @item
1673: @var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B.
1674: (@code{lex_hensel()} $B$N$_(B. )
1675: @item
1676: @var{G0} $B$N3F85$N(B @var{vlist2} $B$K4X$9$k<-=q<0=g=x$K$*$1$kF,78?t$r3d$i$J$$(B
1677: $B$h$&$JAG?t(B @var{p} $B$rA*$S(B, GF(@var{p}) $B>e$G$N<-=q<0=g=x%0%l%V%J4pDl(B
1678: @var{Gp} $B$r7W;;$9$k(B.
1679: @item
1680: @var{Gp} $B$K8=$l$k$9$Y$F$N9`$N(B, @var{G0} $B$K4X$9$k@55,7A(B @var{NF} $B$r7W;;$9$k(B.
1681: @item
1682: @var{Gp} $B$N3F85(B @var{f} $B$K$D$-(B, @var{f} $B$N78?t$rL$Dj78?t$G(B,
1683: @var{f} $B$N3F9`$rBP1~$9$k(B @var{NF} $B$N85$GCV$-49$((B, $B3F9`$N78?t$r(B 0 $B$HCV$$$?(B,
1684: $BL$Dj78?t$K4X$9$k@~7AJ}Dx<07O(B @var{Lf} $B$r:n$k(B.
1685: @item
1686: @var{Lf} $B$,(B, $BK!(B @var{p} $B$G0l0U2r$r;}$D$3$H$rMQ$$$F(B @var{Lf} $B$N2r$r(B
1687: $BK!(B @var{p}$B$N2r$+$i(B Hensel $B9=@.$K$h$j5a$a$k(B.
1688: @item
1689: $B$9$Y$F$N(B @var{Gp} $B$N85$K$D$-@~7AJ}Dx<0$,2r$1$?$i$=$N2rA4BN$,5a$a$k(B
1690: $B<-=q<0=g=x$G$N%0%l%V%J4pDl(B. $B$b$7$I$l$+$N@~7AJ}Dx<0$N5a2r$K<:GT$7$?$i(B,
1691: @var{p} $B$r$H$jD>$7$F$d$jD>$9(B.
1692: @end enumerate
1693:
1694: @item
1695: @code{lex_tl()}, @code{tolex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B
1696: $B7W;;$O<!$N$h$&$K9T$o$l$k(B.
1697:
1698: @enumerate
1699: @item
1700: @var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B.
1701: (@code{lex_hensel()} $B$N$_(B. )
1702: @item
1703: @var{G0} $B$,(B 0 $B<!85%7%9%F%`$G$J$$$H$-(B, @var{G0} $B$rF~NO$H$7$F(B,
1704: @var{G0} $B$N3F85$N(B @var{vlist2} $B$K4X$9$k<-=q<0=g=x$K$*$1$kF,78?t$r3d$i$J$$(B
1705: $B$h$&$JAG?t(B @var{p} $B$rA*$S(B, @var{p} $B$rMQ$$$?(B trace-lifting $B$K$h$j<-=q<0(B
1706: $B=g=x$N%0%l%V%J4pDl8uJd$r5a$a(B, $B$b$75a$^$C$?$J$i%A%'%C%/$J$7$K$=$l$,5a$a$k(B
1707: $B%0%l%V%J4pDl$H$J$k(B. $B$b$7<:GT$7$?$i(B, @var{p} $B$r$H$jD>$7$F$d$jD>$9(B.
1708: @item
1709: @var{G0} $B$,(B 0 $B<!85%7%9%F%`$N$H$-(B, @var{G0} $B$rF~NO$H$7$F(B,
1710: $B$^$:(B, @var{vlist2} $B$N:G8e$NJQ?t0J30$r>C5n$9$k>C5n=g=x$K$h$j(B
1711: $B%0%l%V%J4pDl(B @var{G1} $B$r7W;;$7(B, $B$=$l$+$i<-=q<0=g=x$N%0%l%V%J4pDl$r(B
1712: $B7W;;$9$k(B. $B$=$N:](B, $B3F%9%F%C%W$G$O(B, $BF~NO$N3F85$N(B, $B5a$a$k=g=x$K$*$1$k(B
1713: $BF,78?t$r3d$i$J$$AG?t$rMQ$$$?(B trace-lifting $B$G%0%l%V%J4pDl8uJd$r5a$a(B,
1714: $B$b$75a$^$C$?$i%A%'%C%/$J$7$K$=$l$,$=$N=g=x$G$N%0%l%V%J4pDl$H$J$k(B.
1715: @end enumerate
1716:
1717: @item
1718: $BM-M}<078?t$N7W;;$O(B, @code{lex_tl()}, @code{tolex_tl()} $B$N$_<u$1IU$1$k(B.
1719: @item
1720: @code{homo} $B$,(B 0 $B$G$J$$>l9g(B, $BFbIt$G5/F0$5$l$k(B Buchberger $B%"%k%4%j%:%`$K(B
1721: $B$*$$$F(B, $B@F<!2=$,9T$o$l$k(B.
1722: @item
1723: @code{tolex_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B
1724: $B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B.
1.2 noro 1725: \E
1726: \BEG
1727: @item
1728: These functions are defined in @samp{gr} in the standard library
1729: directory.
1730: @item
1731: @code{lex_hensel()} and @code{lex_tl()} first compute a Groebner basis
1732: with respect to the variable order @var{vlist1} and the order type @var{order}.
1733: Then the Groebner basis is converted into a lex order Groebner basis
1734: with respect to the varable order @var{vlist2}.
1735: @item
1736: @code{tolex()} and @code{tolex_tl()} convert a Groebner basis @var{plist}
1737: with respect to the variable order @var{vlist1} and the order type @var{order}
1738: into a lex order Groebner basis
1739: with respect to the varable order @var{vlist2}.
1740: @code{tolex_d()} does computations of basis elements in @code{tolex()}
1741: in parallel on the processes in a child process list @var{procs}.
1742: @item
1743: In @code{lex_hensel()} and @code{tolex_hensel()} a lex order Groebner basis
1744: is computed as follows.(Refer to @code{[Noro,Yokoyama]}.)
1745: @enumerate
1746: @item
1747: Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}.
1748: (Only in @code{lex_hensel()}. )
1749: @item
1750: Choose a prime which does not divide head coefficients of elements in @var{G0}
1751: with respect to @var{vlist1} and @var{order}. Then compute a lex order
1752: Groebner basis @var{Gp} over GF(@var{p}) with respect to @var{vlist2}.
1753: @item
1754: Compute @var{NF}, the set of all the normal forms with respect to
1755: @var{G0} of terms appearing in @var{Gp}.
1756: @item
1757: For each element @var{f} in @var{Gp}, replace coefficients and terms in @var{f}
1758: with undetermined coefficients and the corresponding polynomials in @var{NF}
1759: respectively, and generate a system of liear equation @var{Lf} by equating
1760: the coefficients of terms in the replaced polynomial with 0.
1761: @item
1762: Solve @var{Lf} by Hensel lifting, starting from the unique mod @var{p}
1763: solution.
1764: @item
1765: If all the linear equations generated from the elements in @var{Gp}
1766: could be solved, then the set of solutions corresponds to a lex order
1767: Groebner basis. Otherwise redo the whole process with another @var{p}.
1768: @end enumerate
1769:
1770: @item
1771: In @code{lex_tl()} and @code{tolex_tl()} a lex order Groebner basis
1772: is computed as follows.(Refer to @code{[Noro,Yokoyama]}.)
1773:
1774: @enumerate
1775: @item
1776: Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}.
1777: (Only in @code{lex_tl()}. )
1778: @item
1779: If @var{G0} is not zero-dimensional, choose a prime which does not divide
1780: head coefficients of elements in @var{G0} with respect to @var{vlist1} and
1781: @var{order}. Then compute a candidate of a lex order Groebner basis
1782: via trace lifting with @var{p}. If it succeeds the candidate is indeed
1783: a lex order Groebner basis without any check. Otherwise redo the whole
1784: process with another @var{p}.
1785: @item
1786:
1787: If @var{G0} is zero-dimensional, starting from @var{G0},
1788: compute a Groebner basis @var{G1} with respect to an elimination order
1789: to eliminate variables other than the last varibale in @var{vlist2}.
1790: Then compute a lex order Groebner basis stating from @var{G1}. These
1791: computations are done by trace lifting and the selection of a mudulus
1792: @var{p} is the same as in non zero-dimensional cases.
1793: @end enumerate
1794:
1795: @item
1796: Computations with rational function coefficients can be done only by
1797: @code{lex_tl()} and @code{tolex_tl()}.
1798: @item
1799: If @code{homo} is not equal to 0, homogenization is used in Buchberger
1800: algorithm.
1801: @item
1802: The CPU time shown after an execution of @code{tolex_d()} indicates
1803: that of the master process, and it does not include the time in child
1804: processes.
1805: \E
1.1 noro 1806: @end itemize
1807:
1808: @example
1809: [78] K=katsura(5)$
1810: 30msec + gc : 20msec
1811: [79] V=[u5,u4,u3,u2,u1,u0]$
1812: 0msec
1813: [80] G0=hgr(K,V,2)$
1814: 91.558sec + gc : 15.583sec
1815: [81] G1=lex_hensel(K,V,0,V,0)$
1816: 49.049sec + gc : 9.961sec
1817: [82] G2=lex_tl(K,V,0,V,1)$
1818: 31.186sec + gc : 3.500sec
1819: [83] gb_comp(G0,G1);
1820: 1
1821: 10msec
1822: [84] gb_comp(G0,G2);
1823: 1
1824: @end example
1825:
1826: @table @t
1.2 noro 1827: \JP @item $B;2>H(B
1828: \EG @item References
1.6 noro 1829: @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
1.2 noro 1830: \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}
1831: \EG @fref{dp_ord}, @fref{Distributed computation}
1.1 noro 1832: @end table
1833:
1.2 noro 1834: \JP @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1835: \EG @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, Functions for Groebner basis computation
1.1 noro 1836: @subsection @code{lex_hensel_gsl}, @code{tolex_gsl}, @code{tolex_gsl_d}
1837: @findex lex_hensel_gsl
1838: @findex tolex_gsl
1839: @findex tolex_gsl_d
1840:
1841: @table @t
1842: @item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2 noro 1843: \JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B
1844: \EG ::Computation of an GSL form ideal basis
1.8 noro 1845: @item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2})
1846: @itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs})
1.2 noro 1847: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B
1848: \EG :: Computation of an GSL form ideal basis stating from a Groebner basis
1.1 noro 1849: @end table
1850:
1851: @table @var
1852: @item return
1.2 noro 1853: \JP $B%j%9%H(B
1854: \EG list
1.4 noro 1855: @item plist vlist1 vlist2 procs
1.2 noro 1856: \JP $B%j%9%H(B
1857: \EG list
1.1 noro 1858: @item order
1.2 noro 1859: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
1860: \EG number, list or matrix
1.1 noro 1861: @item homo
1.2 noro 1862: \JP $B%U%i%0(B
1863: \EG flag
1.1 noro 1864: @end table
1865:
1866: @itemize @bullet
1.2 noro 1867: \BJP
1.1 noro 1868: @item
1869: @code{lex_hensel_gsl()} $B$O(B @code{lex_hensel()} $B$N(B, @code{tolex_gsl()} $B$O(B
1870: @code{tolex()} $B$NJQ<o$G(B, $B7k2L$N$_$,0[$J$k(B.
1871: @code{tolex_gsl_d()} $B$O(B, $B4pDl7W;;$r(B, @code{procs} $B$G;XDj$5$l$k;R%W%m%;%9$K(B
1872: $BJ,;67W;;$5$;$k(B.
1873: @item
1874: $BF~NO$,(B 0 $B<!85%7%9%F%`$G(B, $B$=$N<-=q<0=g=x%0%l%V%J4pDl$,(B
1875: @code{[f0,x1-f1,...,xn-fn]} (@code{f0},...,@code{fn} $B$O(B
1876: @code{x0} $B$N(B 1 $BJQ?tB?9`<0(B) $B$J$k7A(B ($B$3$l$r(B SL $B7A<0$H8F$V(B) $B$r;}$D>l9g(B,
1877: @code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} $B$J$k%j%9%H(B ($B$3$l$r(B GSL $B7A<0$H8F$V(B)
1878: $B$rJV$9(B.
1.2 noro 1879: $B$3$3$G(B, @code{gi} $B$O(B, @code{di*f0'*fi-gi} $B$,(B @code{f0} $B$G3d$j@Z$l$k$h$&$J(B
1.1 noro 1880: @code{x0} $B$N(B1 $BJQ?tB?9`<0$G(B,
1881: $B2r$O(B @code{f0(x0)=0} $B$J$k(B @code{x0} $B$KBP$7(B, @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]}
1882: $B$H$J$k(B. $B<-=q<0=g=x%0%l%V%J4pDl$,>e$N$h$&$J7A$G$J$$>l9g(B, @code{tolex()} $B$K(B
1883: $B$h$kDL>o$N%0%l%V%J4pDl$rJV$9(B.
1884: @item
1885: GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$,(B, $B0lHL$K78?t$,(B SL $B7A<0(B
1886: $B$N%0%l%V%J4pDl$h$jHs>o$K>.$5$$$?$a7W;;$bB.$/(B, $B2r$b5a$a$d$9$$(B.
1887: @code{tolex_gsl_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B
1888: $B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B.
1.2 noro 1889: \E
1890: \BEG
1891: @item
1892: @code{lex_hensel_gsl()} and @code{lex_hensel()} are variants of
1893: @code{tolex_gsl()} and @code{tolex()} respectively. The results are
1894: Groebner basis or a kind of ideal basis, called GSL form.
1895: @code{tolex_gsl_d()} does basis computations in parallel on child
1896: processes specified in @code{procs}.
1897:
1898: @item
1899: If the input is zero-dimensional and a lex order Groebner basis has
1900: the form @code{[f0,x1-f1,...,xn-fn]} (@code{f0},...,@code{fn} are
1901: univariate polynomials of @code{x0}; SL form), then this these
1902: functions return a list such as
1903: @code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} (GSL form). In this list
1904: @code{gi} is a univariate polynomial of @code{x0} such that
1905: @code{di*f0'*fi-gi} divides @code{f0} and the roots of the input ideal is
1906: @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]} for @code{x0}
1907: such that @code{f0(x0)=0}.
1908: If the lex order Groebner basis does not have the above form,
1909: these functions return
1910: a lex order Groebner basis computed by @code{tolex()}.
1911: @item
1912: Though an ideal basis represented as GSL form is not a Groebner basis
1913: we can expect that the coefficients are much smaller than those in a Groebner
1914: basis and that the computation is efficient.
1915: The CPU time shown after an execution of @code{tolex_gsl_d()} indicates
1916: that of the master process, and it does not include the time in child
1917: processes.
1918: \E
1.1 noro 1919: @end itemize
1920:
1921: @example
1922: [103] K=katsura(5)$
1923: [104] V=[u5,u4,u3,u2,u1,u0]$
1924: [105] G0=gr(K,V,0)$
1925: [106] GSL=tolex_gsl(G0,V,0,V)$
1926: [107] GSL[0];
1927: [u1,8635837421130477667200000000*u0^31-...]
1928: [108] GSL[1];
1929: [u2,10352277157007342793600000000*u0^31-...]
1930: [109] GSL[5];
1.5 noro 1931: [u0,11771021876193064124640000000*u0^32-...,
1932: 376672700038178051988480000000*u0^31-...]
1.1 noro 1933: @end example
1934:
1935: @table @t
1.2 noro 1936: \JP @item $B;2>H(B
1937: \EG @item References
1.1 noro 1938: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl},
1.2 noro 1939: \JP @fref{$BJ,;67W;;(B}
1940: \EG @fref{Distributed computation}
1.1 noro 1941: @end table
1942:
1.2 noro 1943: \JP @node gr_minipoly minipoly,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1944: \EG @node gr_minipoly minipoly,,, Functions for Groebner basis computation
1.1 noro 1945: @subsection @code{gr_minipoly}, @code{minipoly}
1946: @findex gr_minipoly
1947: @findex minipoly
1948:
1949: @table @t
1950: @item gr_minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v},@var{homo})
1.2 noro 1951: \JP :: $BB?9`<0$N(B, $B%$%G%"%k$rK!$H$7$?:G>.B?9`<0$N7W;;(B
1952: \EG :: Computation of the minimal polynomial of a polynomial modulo an ideal
1.1 noro 1953: @item minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v})
1.2 noro 1954: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $BB?9`<0$N:G>.B?9`<0$N7W;;(B
1955: \EG :: Computation of the minimal polynomial of a polynomial modulo an ideal
1.1 noro 1956: @end table
1957:
1958: @table @var
1959: @item return
1.2 noro 1960: \JP $BB?9`<0(B
1961: \EG polynomial
1.4 noro 1962: @item plist vlist
1.2 noro 1963: \JP $B%j%9%H(B
1964: \EG list
1.1 noro 1965: @item order
1.2 noro 1966: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
1967: \EG number, list or matrix
1.1 noro 1968: @item poly
1.2 noro 1969: \JP $BB?9`<0(B
1970: \EG polynomial
1.1 noro 1971: @item v
1.2 noro 1972: \JP $BITDj85(B
1973: \EG indeterminate
1.1 noro 1974: @item homo
1.2 noro 1975: \JP $B%U%i%0(B
1976: \EG flag
1.1 noro 1977: @end table
1978:
1979: @itemize @bullet
1.2 noro 1980: \BJP
1.1 noro 1981: @item
1982: @code{gr_minipoly()} $B$O%0%l%V%J4pDl$N7W;;$+$i9T$$(B, @code{minipoly()} $B$O(B
1983: $BF~NO$r%0%l%V%J4pDl$H$_$J$9(B.
1984: @item
1985: $B%$%G%"%k(B I $B$,BN(B K $B>e$NB?9`<04D(B K[X] $B$N(B 0 $B<!85%$%G%"%k$N;~(B,
1986: K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) mod I $B$rBP1~$5$;$k(B
1987: $B4D=`F17?$N3K$O(B 0 $B$G$J$$B?9`<0$K$h$j@8@.$5$l$k(B. $B$3$N@8@.85$r(B @var{p}
1988: $B$N(B, $BK!(B @var{I} $B$G$N:G>.B?9`<0$H8F$V(B.
1989: @item
1990: @code{gr_minipoly()}, @code{minipoly()} $B$O(B, $BB?9`<0(B @var{p} $B$N:G>.B?9`<0(B
1991: $B$r5a$a(B, @var{v} $B$rJQ?t$H$9$kB?9`<0$H$7$FJV$9(B.
1992: @item
1993: $B:G>.B?9`<0$O(B, $B%0%l%V%J4pDl$N(B 1 $B$D$N85$H$7$F7W;;$9$k$3$H$b$G$-$k$,(B,
1994: $B:G>.B?9`<0$N$_$r5a$a$?$$>l9g(B, @code{minipoly()}, @code{gr_minipoly()} $B$O(B
1995: $B%0%l%V%J4pDl$rMQ$$$kJ}K!$KHf$Y$F8zN($,$h$$(B.
1996: @item
1997: @code{gr_minipoly()} $B$K;XDj$9$k9`=g=x$H$7$F$O(B, $BDL>oA4<!?t5U<-=q<0=g=x$r(B
1998: $BMQ$$$k(B.
1.2 noro 1999: \E
2000: \BEG
2001: @item
2002: @code{gr_minipoly()} begins by computing a Groebner basis.
2003: @code{minipoly()} regards an input as a Groebner basis with respect to
2004: the variable order @var{vlist} and the order type @var{order}.
2005: @item
2006: Let K be a field. If an ideal @var{I} in K[X] is zero-dimensional, then, for
2007: a polynomial @var{p} in K[X], the kernel of a homomorphism from
2008: K[@var{v}] to K[X]/@var{I} which maps f(@var{v}) to f(@var{p}) mod @var{I}
2009: is generated by a polynomial. The generator is called the minimal polynomial
2010: of @var{p} modulo @var{I}.
2011: @item
2012: @code{gr_minipoly()} and @code{minipoly()} computes the minimal polynomial
2013: of a polynomial @var{p} and returns it as a polynomial of @var{v}.
2014: @item
2015: The minimal polynomial can be computed as an element of a Groebner basis.
2016: But if we are only interested in the minimal polynomial,
2017: @code{minipoly()} and @code{gr_minipoly()} can compute it more efficiently
2018: than methods using Groebner basis computation.
2019: @item
2020: It is recommended to use a degree reverse lex order as a term order
2021: for @code{gr_minipoly()}.
2022: \E
1.1 noro 2023: @end itemize
2024:
2025: @example
2026: [117] G=tolex(G0,V,0,V)$
2027: 43.818sec + gc : 11.202sec
2028: [118] GSL=tolex_gsl(G0,V,0,V)$
2029: 17.123sec + gc : 2.590sec
2030: [119] MP=minipoly(G0,V,0,u0,z)$
2031: 4.370sec + gc : 780msec
2032: @end example
2033:
2034: @table @t
1.2 noro 2035: \JP @item $B;2>H(B
2036: \EG @item References
1.1 noro 2037: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl}.
2038: @end table
2039:
1.2 noro 2040: \JP @node tolexm minipolym,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2041: \EG @node tolexm minipolym,,, Functions for Groebner basis computation
1.1 noro 2042: @subsection @code{tolexm}, @code{minipolym}
2043: @findex tolexm
2044: @findex minipolym
2045:
2046: @table @t
2047: @item tolexm(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{mod})
1.2 noro 2048: \JP :: $BK!(B @var{mod} $B$G$N4pDlJQ49$K$h$k%0%l%V%J4pDl7W;;(B
2049: \EG :: Groebner basis computation modulo @var{mod} by change of ordering.
1.1 noro 2050: @item minipolym(@var{plist},@var{vlist1},@var{order},@var{poly},@var{v},@var{mod})
1.2 noro 2051: \JP :: $BK!(B @var{mod} $B$G$N%0%l%V%J4pDl$K$h$kB?9`<0$N:G>.B?9`<0$N7W;;(B
2052: \EG :: Minimal polynomial computation modulo @var{mod} the same method as
1.1 noro 2053: @end table
2054:
2055: @table @var
2056: @item return
1.2 noro 2057: \JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B
2058: \EG @code{tolexm()} : list, @code{minipolym()} : polynomial
1.4 noro 2059: @item plist vlist1 vlist2
1.2 noro 2060: \JP $B%j%9%H(B
2061: \EG list
1.1 noro 2062: @item order
1.2 noro 2063: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
2064: \EG number, list or matrix
1.1 noro 2065: @item mod
1.2 noro 2066: \JP $BAG?t(B
2067: \EG prime
1.1 noro 2068: @end table
2069:
2070: @itemize @bullet
1.2 noro 2071: \BJP
1.1 noro 2072: @item
2073: $BF~NO(B @var{plist} $B$O$$$:$l$b(B $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order},
2074: $BK!(B @var{mod} $B$K$*$1$k%0%l%V%J4pDl$G$J$1$l$P$J$i$J$$(B.
2075: @item
2076: @code{minipolym()} $B$O(B @code{minipoly} $B$KBP1~$9$k7W;;$rK!(B @var{mod}$B$G9T$&(B.
2077: @item
2078: @code{tolexm()} $B$O(B FGLM $BK!$K$h$k4pDlJQ49$K$h$j(B @var{vlist2},
2079: $B<-=q<0=g=x$K$h$k%0%l%V%J4pDl$r7W;;$9$k(B.
1.2 noro 2080: \E
2081: \BEG
2082: @item
2083: An input @var{plist} must be a Groebner basis modulo @var{mod}
2084: with respect to the variable order @var{vlist1} and the order type @var{order}.
2085: @item
2086: @code{minipolym()} executes the same computation as in @code{minipoly}.
2087: @item
2088: @code{tolexm()} computes a lex order Groebner basis modulo @var{mod}
2089: with respect to the variable order @var{vlist2}, by using FGLM algorithm.
2090: \E
1.1 noro 2091: @end itemize
2092:
2093: @example
2094: [197] tolexm(G0,V,0,V,31991);
2095: [8271*u0^31+10435*u0^30+816*u0^29+26809*u0^28+...,...]
2096: [198] minipolym(G0,V,0,u0,z,31991);
2097: z^32+11405*z^31+20868*z^30+21602*z^29+...
2098: @end example
2099:
2100: @table @t
1.2 noro 2101: \JP @item $B;2>H(B
2102: \EG @item References
1.1 noro 2103: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl},
2104: @fref{gr_minipoly minipoly}.
2105: @end table
2106:
1.6 noro 2107: \JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2108: \EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation
2109: @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main}
1.1 noro 2110: @findex dp_gr_main
2111: @findex dp_gr_mod_main
1.5 noro 2112: @findex dp_gr_f_main
1.6 noro 2113: @findex dp_weyl_gr_main
2114: @findex dp_weyl_gr_mod_main
2115: @findex dp_weyl_gr_f_main
1.1 noro 2116:
2117: @table @t
2118: @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
2119: @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
1.5 noro 2120: @itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order})
1.6 noro 2121: @itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
2122: @itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
2123: @itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order})
1.2 noro 2124: \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
2125: \EG :: Groebner basis computation (built-in functions)
1.1 noro 2126: @end table
2127:
2128: @table @var
2129: @item return
1.2 noro 2130: \JP $B%j%9%H(B
2131: \EG list
1.4 noro 2132: @item plist vlist
1.2 noro 2133: \JP $B%j%9%H(B
2134: \EG list
1.1 noro 2135: @item order
1.2 noro 2136: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
2137: \EG number, list or matrix
1.1 noro 2138: @item homo
1.2 noro 2139: \JP $B%U%i%0(B
2140: \EG flag
1.1 noro 2141: @item modular
1.2 noro 2142: \JP $B%U%i%0$^$?$OAG?t(B
2143: \EG flag or prime
1.1 noro 2144: @end table
2145:
2146: @itemize @bullet
1.2 noro 2147: \BJP
1.1 noro 2148: @item
2149: $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()},
2150: @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B
1.6 noro 2151: $B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B
2152: $B$N$?$a$N4X?t$G$"$k(B.
1.1 noro 2153: @item
1.6 noro 2154: @code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $B<o!9$NM-8BBN>e$N%0%l%V%J4pDl$r7W;;$9$k(B
1.5 noro 2155: $B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B,
2156: $B9M$($kM-8BBN>e$K<M1F$5$l$F$$$kI,MW$,$"$k(B.
2157: @item
1.1 noro 2158: $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B
2159: $B$r<B9T$9$k(B.
2160: @item
2161: @code{dp_gr_mod_main()} $B$KBP$7$F$O(B, @var{modular} $B$O(B, GF(@var{modular}) $B>e(B
2162: $B$G$N7W;;$r0UL#$9$k(B.
2163: @code{dp_gr_main()} $B$KBP$7$F$O(B, @var{modular} $B$O<!$N$h$&$J0UL#$r;}$D(B.
2164: @enumerate
2165: @item
2166: @var{modular} $B$,(B 1 $B$N;~(B, trace-lifting $B$K$h$k7W;;$r9T$&(B. $BAG?t$O(B
2167: @code{lprime(0)} $B$+$i=g$K@.8y$9$k$^$G(B @code{lprime()} $B$r8F$S=P$7$F@8@.$9$k(B.
2168: @item
2169: @var{modular} $B$,(B 2 $B0J>e$N<+A3?t$N;~(B, $B$=$NCM$rAG?t$H$_$J$7$F(B trace-lifting
2170: $B$r9T$&(B. $B$=$NAG?t$G<:GT$7$?>l9g(B, 0 $B$rJV$9(B.
2171: @item
2172: @var{modular} $B$,Ii$N>l9g(B,
2173: @var{-modular} $B$KBP$7$F>e=R$N5,B'$,E,MQ$5$l$k$,(B, trace-lifting $B$N:G=*(B
2174: $BCJ3,$N%0%l%V%J4pDl%A%'%C%/$H%$%G%"%k%a%s%P%7%C%W%A%'%C%/$,>JN,$5$l$k(B.
2175: @end enumerate
2176:
2177: @item
2178: @code{gr(P,V,O)} $B$O(B @code{dp_gr_main(P,V,0,1,O)}, @code{hgr(P,V,O)} $B$O(B
2179: @code{dp_gr_main(P,V,1,1,O)}, @code{gr_mod(P,V,O,M)} $B$O(B
2180: @code{dp_gr_mod_main(P,V,0,M,O)} $B$r$=$l$>$l<B9T$9$k(B.
2181: @item
2182: @var{homo}, @var{modular} $B$NB>$K(B, @code{dp_gr_flags()} $B$G@_Dj$5$l$k(B
2183: $B$5$^$6$^$J%U%i%0$K$h$j7W;;$,@)8f$5$l$k(B.
1.2 noro 2184: \E
2185: \BEG
2186: @item
2187: These functions are fundamental built-in functions for Groebner basis
2188: computation and @code{gr()},@code{hgr()} and @code{gr_mod()}
1.6 noro 2189: are all interfaces to these functions. Functions whose names
2190: contain weyl are those for computation in Weyl algebra.
1.2 noro 2191: @item
1.6 noro 2192: @code{dp_gr_f_main()} and @code{dp_weyl_gr_f_main()}
2193: are functions for Groebner basis computation
1.5 noro 2194: over various finite fields. Coefficients of input polynomials
2195: must be converted to elements of a finite field
2196: currently specified by @code{setmod_ff()}.
2197: @item
1.2 noro 2198: If @var{homo} is not equal to 0, homogenization is applied before entering
2199: Buchberger algorithm
2200: @item
2201: For @code{dp_gr_mod_main()}, @var{modular} means a computation over
2202: GF(@var{modular}).
2203: For @code{dp_gr_main()}, @var{modular} has the following mean.
2204: @enumerate
2205: @item
2206: If @var{modular} is 1 , trace lifting is used. Primes for trace lifting
2207: are generated by @code{lprime()}, starting from @code{lprime(0)}, until
2208: the computation succeeds.
2209: @item
2210: If @var{modular} is an integer greater than 1, the integer is regarded as a
2211: prime and trace lifting is executed by using the prime. If the computation
2212: fails then 0 is returned.
2213: @item
2214: If @var{modular} is negative, the above rule is applied for @var{-modular}
2215: but the Groebner basis check and ideal-membership check are omitted in
2216: the last stage of trace lifting.
2217: @end enumerate
2218:
2219: @item
2220: @code{gr(P,V,O)}, @code{hgr(P,V,O)} and @code{gr_mod(P,V,O,M)} execute
2221: @code{dp_gr_main(P,V,0,1,O)}, @code{dp_gr_main(P,V,1,1,O)}
2222: and @code{dp_gr_mod_main(P,V,0,M,O)} respectively.
2223: @item
2224: Actual computation is controlled by various parameters set by
2225: @code{dp_gr_flags()}, other then by @var{homo} and @var{modular}.
2226: \E
1.1 noro 2227: @end itemize
2228:
2229: @table @t
1.2 noro 2230: \JP @item $B;2>H(B
2231: \EG @item References
1.1 noro 2232: @fref{dp_ord},
2233: @fref{dp_gr_flags dp_gr_print},
2234: @fref{gr hgr gr_mod},
1.5 noro 2235: @fref{setmod_ff},
1.2 noro 2236: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
2237: \EG @fref{Controlling Groebner basis computations}
1.1 noro 2238: @end table
2239:
1.6 noro 2240: \JP @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2241: \EG @node dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main,,, Functions for Groebner basis computation
2242: @subsection @code{dp_f4_main}, @code{dp_f4_mod_main}, @code{dp_weyl_f4_main}, @code{dp_weyl_f4_mod_main}
1.1 noro 2243: @findex dp_f4_main
2244: @findex dp_f4_mod_main
1.6 noro 2245: @findex dp_weyl_f4_main
2246: @findex dp_weyl_f4_mod_main
1.1 noro 2247:
2248: @table @t
2249: @item dp_f4_main(@var{plist},@var{vlist},@var{order})
2250: @itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order})
1.6 noro 2251: @itemx dp_weyl_f4_main(@var{plist},@var{vlist},@var{order})
2252: @itemx dp_weyl_f4_mod_main(@var{plist},@var{vlist},@var{order})
1.2 noro 2253: \JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
2254: \EG :: Groebner basis computation by F4 algorithm (built-in functions)
1.1 noro 2255: @end table
2256:
2257: @table @var
2258: @item return
1.2 noro 2259: \JP $B%j%9%H(B
2260: \EG list
1.4 noro 2261: @item plist vlist
1.2 noro 2262: \JP $B%j%9%H(B
2263: \EG list
1.1 noro 2264: @item order
1.2 noro 2265: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
2266: \EG number, list or matrix
1.1 noro 2267: @end table
2268:
2269: @itemize @bullet
1.2 noro 2270: \BJP
1.1 noro 2271: @item
2272: F4 $B%"%k%4%j%:%`$K$h$j%0%l%V%J4pDl$N7W;;$r9T$&(B.
2273: @item
2274: F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$l$??7@$Be%0%l%V%J4pDl(B
2275: $B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B
2276: $B;n83E*$J<BAu$G$"$k(B.
2277: @item
1.6 noro 2278: $B@F<!2=$N0z?t$,$J$$$3$H$r=|$1$P(B, $B0z?t$*$h$SF0:n$O$=$l$>$l(B
2279: @code{dp_gr_main()}, @code{dp_gr_mod_main()},
2280: @code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}
1.1 noro 2281: $B$HF1MM$G$"$k(B.
1.2 noro 2282: \E
2283: \BEG
2284: @item
2285: These functions compute Groebner bases by F4 algorithm.
2286: @item
2287: F4 is a new generation algorithm for Groebner basis computation
2288: invented by J.C. Faugere. The current implementation of @code{dp_f4_main()}
2289: uses Chinese Remainder theorem and not highly optimized.
2290: @item
2291: Arguments and actions are the same as those of
1.6 noro 2292: @code{dp_gr_main()}, @code{dp_gr_mod_main()},
2293: @code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()},
2294: except for lack of the argument for controlling homogenization.
1.2 noro 2295: \E
1.1 noro 2296: @end itemize
2297:
2298: @table @t
1.2 noro 2299: \JP @item $B;2>H(B
2300: \EG @item References
1.1 noro 2301: @fref{dp_ord},
2302: @fref{dp_gr_flags dp_gr_print},
2303: @fref{gr hgr gr_mod},
1.15 noro 2304: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
2305: \EG @fref{Controlling Groebner basis computations}
2306: @end table
2307:
1.17 noro 2308: \JP @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2309: \EG @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation
2310: @subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_f4_trace}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace}
1.15 noro 2311: @findex nd_gr
2312: @findex nd_gr_trace
2313: @findex nd_f4
1.17 noro 2314: @findex nd_f4_trace
1.15 noro 2315: @findex nd_weyl_gr
2316: @findex nd_weyl_gr_trace
2317:
2318: @table @t
2319: @item nd_gr(@var{plist},@var{vlist},@var{p},@var{order})
2320: @itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order})
2321: @itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order})
1.17 noro 2322: @itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order})
1.15 noro 2323: @item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order})
2324: @itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order})
2325: \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
2326: \EG :: Groebner basis computation (built-in functions)
2327: @end table
2328:
2329: @table @var
2330: @item return
2331: \JP $B%j%9%H(B
2332: \EG list
2333: @item plist vlist
2334: \JP $B%j%9%H(B
2335: \EG list
2336: @item order
2337: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
2338: \EG number, list or matrix
2339: @item homo
2340: \JP $B%U%i%0(B
2341: \EG flag
2342: @item modular
2343: \JP $B%U%i%0$^$?$OAG?t(B
2344: \EG flag or prime
2345: @end table
2346:
2347: \BJP
2348: @itemize @bullet
2349: @item
2350: $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7<BAu$G$"$k(B.
2351: @item @code{nd_gr} $B$O(B, @code{p} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B Buchberger
2352: $B%"%k%4%j%:%`$r<B9T$9$k(B. @code{p} $B$,(B 2 $B0J>e$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B
2353: Buchberger $B%"%k%4%j%:%`$r<B9T$9$k(B.
1.17 noro 2354: @item @code{nd_gr_trace} $B$*$h$S(B @code{nd_f4_trace}
2355: $B$OM-M}?tBN>e$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B.
1.18 ! noro 2356: @var{p} $B$,(B 0 $B$^$?$O(B 1 $B$N$H$-(B, $B<+F0E*$KA*$P$l$?AG?t$rMQ$$$F(B, $B@.8y$9$k(B
1.15 noro 2357: $B$^$G(B trace $B%"%k%4%j%:%`$r<B9T$9$k(B.
1.18 ! noro 2358: @var{p} $B$,(B 2 $B0J>e$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B
! 2359: $B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @var{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B
! 2360: $B9T$o$J$$(B. $B$3$N>l9g(B, @var{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B,
1.17 noro 2361: $B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B.
2362: @code{nd_f4_trace} $B$O(B, $B3FA4<!?t$K$D$$$F(B, $B$"$kM-8BBN>e$G(B F4 $B%"%k%4%j%:%`(B
2363: $B$G9T$C$?7k2L$r$b$H$K(B, $B$=$NM-8BBN>e$G(B 0 $B$G$J$$4pDl$rM?$($k(B S-$BB?9`<0$N$_$r(B
2364: $BMQ$$$F9TNs@8@.$r9T$$(B, $B$=$NA4<!?t$K$*$1$k4pDl$r@8@.$9$kJ}K!$G$"$k(B. $BF@$i$l$k(B
2365: $BB?9`<0=89g$O$d$O$j%0%l%V%J4pDl8uJd$G$"$j(B, @code{nd_gr_trace} $B$HF1MM$N(B
2366: $B%A%'%C%/$,9T$o$l$k(B.
1.15 noro 2367: @item
1.17 noro 2368: @code{nd_f4} $B$O(B @code{modular} $B$,(B 0 $B$N$H$-M-M}?tBN>e$N(B, @code{modular} $B$,(B
2369: $B%^%7%s%5%$%:AG?t$N$H$-M-8BBN>e$N(B F4 $B%"%k%4%j%:%`$r<B9T$9$k(B.
1.15 noro 2370: @item
1.18 ! noro 2371: @var{plist} $B$,B?9`<0%j%9%H$N>l9g(B, @var{plist}$B$G@8@.$5$l$k%$%G%"%k$N%0%l%V%J!<4pDl$,(B
! 2372: $B7W;;$5$l$k(B. @var{plist} $B$,B?9`<0%j%9%H$N%j%9%H$N>l9g(B, $B3FMWAG$OB?9`<04D>e$N<+M32C72$N85$H8+$J$5$l(B,
! 2373: $B$3$l$i$,@8@.$9$kItJ,2C72$N%0%l%V%J!<4pDl$,7W;;$5$l$k(B. $B8e<T$N>l9g(B, $B9`=g=x$O2C72$KBP$9$k9`=g=x$r(B
! 2374: $B;XDj$9$kI,MW$,$"$k(B. $B$3$l$O(B @var{[s,ord]} $B$N7A$G;XDj$9$k(B. @var{s} $B$,(B 0 $B$J$i$P(B TOP (Term Over Position),
! 2375: 1 $B$J$i$P(B POT (Position Over Term) $B$r0UL#$7(B, @var{ord} $B$OB?9`<04D$NC19`<0$KBP$9$k9`=g=x$G$"$k(B.
! 2376: @item
1.15 noro 2377: @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} $B$O(B Weyl $BBe?tMQ$G$"$k(B.
2378: @item
1.18 ! noro 2379: @code{f4} $B7O4X?t0J30$O$9$Y$FM-M}4X?t78?t$N7W;;$,2DG=$G$"$k(B.
1.15 noro 2380: @item
2381: $B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B,
2382: $BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B.
2383: @end itemize
2384: \E
2385:
2386: \BEG
2387: @itemize @bullet
2388: @item
2389: These functions are new implementations for computing Groebner bases.
2390: @item @code{nd_gr} executes Buchberger algorithm over the rationals
2391: if @code{p} is 0, and that over GF(p) if @code{p} is a prime.
2392: @item @code{nd_gr_trace} executes the trace algorithm over the rationals.
2393: If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds
2394: by using automatically chosen primes.
2395: If @code{p} a positive prime,
2396: the trace is comuted over GF(p).
2397: If the trace algorithm fails 0 is returned.
2398: If @code{p} is negative,
2399: the Groebner basis check and ideal-membership check are omitted.
2400: In this case, an automatically chosen prime if @code{p} is 1,
2401: otherwise the specified prime is used to compute a Groebner basis
2402: candidate.
1.17 noro 2403: Execution of @code{nd_f4_trace} is done as follows:
2404: For each total degree, an F4-reduction of S-polynomials over a finite field
2405: is done, and S-polynomials which give non-zero basis elements are gathered.
2406: Then F4-reduction over Q is done for the gathered S-polynomials.
2407: The obtained polynomial set is a Groebner basis candidate and the same
2408: check procedure as in the case of @code{nd_gr_trace} is done.
2409: @item
2410: @code{nd_f4} executes F4 algorithm over Q if @code{modular} is equal to 0,
2411: or over a finite field GF(@code{modular})
2412: if @code{modular} is a prime number of machine size (<2^29).
1.18 ! noro 2413: If @var{plist} is a list of polynomials, then a Groebner basis of the ideal generated by @var{plist}
! 2414: is computed. If @var{plist} is a list of lists of polynomials, then each list of polynomials are regarded
! 2415: as an element of a free module over a polynomial ring and a Groebner basis of the sub-module generated by @var{plist}
! 2416: in the free module. In the latter case a term order in the free module should be specified.
! 2417: This is specified by @var{[s,ord]}. If @var{s} is 0 then it means TOP (Term Over Position).
! 2418: If @var{s} is 1 then it means POT 1 (Position Over Term). @var{ord} is a term order in the base polynomial ring.
1.15 noro 2419: @item
2420: @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation.
2421: @item
1.18 ! noro 2422: Functions except for F4 related ones can handle rational coeffient cases.
1.15 noro 2423: @item
2424: In general these functions are more efficient than
2425: @code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields.
2426: @end itemize
2427: \E
2428:
2429: @example
2430: [38] load("cyclic")$
2431: [49] C=cyclic(7)$
2432: [50] V=vars(C)$
2433: [51] cputime(1)$
2434: [52] dp_gr_mod_main(C,V,0,31991,0)$
2435: 26.06sec + gc : 0.313sec(26.4sec)
2436: [53] nd_gr(C,V,31991,0)$
2437: ndv_alloc=1477188
2438: 5.737sec + gc : 0.1837sec(5.921sec)
2439: [54] dp_f4_mod_main(C,V,31991,0)$
2440: 3.51sec + gc : 0.7109sec(4.221sec)
2441: [55] nd_f4(C,V,31991,0)$
2442: 1.906sec + gc : 0.126sec(2.032sec)
2443: @end example
2444:
2445: @table @t
2446: \JP @item $B;2>H(B
2447: \EG @item References
2448: @fref{dp_ord},
2449: @fref{dp_gr_flags dp_gr_print},
1.2 noro 2450: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
2451: \EG @fref{Controlling Groebner basis computations}
1.1 noro 2452: @end table
2453:
1.2 noro 2454: \JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2455: \EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation
1.1 noro 2456: @subsection @code{dp_gr_flags}, @code{dp_gr_print}
2457: @findex dp_gr_flags
2458: @findex dp_gr_print
2459:
2460: @table @t
2461: @item dp_gr_flags([@var{list}])
1.7 noro 2462: @itemx dp_gr_print([@var{i}])
1.2 noro 2463: \JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B
2464: \BEG :: Set and show various parameters for cotrolling computations
2465: and showing informations.
2466: \E
1.1 noro 2467: @end table
2468:
2469: @table @var
2470: @item return
1.2 noro 2471: \JP $B@_DjCM(B
2472: \EG value currently set
1.1 noro 2473: @item list
1.2 noro 2474: \JP $B%j%9%H(B
2475: \EG list
1.7 noro 2476: @item i
2477: \JP $B@0?t(B
2478: \EG integer
1.1 noro 2479: @end table
2480:
2481: @itemize @bullet
1.2 noro 2482: \BJP
1.1 noro 2483: @item
1.5 noro 2484: @code{dp_gr_main()}, @code{dp_gr_mod_main()}, @code{dp_gr_f_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B
1.1 noro 2485: $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.
2486: @item
2487: $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.
2488: @item
2489: $B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B
2490: $B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B.
2491: @item
1.7 noro 2492: @code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print}, @code{PrintShort} $B$NCM$rD>@\@_Dj(B, $B;2>H(B
2493: $B$G$-$k(B. $B@_Dj$5$l$kCM$O<!$NDL$j$G$"$k!#(B
2494: @table @var
2495: @item i=0
2496: @code{Print=0}, @code{PrintShort=0}
2497: @item i=1
2498: @code{Print=1}, @code{PrintShort=0}
2499: @item i=2
2500: @code{Print=0}, @code{PrintShort=1}
2501: @end table
2502: $B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B
2503: $BH!?t$K$*$$$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B
1.1 noro 2504: $B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B.
1.2 noro 2505: \E
2506: \BEG
2507: @item
2508: @code{dp_gr_flags()} sets and shows various parameters for Groebner basis
2509: computation.
2510: @item
2511: If no argument is specified the current settings are returned.
2512: @item
2513: Arguments must be specified as a list such as
2514: @code{["Print",1,"NoSugar",1,...]}. Names of parameters must be character
2515: strings.
2516: @item
2517: @code{dp_gr_print()} is used to set and show the value of a parameter
1.7 noro 2518: @code{Print} and @code{PrintShort}.
2519: @table @var
2520: @item i=0
2521: @code{Print=0}, @code{PrintShort=0}
2522: @item i=1
2523: @code{Print=1}, @code{PrintShort=0}
2524: @item i=2
2525: @code{Print=0}, @code{PrintShort=1}
2526: @end table
2527: This functions is prepared to get quickly the value
2528: when a user defined function calling @code{dp_gr_main()} etc.
1.2 noro 2529: uses the value as a flag for showing intermediate informations.
2530: \E
1.1 noro 2531: @end itemize
2532:
2533: @table @t
1.2 noro 2534: \JP @item $B;2>H(B
2535: \EG @item References
2536: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}
2537: \EG @fref{Controlling Groebner basis computations}
1.1 noro 2538: @end table
2539:
1.2 noro 2540: \JP @node dp_ord,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2541: \EG @node dp_ord,,, Functions for Groebner basis computation
1.1 noro 2542: @subsection @code{dp_ord}
2543: @findex dp_ord
2544:
2545: @table @t
2546: @item dp_ord([@var{order}])
1.2 noro 2547: \JP :: $BJQ?t=g=x7?$N@_Dj(B, $B;2>H(B
2548: \EG :: Set and show the ordering type.
1.1 noro 2549: @end table
2550:
2551: @table @var
2552: @item return
1.2 noro 2553: \JP $BJQ?t=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B)
2554: \EG ordering type (number, list or matrix)
1.1 noro 2555: @item order
1.2 noro 2556: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
2557: \EG number, list or matrix
1.1 noro 2558: @end table
2559:
2560: @itemize @bullet
1.2 noro 2561: \BJP
1.1 noro 2562: @item
2563: $B0z?t$,$"$k;~(B, $BJQ?t=g=x7?$r(B @var{order} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B,
2564: $B8=:_@_Dj$5$l$F$$$kJQ?t=g=x7?$rJV$9(B.
2565:
2566: @item
2567: $BJ,;6I=8=B?9`<0$K4X$9$kH!?t(B, $B1i;;$O0z?t$H$7$FJQ?t=g=x7?$r$H$k$b$N$H$H$i$J$$$b$N(B
2568: $B$,$"$j(B, $B$H$i$J$$$b$N$K4X$7$F$O(B, $B$=$N;~E@$G@_Dj$5$l$F$$$kCM$rMQ$$$F7W;;$,(B
2569: $B9T$o$l$k(B.
2570:
2571: @item
2572: @code{gr()} $B$J$I(B, $B0z?t$H$7$FJQ?t=g=x7?$r$H$k$b$N$O(B, $BFbIt$G(B @code{dp_ord()}
2573: $B$r8F$S=P$7(B, $BJQ?t=g=x7?$r@_Dj$9$k(B. $B$3$N@_Dj$O(B, $B7W;;=*N;8e$b@8$-;D$k(B.
2574:
2575: @item
2576: $BJ,;6I=8=B?9`<0$N;MB'1i;;$b(B, $B@_Dj$5$l$F$$$kCM$rMQ$$$F7W;;$5$l$k(B. $B=>$C$F(B,
2577: $B$=$NB?9`<0$,@8@.$5$l$?;~E@$K$*$1$kJQ?t=g=x7?$,(B, $B;MB'1i;;;~$K@5$7$/@_Dj(B
2578: $B$5$l$F$$$J$1$l$P$J$i$J$$(B. $B$^$?(B, $B1i;;BP>]$H$J$kB?9`<0$O(B, $BF10l$NJQ?t=g=x(B
2579: $B7?$K4p$E$$$F@8@.$5$l$?$b$N$G$J$1$l$P$J$i$J$$(B.
2580:
2581: @item
2582: $B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B
2583: $BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B.
1.2 noro 2584: \E
2585: \BEG
2586: @item
2587: If an argument is specified, the function
2588: sets the current ordering type to @var{order}.
2589: If no argument is specified, the function returns the ordering
2590: type currently set.
2591:
2592: @item
2593: There are two types of functions concerning distributed polynomial,
2594: functions which take a ordering type and those which don't take it.
2595: The latter ones use the current setting.
2596:
2597: @item
2598: Functions such as @code{gr()}, which need a ordering type as an argument,
2599: call @code{dp_ord()} internally during the execution.
2600: The setting remains after the execution.
2601:
2602: Fundamental arithmetics for distributed polynomial also use the current
2603: setting. Therefore, when such arithmetics for distributed polynomials
2604: are done, the current setting must coincide with the ordering type
2605: which was used upon the creation of the polynomials. It is assumed
2606: that such polynomials were generated under the same ordering type.
2607:
2608: @item
2609: Type of term ordering must be correctly set by this function
2610: when functions other than top level functions are called directly.
2611: \E
1.1 noro 2612: @end itemize
2613:
2614: @example
2615: [19] dp_ord(0)$
2616: [20] <<1,2,3>>+<<3,1,1>>;
2617: (1)*<<1,2,3>>+(1)*<<3,1,1>>
2618: [21] dp_ord(2)$
2619: [22] <<1,2,3>>+<<3,1,1>>;
2620: (1)*<<3,1,1>>+(1)*<<1,2,3>>
2621: @end example
2622:
2623: @table @t
1.2 noro 2624: \JP @item $B;2>H(B
2625: \EG @item References
2626: \JP @fref{$B9`=g=x$N@_Dj(B}
2627: \EG @fref{Setting term orderings}
1.1 noro 2628: @end table
2629:
1.18 ! noro 2630: \JP @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
! 2631: \EG @node dp_set_weight dp_set_top_weight dp_weyl_set_weight,,, Functions for Groebner basis computation
! 2632: @subsection @code{dp_set_weight}, @code{dp_set_top_weight}, @code{dp_weyl_set_weight}
! 2633: @findex dp_set_weight
! 2634: @findex dp_set_top_weight
! 2635: @findex dp_weyl_set_weight
! 2636:
! 2637: @table @t
! 2638: @item dp_set_weight([@var{weight}])
! 2639: \JP :: sugar weight $B$N@_Dj(B, $B;2>H(B
! 2640: \EG :: Set and show the sugar weight.
! 2641: @item dp_set_top_weight([@var{weight}])
! 2642: \JP :: top weight $B$N@_Dj(B, $B;2>H(B
! 2643: \EG :: Set and show the top weight.
! 2644: @item dp_weyl_set_weight([@var{weight}])
! 2645: \JP :: weyl weight $B$N@_Dj(B, $B;2>H(B
! 2646: \EG :: Set and show the weyl weight.
! 2647: @end table
! 2648:
! 2649: @table @var
! 2650: @item return
! 2651: \JP $B%Y%/%H%k(B
! 2652: \EG a vector
! 2653: @item weight
! 2654: \JP $B@0?t$N%j%9%H$^$?$O%Y%/%H%k(B
! 2655: \EG a list or vector of integers
! 2656: @end table
! 2657:
! 2658: @itemize @bullet
! 2659: \BJP
! 2660: @item
! 2661: @code{dp_set_weight} $B$O(B sugar weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B,
! 2662: $B8=:_@_Dj$5$l$F$$$k(B sugar weight $B$rJV$9(B. sugar weight $B$O@5@0?t$r@.J,$H$9$k%Y%/%H%k$G(B,
! 2663: $B3FJQ?t$N=E$_$rI=$9(B. $B<!?t$D$-=g=x$K$*$$$F(B, $BC19`<0$N<!?t$r7W;;$9$k:]$KMQ$$$i$l$k(B.
! 2664: $B@F<!2=JQ?tMQ$K(B, $BKvHx$K(B 1 $B$rIU$12C$($F$*$/$H0BA4$G$"$k(B.
! 2665: @item
! 2666: @code{dp_set_top_weight} $B$O(B top weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B,
! 2667: $B8=:_@_Dj$5$l$F$$$k(B top weight $B$rJV$9(B. top weight $B$,@_Dj$5$l$F$$$k$H$-(B,
! 2668: $B$^$:(B top weight $B$K$h$kC19`<0Hf3S$r@h$K9T$&(B. tie breaker $B$H$7$F8=:_@_Dj$5$l$F$$$k(B
! 2669: $B9`=g=x$,MQ$$$i$l$k$,(B, $B$3$NHf3S$K$O(B top weight $B$OMQ$$$i$l$J$$(B.
! 2670:
! 2671: @item
! 2672: @code{dp_weyl_set_weight} $B$O(B weyl weight $B$r(B @var{weight} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B,
! 2673: $B8=:_@_Dj$5$l$F$$$k(B weyl weight $B$rJV$9(B. weyl weight w $B$r@_Dj$9$k$H(B,
! 2674: $B9`=g=x7?(B 11 $B$G$N7W;;$K$*$$$F(B, (-w,w) $B$r(B top weight, tie breaker $B$r(B graded reverse lex
! 2675: $B$H$7$?9`=g=x$,@_Dj$5$l$k(B.
! 2676: \E
! 2677: \BEG
! 2678: @item
! 2679: @code{dp_set_weight} sets the sugar weight=@var{weight}. It returns the current sugar weight.
! 2680: A sugar weight is a vector with positive integer components and it represents the weights of variables.
! 2681: It is used for computing the weight of a monomial in a graded ordering.
! 2682: It is recommended to append a component 1 at the end of the weight vector for a homogenizing variable.
! 2683: @item
! 2684: @code{dp_set_top_weight} sets the top weight=@var{weight}. It returns the current top weight.
! 2685: It a top weight is set, the weights of monomials under the top weight are firstly compared.
! 2686: If the the weights are equal then the current term ordering is applied as a tie breaker, but
! 2687: the top weight is not used in the tie breaker.
! 2688:
! 2689: @item
! 2690: @code{dp_weyl_set_weight} sets the weyl weigh=@var{weight}. It returns the current weyl weight.
! 2691: If a weyl weight w is set, in the comparsion by the term order type 11, a term order with
! 2692: the top weight=(-w,w) and the tie breaker=graded reverse lex is applied.
! 2693: \E
! 2694: @end itemize
! 2695:
! 2696: @table @t
! 2697: \JP @item $B;2>H(B
! 2698: \EG @item References
! 2699: @fref{Weight}
! 2700: @end table
! 2701:
! 2702:
1.2 noro 2703: \JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2704: \EG @node dp_ptod,,, Functions for Groebner basis computation
1.1 noro 2705: @subsection @code{dp_ptod}
2706: @findex dp_ptod
2707:
2708: @table @t
2709: @item dp_ptod(@var{poly},@var{vlist})
1.2 noro 2710: \JP :: $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k(B.
2711: \EG :: Converts an ordinary polynomial into a distributed polynomial.
1.1 noro 2712: @end table
2713:
2714: @table @var
2715: @item return
1.2 noro 2716: \JP $BJ,;6I=8=B?9`<0(B
2717: \EG distributed polynomial
1.1 noro 2718: @item poly
1.2 noro 2719: \JP $BB?9`<0(B
2720: \EG polynomial
1.1 noro 2721: @item vlist
1.2 noro 2722: \JP $B%j%9%H(B
2723: \EG list
1.1 noro 2724: @end table
2725:
2726: @itemize @bullet
1.2 noro 2727: \BJP
1.1 noro 2728: @item
2729: $BJQ?t=g=x(B @var{vlist} $B$*$h$S8=:_$NJQ?t=g=x7?$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$9$k(B.
2730: @item
2731: @var{vlist} $B$K4^$^$l$J$$ITDj85$O(B, $B78?tBN$KB0$9$k$H$7$FJQ49$5$l$k(B.
1.2 noro 2732: \E
2733: \BEG
2734: @item
2735: According to the variable ordering @var{vlist} and current
2736: type of term ordering, this function converts an ordinary
2737: polynomial into a distributed polynomial.
2738: @item
2739: Indeterminates not included in @var{vlist} are regarded to belong to
2740: the coefficient field.
2741: \E
1.1 noro 2742: @end itemize
2743:
2744: @example
2745: [50] dp_ord(0);
2746: 1
2747: [51] dp_ptod((x+y+z)^2,[x,y,z]);
2748: (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>
2749: +(1)*<<0,0,2>>
2750: [52] dp_ptod((x+y+z)^2,[x,y]);
1.5 noro 2751: (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
2752: +(z^2)*<<0,0>>
1.1 noro 2753: @end example
2754:
2755: @table @t
1.2 noro 2756: \JP @item $B;2>H(B
2757: \EG @item References
1.1 noro 2758: @fref{dp_dtop},
2759: @fref{dp_ord}.
2760: @end table
2761:
1.2 noro 2762: \JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2763: \EG @node dp_dtop,,, Functions for Groebner basis computation
1.1 noro 2764: @subsection @code{dp_dtop}
2765: @findex dp_dtop
2766:
2767: @table @t
2768: @item dp_dtop(@var{dpoly},@var{vlist})
1.2 noro 2769: \JP :: $BJ,;6I=8=B?9`<0$rB?9`<0$KJQ49$9$k(B.
2770: \EG :: Converts a distributed polynomial into an ordinary polynomial.
1.1 noro 2771: @end table
2772:
2773: @table @var
2774: @item return
1.2 noro 2775: \JP $BB?9`<0(B
2776: \EG polynomial
1.1 noro 2777: @item dpoly
1.2 noro 2778: \JP $BJ,;6I=8=B?9`<0(B
2779: \EG distributed polynomial
1.1 noro 2780: @item vlist
1.2 noro 2781: \JP $B%j%9%H(B
2782: \EG list
1.1 noro 2783: @end table
2784:
2785: @itemize @bullet
1.2 noro 2786: \BJP
1.1 noro 2787: @item
2788: $BJ,;6I=8=B?9`<0$r(B, $BM?$($i$l$?ITDj85%j%9%H$rMQ$$$FB?9`<0$KJQ49$9$k(B.
2789: @item
2790: $BITDj85%j%9%H$O(B, $BD9$5J,;6I=8=B?9`<0$NJQ?t$N8D?t$H0lCW$7$F$$$l$P2?$G$b$h$$(B.
1.2 noro 2791: \E
2792: \BEG
2793: @item
2794: This function converts a distributed polynomial into an ordinary polynomial
2795: according to a list of indeterminates @var{vlist}.
2796: @item
2797: @var{vlist} is such a list that its length coincides with the number of
2798: variables of @var{dpoly}.
2799: \E
1.1 noro 2800: @end itemize
2801:
2802: @example
2803: [53] T=dp_ptod((x+y+z)^2,[x,y]);
1.5 noro 2804: (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
2805: +(z^2)*<<0,0>>
1.1 noro 2806: [54] P=dp_dtop(T,[a,b]);
2807: z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
2808: @end example
2809:
1.2 noro 2810: \JP @node dp_mod dp_rat,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2811: \EG @node dp_mod dp_rat,,, Functions for Groebner basis computation
1.1 noro 2812: @subsection @code{dp_mod}, @code{dp_rat}
2813: @findex dp_mod
2814: @findex dp_rat
2815:
2816: @table @t
2817: @item dp_mod(@var{p},@var{mod},@var{subst})
1.2 noro 2818: \JP :: $BM-M}?t78?tJ,;6I=8=B?9`<0$NM-8BBN78?t$X$NJQ49(B
2819: \EG :: Converts a disributed polynomial into one with coefficients in a finite field.
1.1 noro 2820: @item dp_rat(@var{p})
1.2 noro 2821: \JP :: $BM-8BBN78?tJ,;6I=8=B?9`<0$NM-M}?t78?t$X$NJQ49(B
2822: \BEG
2823: :: Converts a distributed polynomial with coefficients in a finite field into
2824: one with coefficients in the rationals.
2825: \E
1.1 noro 2826: @end table
2827:
2828: @table @var
2829: @item return
1.2 noro 2830: \JP $BJ,;6I=8=B?9`<0(B
2831: \EG distributed polynomial
1.1 noro 2832: @item p
1.2 noro 2833: \JP $BJ,;6I=8=B?9`<0(B
2834: \EG distributed polynomial
1.1 noro 2835: @item mod
1.2 noro 2836: \JP $BAG?t(B
2837: \EG prime
1.1 noro 2838: @item subst
1.2 noro 2839: \JP $B%j%9%H(B
2840: \EG list
1.1 noro 2841: @end table
2842:
2843: @itemize @bullet
1.2 noro 2844: \BJP
1.1 noro 2845: @item
2846: @code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$O(B, $BF~NO$H$7$FM-8BBN78?t$N(B
2847: $BJ,;6I=8=B?9`<0$rI,MW$H$9$k(B. $B$3$N$h$&$J>l9g(B, @code{dp_mod()} $B$K$h$j(B
2848: $BM-M}?t78?tJ,;6I=8=B?9`<0$rJQ49$7$FMQ$$$k$3$H$,$G$-$k(B. $B$^$?(B, $BF@$i$l$?(B
2849: $B7k2L$O(B, $BM-8BBN78?tB?9`<0$H$O1i;;$G$-$k$,(B, $BM-M}?t78?tB?9`<0$H$O1i;;$G$-$J$$(B
2850: $B$?$a(B, @code{dp_rat()} $B$K$h$jJQ49$9$kI,MW$,$"$k(B.
2851: @item
2852: $BM-8BBN78?t$N1i;;$K$*$$$F$O(B, $B$"$i$+$8$a(B @code{setmod()} $B$K$h$jM-8BBN$N85$N(B
2853: $B8D?t$r;XDj$7$F$*$/I,MW$,$"$k(B.
2854: @item
2855: @var{subst} $B$O(B, $B78?t$,M-M}<0$N>l9g(B, $B$=$NM-M}<0$NJQ?t$K$"$i$+$8$a?t$rBeF~(B
2856: $B$7$?8eM-8BBN78?t$KJQ49$9$k$H$$$&A`:n$r9T$&:]$N(B, $BBeF~CM$r;XDj$9$k$b$N$G(B,
2857: @code{[[@var{var},@var{value}],...]} $B$N7A$N%j%9%H$G$"$k(B.
1.2 noro 2858: \E
2859: \BEG
2860: @item
2861: @code{dp_nf_mod()} and @code{dp_true_nf_mod()} require
2862: distributed polynomials with coefficients in a finite field as arguments.
2863: @code{dp_mod()} is used to convert distributed polynomials with rational
2864: number coefficients into appropriate ones.
2865: Polynomials with coefficients in a finite field
2866: cannot be used as inputs of operations with polynomials
2867: with rational number coefficients. @code{dp_rat()} is used for such cases.
2868: @item
2869: The ground finite field must be set in advance by using @code{setmod()}.
2870: @item
2871: @var{subst} is such a list as @code{[[@var{var},@var{value}],...]}.
2872: This is valid when the ground field of the input polynomial is a
2873: rational function field. @var{var}'s are variables in the ground field and
2874: the list means that @var{value} is substituted for @var{var} before
2875: converting the coefficients into elements of a finite field.
2876: \E
1.1 noro 2877: @end itemize
2878:
2879: @example
2880: @end example
2881:
2882: @table @t
1.2 noro 2883: \JP @item $B;2>H(B
2884: \EG @item References
1.18 ! noro 2885: @fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod},
1.1 noro 2886: @fref{subst psubst},
2887: @fref{setmod}.
2888: @end table
2889:
1.2 noro 2890: \JP @node dp_homo dp_dehomo,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2891: \EG @node dp_homo dp_dehomo,,, Functions for Groebner basis computation
1.1 noro 2892: @subsection @code{dp_homo}, @code{dp_dehomo}
2893: @findex dp_homo
2894: @findex dp_dehomo
2895:
2896: @table @t
2897: @item dp_homo(@var{dpoly})
1.2 noro 2898: \JP :: $BJ,;6I=8=B?9`<0$N@F<!2=(B
2899: \EG :: Homogenize a distributed polynomial
1.1 noro 2900: @item dp_dehomo(@var{dpoly})
1.2 noro 2901: \JP :: $B@F<!J,;6I=8=B?9`<0$NHs@F<!2=(B
2902: \EG :: Dehomogenize a homogenious distributed polynomial
1.1 noro 2903: @end table
2904:
2905: @table @var
2906: @item return
1.2 noro 2907: \JP $BJ,;6I=8=B?9`<0(B
2908: \EG distributed polynomial
1.1 noro 2909: @item dpoly
1.2 noro 2910: \JP $BJ,;6I=8=B?9`<0(B
2911: \EG distributed polynomial
1.1 noro 2912: @end table
2913:
2914: @itemize @bullet
1.2 noro 2915: \BJP
1.1 noro 2916: @item
2917: @code{dp_homo()} $B$O(B, @var{dpoly} $B$N(B $B3F9`(B @var{t} $B$K$D$$$F(B, $B;X?t%Y%/%H%k$ND9$5$r(B
2918: 1 $B?-$P$7(B, $B:G8e$N@.J,$NCM$r(B @var{d}-@code{deg(@var{t})}
2919: (@var{d} $B$O(B @var{dpoly} $B$NA4<!?t(B) $B$H$7$?J,;6I=8=B?9`<0$rJV$9(B.
2920: @item
2921: @code{dp_dehomo()} $B$O(B, @var{dpoly} $B$N3F9`$K$D$$$F(B, $B;X?t%Y%/%H%k$N:G8e$N@.J,(B
2922: $B$r<h$j=|$$$?J,;6B?9`<0$rJV$9(B.
2923: @item
2924: $B$$$:$l$b(B, $B@8@.$5$l$?B?9`<0$rMQ$$$?1i;;$r9T$&>l9g(B, $B$=$l$i$KE,9g$9$k9`=g=x$r(B
2925: $B@5$7$/@_Dj$9$kI,MW$,$"$k(B.
2926: @item
2927: @code{hgr()} $B$J$I$K$*$$$F(B, $BFbItE*$KMQ$$$i$l$F$$$k(B.
1.2 noro 2928: \E
2929: \BEG
2930: @item
2931: @code{dp_homo()} makes a copy of @var{dpoly}, extends
2932: the length of the exponent vector of each term @var{t} in the copy by 1,
2933: and sets the value of the newly appended
2934: component to @var{d}-@code{deg(@var{t})}, where @var{d} is the total
2935: degree of @var{dpoly}.
2936: @item
2937: @code{dp_dehomo()} make a copy of @var{dpoly} and removes the last component
2938: of each terms in the copy.
2939: @item
2940: Appropriate term orderings must be set when the results are used as inputs
2941: of some operations.
2942: @item
2943: These are used internally in @code{hgr()} etc.
2944: \E
1.1 noro 2945: @end itemize
2946:
2947: @example
2948: [202] X=<<1,2,3>>+3*<<1,2,1>>;
2949: (1)*<<1,2,3>>+(3)*<<1,2,1>>
2950: [203] dp_homo(X);
2951: (1)*<<1,2,3,0>>+(3)*<<1,2,1,2>>
2952: [204] dp_dehomo(@@);
2953: (1)*<<1,2,3>>+(3)*<<1,2,1>>
2954: @end example
2955:
2956: @table @t
1.2 noro 2957: \JP @item $B;2>H(B
2958: \EG @item References
1.1 noro 2959: @fref{gr hgr gr_mod}.
2960: @end table
2961:
1.2 noro 2962: \JP @node dp_ptozp dp_prim,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
2963: \EG @node dp_ptozp dp_prim,,, Functions for Groebner basis computation
1.1 noro 2964: @subsection @code{dp_ptozp}, @code{dp_prim}
2965: @findex dp_ptozp
2966: @findex dp_prim
2967:
2968: @table @t
2969: @item dp_ptozp(@var{dpoly})
1.2 noro 2970: \JP :: $BDj?tG\$7$F78?t$r@0?t78?t$+$D78?t$N@0?t(B GCD $B$r(B 1 $B$K$9$k(B.
2971: \BEG
2972: :: Converts a distributed polynomial @var{poly} with rational coefficients
2973: into an integral distributed polynomial such that GCD of all its coefficients
2974: is 1.
2975: \E
1.1 noro 2976: @itemx dp_prim(@var{dpoly})
1.2 noro 2977: \JP :: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B.
2978: \BEG
2979: :: Converts a distributed polynomial @var{poly} with rational function
2980: coefficients into an integral distributed polynomial such that polynomial
2981: GCD of all its coefficients is 1.
2982: \E
1.1 noro 2983: @end table
2984:
2985: @table @var
2986: @item return
1.2 noro 2987: \JP $BJ,;6I=8=B?9`<0(B
2988: \EG distributed polynomial
1.1 noro 2989: @item dpoly
1.2 noro 2990: \JP $BJ,;6I=8=B?9`<0(B
2991: \EG distributed polynomial
1.1 noro 2992: @end table
2993:
2994: @itemize @bullet
1.2 noro 2995: \BJP
1.1 noro 2996: @item
2997: @code{dp_ptozp()} $B$O(B, @code{ptozp()} $B$KAjEv$9$kA`:n$rJ,;6I=8=B?9`<0$K(B
2998: $BBP$7$F9T$&(B. $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R$O(B
2999: $B<h$j=|$+$J$$(B.
3000: @item
3001: @code{dp_prim()} $B$O(B, $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R(B
3002: $B$r<h$j=|$/(B.
1.2 noro 3003: \E
3004: \BEG
3005: @item
3006: @code{dp_ptozp()} executes the same operation as @code{ptozp()} for
3007: a distributed polynomial. If the coefficients include polynomials,
3008: polynomial contents included in the coefficients are not removed.
3009: @item
3010: @code{dp_prim()} removes polynomial contents.
3011: \E
1.1 noro 3012: @end itemize
3013:
3014: @example
3015: [208] X=dp_ptod(3*(x-y)*(y-z)*(z-x),[x]);
3016: (-3*y+3*z)*<<2>>+(3*y^2-3*z^2)*<<1>>+(-3*z*y^2+3*z^2*y)*<<0>>
3017: [209] dp_ptozp(X);
3018: (-y+z)*<<2>>+(y^2-z^2)*<<1>>+(-z*y^2+z^2*y)*<<0>>
3019: [210] dp_prim(X);
3020: (1)*<<2>>+(-y-z)*<<1>>+(z*y)*<<0>>
3021: @end example
3022:
3023: @table @t
1.2 noro 3024: \JP @item $B;2>H(B
3025: \EG @item References
1.1 noro 3026: @fref{ptozp}.
3027: @end table
3028:
1.18 ! noro 3029: \JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
! 3030: \EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod,,, Functions for Groebner basis computation
1.1 noro 3031: @subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod}
3032: @findex dp_nf
3033: @findex dp_true_nf
3034: @findex dp_nf_mod
3035: @findex dp_true_nf_mod
1.18 ! noro 3036: @findex dp_weyl_nf
! 3037: @findex dp_weyl_nf_mod
1.1 noro 3038:
3039: @table @t
3040: @item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce})
1.18 ! noro 3041: @item dp_weyl_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce})
1.1 noro 3042: @item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod})
1.18 ! noro 3043: @item dp_weyl_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod})
1.2 noro 3044: \JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B)
1.1 noro 3045:
1.2 noro 3046: \BEG
3047: :: Computes the normal form of a distributed polynomial.
3048: (The result may be multiplied by a constant in the ground field.)
3049: \E
1.1 noro 3050: @item dp_true_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce})
3051: @item dp_true_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod})
1.2 noro 3052: \JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B)
3053: \BEG
3054: :: Computes the normal form of a distributed polynomial. (The true result
3055: is returned in such a list as @code{[numerator, denominator]})
3056: \E
1.1 noro 3057: @end table
3058:
3059: @table @var
3060: @item return
1.2 noro 3061: \JP @code{dp_nf()} : $BJ,;6I=8=B?9`<0(B, @code{dp_true_nf()} : $B%j%9%H(B
3062: \EG @code{dp_nf()} : distributed polynomial, @code{dp_true_nf()} : list
1.1 noro 3063: @item indexlist
1.2 noro 3064: \JP $B%j%9%H(B
3065: \EG list
1.1 noro 3066: @item dpoly
1.2 noro 3067: \JP $BJ,;6I=8=B?9`<0(B
3068: \EG distributed polynomial
1.1 noro 3069: @item dpolyarray
1.2 noro 3070: \JP $BG[Ns(B
3071: \EG array of distributed polynomial
1.1 noro 3072: @item fullreduce
1.2 noro 3073: \JP $B%U%i%0(B
3074: \EG flag
1.1 noro 3075: @item mod
1.2 noro 3076: \JP $BAG?t(B
3077: \EG prime
1.1 noro 3078: @end table
3079:
3080: @itemize @bullet
1.2 noro 3081: \BJP
1.1 noro 3082: @item
3083: $BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B.
3084: @item
1.18 ! noro 3085: $BL>A0$K(B weyl $B$r4^$`4X?t$O%o%$%kBe?t$K$*$1$k@55,7A7W;;$r9T$&(B. $B0J2<$N@bL@$O(B weyl $B$r4^$`$b$N$KBP$7$F$bF1MM$K@.N)$9$k(B.
! 3086: @item
1.1 noro 3087: @code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B
3088: $B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B.
3089: @item
3090: $B7k2L$KM-M}?t(B, $BM-M}<0$,4^$^$l$k$N$rHr$1$k$?$a(B, @code{dp_nf()} $B$O(B
3091: $B??$NCM$NDj?tG\$NCM$rJV$9(B. $BM-M}<078?t$N>l9g$N(B @code{dp_nf_mod()} $B$bF1MM(B
3092: $B$G$"$k$,(B, $B78?tBN$,M-8BBN$N>l9g(B @code{dp_nf_mod()} $B$O??$NCM$rJV$9(B.
3093: @item
3094: @code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$O(B,
3095: @code{[@var{nm},@var{dn}]} $B$J$k7A$N%j%9%H$rJV$9(B.
3096: $B$?$@$7(B, @var{nm} $B$O78?t$KJ,?t(B, $BM-M}<0$r4^$^$J$$J,;6I=8=B?9`<0(B, @var{dn} $B$O(B
3097: $B?t$^$?$OB?9`<0$G(B @var{nm}/@var{dn} $B$,??$NCM$H$J$k(B.
3098: @item
3099: @var{dpolyarray} $B$OJ,;6I=8=B?9`<0$rMWAG$H$9$k%Y%/%H%k(B,
3100: @var{indexlist} $B$O@55,2=7W;;$KMQ$$$k(B @var{dpolyarray} $B$NMWAG$N%$%s%G%C%/%9(B
3101: $B$N%j%9%H(B.
3102: @item
3103: @var{fullreduce} $B$,(B 0 $B$G$J$$$H$-A4$F$N9`$KBP$7$F4JLs$r9T$&(B. @var{fullreduce}
3104: $B$,(B 0 $B$N$H$-F,9`$N$_$KBP$7$F4JLs$r9T$&(B.
3105: @item
3106: @var{indexlist} $B$G;XDj$5$l$?B?9`<0$O(B, $BA0$NJ}$N$b$N$,M%@hE*$K;H$o$l$k(B.
3107: @item
3108: $B0lHL$K$O(B @var{indexlist} $B$NM?$(J}$K$h$jH!?t$NCM$O0[$J$k2DG=@-$,$"$k$,(B,
3109: $B%0%l%V%J4pDl$KBP$7$F$O0l0UE*$KDj$^$k(B.
3110: @item
3111: $BJ,;6I=8=$G$J$$8GDj$5$l$?B?9`<0=89g$K$h$k@55,7A$rB??t5a$a$kI,MW$,$"$k>l9g(B
3112: $B$KJXMx$G$"$k(B. $BC10l$N1i;;$K4X$7$F$O(B, @code{p_nf}, @code{p_true_nf} $B$r(B
3113: $BMQ$$$k$H$h$$(B.
1.2 noro 3114: \E
3115: \BEG
3116: @item
3117: Computes the normal form of a distributed polynomial.
3118: @item
1.18 ! noro 3119: Functions whose name contain @code{weyl} compute normal forms in Weyl algebra. The description below also applies to
! 3120: the functions for Weyl algebra.
! 3121: @item
1.2 noro 3122: @code{dp_nf_mod()} and @code{dp_true_nf_mod()} require
3123: distributed polynomials with coefficients in a finite field as arguments.
3124: @item
3125: The result of @code{dp_nf()} may be multiplied by a constant in the
3126: ground field in order to make the result integral. The same is true
3127: for @code{dp_nf_mod()}, but it returns the true normal form if
3128: the ground field is a finite field.
3129: @item
3130: @code{dp_true_nf()} and @code{dp_true_nf_mod()} return
3131: such a list as @code{[@var{nm},@var{dn}]}.
3132: Here @var{nm} is a distributed polynomial whose coefficients are integral
3133: in the ground field, @var{dn} is an integral element in the ground
3134: field and @var{nm}/@var{dn} is the true normal form.
3135: @item
3136: @var{dpolyarray} is a vector whose components are distributed polynomials
3137: and @var{indexlist} is a list of indices which is used for the normal form
3138: computation.
3139: @item
3140: When argument @var{fullreduce} has non-zero value,
3141: all terms are reduced. When it has value 0,
3142: only the head term is reduced.
3143: @item
3144: As for the polynomials specified by @var{indexlist}, one specified by
3145: an index placed at the preceding position has priority to be selected.
3146: @item
3147: In general, the result of the function may be different depending on
3148: @var{indexlist}. However, the result is unique for Groebner bases.
3149: @item
3150: These functions are useful when a fixed non-distributed polynomial set
3151: is used as a set of reducers to compute normal forms of many polynomials.
3152: For single computation @code{p_nf} and @code{p_true_nf} are sufficient.
3153: \E
1.1 noro 3154: @end itemize
3155:
3156: @example
3157: [0] load("gr")$
3158: [64] load("katsura")$
3159: [69] K=katsura(4)$
3160: [70] dp_ord(2)$
3161: [71] V=[u0,u1,u2,u3,u4]$
3162: [72] DP1=newvect(length(K),map(dp_ptod,K,V))$
3163: [73] G=gr(K,V,2)$
3164: [74] DP2=newvect(length(G),map(dp_ptod,G,V))$
3165: [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$
3166: [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);
1.5 noro 3167: u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2
3168: +(6*u1-2)*u2+9*u1^2-6*u1+1
1.1 noro 3169: [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);
3170: -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
3171: [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
1.5 noro 3172: -11380879768451657780886122972730785203470970010204714556333530492210
3173: 456775930005716505560062087150928400876150217079820311439477560587583
3174: 488*u4^15+...
1.1 noro 3175: [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
1.5 noro 3176: -11380879768451657780886122972730785203470970010204714556333530492210
3177: 456775930005716505560062087150928400876150217079820311439477560587583
3178: 488*u4^15+...
1.1 noro 3179: [80] @@78==@@79;
3180: 1
3181: @end example
3182:
3183: @table @t
1.2 noro 3184: \JP @item $B;2>H(B
3185: \EG @item References
1.1 noro 3186: @fref{dp_dtop},
3187: @fref{dp_ord},
3188: @fref{dp_mod dp_rat},
3189: @fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}.
3190: @end table
3191:
1.2 noro 3192: \JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3193: \EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation
1.1 noro 3194: @subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest}
3195: @findex dp_hm
3196: @findex dp_ht
3197: @findex dp_hc
3198: @findex dp_rest
3199:
3200: @table @t
3201: @item dp_hm(@var{dpoly})
1.2 noro 3202: \JP :: $BF,C19`<0$r<h$j=P$9(B.
3203: \EG :: Gets the head monomial.
1.1 noro 3204: @item dp_ht(@var{dpoly})
1.2 noro 3205: \JP :: $BF,9`$r<h$j=P$9(B.
3206: \EG :: Gets the head term.
1.1 noro 3207: @item dp_hc(@var{dpoly})
1.2 noro 3208: \JP :: $BF,78?t$r<h$j=P$9(B.
3209: \EG :: Gets the head coefficient.
1.1 noro 3210: @item dp_rest(@var{dpoly})
1.2 noro 3211: \JP :: $BF,C19`<0$r<h$j=|$$$?;D$j$rJV$9(B.
3212: \EG :: Gets the remainder of the polynomial where the head monomial is removed.
1.1 noro 3213: @end table
3214:
3215: @table @var
1.2 noro 3216: \BJP
1.1 noro 3217: @item return
3218: @code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : $BJ,;6I=8=B?9`<0(B,
3219: @code{dp_hc()} : $B?t$^$?$OB?9`<0(B
3220: @item dpoly
3221: $BJ,;6I=8=B?9`<0(B
1.2 noro 3222: \E
3223: \BEG
3224: @item return
3225: @code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : distributed polynomial
3226: @code{dp_hc()} : number or polynomial
3227: @item dpoly
3228: distributed polynomial
3229: \E
1.1 noro 3230: @end table
3231:
3232: @itemize @bullet
1.2 noro 3233: \BJP
1.1 noro 3234: @item
3235: $B$3$l$i$O(B, $BJ,;6I=8=B?9`<0$N3FItJ,$r<h$j=P$9$?$a$NH!?t$G$"$k(B.
3236: @item
3237: $BJ,;6I=8=B?9`<0(B @var{p} $B$KBP$7<!$,@.$jN)$D(B.
1.2 noro 3238: \E
3239: \BEG
3240: @item
3241: These are used to get various parts of a distributed polynomial.
3242: @item
3243: The next equations hold for a distributed polynomial @var{p}.
3244: \E
1.1 noro 3245: @table @code
3246: @item @var{p} = dp_hm(@var{p}) + dp_rest(@var{p})
3247: @item dp_hm(@var{p}) = dp_hc(@var{p}) dp_ht(@var{p})
3248: @end table
3249: @end itemize
3250:
3251: @example
3252: [87] dp_ord(0)$
3253: [88] X=ptozp((a46^2+7/10*a46+7/48)*u3^4-50/27*a46^2-35/27*a46-49/216)$
3254: [89] T=dp_ptod(X,[u3,u4,a46])$
3255: [90] dp_hm(T);
3256: (2160)*<<4,0,2>>
3257: [91] dp_ht(T);
3258: (1)*<<4,0,2>>
3259: [92] dp_hc(T);
3260: 2160
3261: [93] dp_rest(T);
3262: (1512)*<<4,0,1>>+(315)*<<4,0,0>>+(-4000)*<<0,0,2>>+(-2800)*<<0,0,1>>
3263: +(-490)*<<0,0,0>>
3264: @end example
3265:
1.2 noro 3266: \JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3267: \EG @node dp_td dp_sugar,,, Functions for Groebner basis computation
1.1 noro 3268: @subsection @code{dp_td}, @code{dp_sugar}
3269: @findex dp_td
3270: @findex dp_sugar
3271:
3272: @table @t
3273: @item dp_td(@var{dpoly})
1.2 noro 3274: \JP :: $BF,9`$NA4<!?t$rJV$9(B.
3275: \EG :: Gets the total degree of the head term.
1.1 noro 3276: @item dp_sugar(@var{dpoly})
1.2 noro 3277: \JP :: $BB?9`<0$N(B @code{sugar} $B$rJV$9(B.
3278: \EG :: Gets the @code{sugar} of a polynomial.
1.1 noro 3279: @end table
3280:
3281: @table @var
3282: @item return
1.2 noro 3283: \JP $B<+A3?t(B
3284: \EG non-negative integer
1.1 noro 3285: @item dpoly
1.2 noro 3286: \JP $BJ,;6I=8=B?9`<0(B
3287: \EG distributed polynomial
1.1 noro 3288: @item onoff
1.2 noro 3289: \JP $B%U%i%0(B
3290: \EG flag
1.1 noro 3291: @end table
3292:
3293: @itemize @bullet
1.2 noro 3294: \BJP
1.1 noro 3295: @item
3296: @code{dp_td()} $B$O(B, $BF,9`$NA4<!?t(B, $B$9$J$o$A3FJQ?t$N;X?t$NOB$rJV$9(B.
3297: @item
3298: $BJ,;6I=8=B?9`<0$,@8@.$5$l$k$H(B, @code{sugar} $B$H8F$P$l$k$"$k@0?t$,IUM?(B
3299: $B$5$l$k(B. $B$3$NCM$O(B $B2>A[E*$K@F<!2=$7$F7W;;$7$?>l9g$K7k2L$,;}$DA4<!?t$NCM$H$J$k(B.
3300: @item
3301: @code{sugar} $B$O(B, $B%0%l%V%J4pDl7W;;$K$*$1$k@55,2=BP$NA*Br$N%9%H%i%F%8$r(B
3302: $B7hDj$9$k$?$a$N=EMW$J;X?K$H$J$k(B.
1.2 noro 3303: \E
3304: \BEG
3305: @item
3306: Function @code{dp_td()} returns the total degree of the head term,
3307: i.e., the sum of all exponent of variables in that term.
3308: @item
3309: Upon creation of a distributed polynomial, an integer called @code{sugar}
3310: is associated. This value is
3311: the total degree of the virtually homogenized one of the original
3312: polynomial.
3313: @item
3314: The quantity @code{sugar} is an important guide to determine the
3315: selection strategy of critical pairs in Groebner basis computation.
3316: \E
1.1 noro 3317: @end itemize
3318:
3319: @example
3320: [74] dp_ord(0)$
3321: [75] X=<<1,2>>+<<0,1>>$
3322: [76] Y=<<1,2>>+<<1,0>>$
3323: [77] Z=X-Y;
3324: (-1)*<<1,0>>+(1)*<<0,1>>
3325: [78] dp_sugar(T);
3326: 3
3327: @end example
3328:
1.2 noro 3329: \JP @node dp_lcm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3330: \EG @node dp_lcm,,, Functions for Groebner basis computation
1.1 noro 3331: @subsection @code{dp_lcm}
3332: @findex dp_lcm
3333:
3334: @table @t
3335: @item dp_lcm(@var{dpoly1},@var{dpoly2})
1.2 noro 3336: \JP :: $B:G>.8xG\9`$rJV$9(B.
3337: \EG :: Returns the least common multiple of the head terms of the given two polynomials.
1.1 noro 3338: @end table
3339:
3340: @table @var
3341: @item return
1.2 noro 3342: \JP $BJ,;6I=8=B?9`<0(B
3343: \EG distributed polynomial
1.4 noro 3344: @item dpoly1 dpoly2
1.2 noro 3345: \JP $BJ,;6I=8=B?9`<0(B
3346: \EG distributed polynomial
1.1 noro 3347: @end table
3348:
3349: @itemize @bullet
1.2 noro 3350: \BJP
1.1 noro 3351: @item
3352: $B$=$l$>$l$N0z?t$NF,9`$N:G>.8xG\9`$rJV$9(B. $B78?t$O(B 1 $B$G$"$k(B.
1.2 noro 3353: \E
3354: \BEG
3355: @item
3356: Returns the least common multiple of the head terms of the given
3357: two polynomials, where coefficient is always set to 1.
3358: \E
1.1 noro 3359: @end itemize
3360:
3361: @example
3362: [100] dp_lcm(<<1,2,3,4,5>>,<<5,4,3,2,1>>);
3363: (1)*<<5,4,3,4,5>>
3364: @end example
3365:
3366: @table @t
1.2 noro 3367: \JP @item $B;2>H(B
3368: \EG @item References
1.1 noro 3369: @fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}.
3370: @end table
3371:
1.2 noro 3372: \JP @node dp_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3373: \EG @node dp_redble,,, Functions for Groebner basis computation
1.1 noro 3374: @subsection @code{dp_redble}
3375: @findex dp_redble
3376:
3377: @table @t
3378: @item dp_redble(@var{dpoly1},@var{dpoly2})
1.2 noro 3379: \JP :: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B.
3380: \EG :: Checks whether one head term is divisible by the other head term.
1.1 noro 3381: @end table
3382:
3383: @table @var
3384: @item return
1.2 noro 3385: \JP $B@0?t(B
3386: \EG integer
1.4 noro 3387: @item dpoly1 dpoly2
1.2 noro 3388: \JP $BJ,;6I=8=B?9`<0(B
3389: \EG distributed polynomial
1.1 noro 3390: @end table
3391:
3392: @itemize @bullet
1.2 noro 3393: \BJP
1.1 noro 3394: @item
3395: @var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B
3396: 0 $B$rJV$9(B.
3397: @item
3398: $BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B.
1.2 noro 3399: \E
3400: \BEG
3401: @item
3402: Returns 1 if the head term of @var{dpoly2} divides the head term of
3403: @var{dpoly1}; otherwise 0.
3404: @item
3405: Used for finding candidate terms at reduction of polynomials.
3406: \E
1.1 noro 3407: @end itemize
3408:
3409: @example
3410: [148] C;
3411: (1)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>+(1)*<<1,0,0,1,1>>
3412: [149] T;
3413: (3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>+(6)*<<1,1,1,0,0>>
3414: [150] for ( ; T; T = dp_rest(T)) print(dp_redble(T,C));
3415: 0
3416: 0
3417: 0
3418: 1
3419: @end example
3420:
3421: @table @t
1.2 noro 3422: \JP @item $B;2>H(B
3423: \EG @item References
1.1 noro 3424: @fref{dp_red dp_red_mod}.
3425: @end table
3426:
1.2 noro 3427: \JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3428: \EG @node dp_subd,,, Functions for Groebner basis computation
1.1 noro 3429: @subsection @code{dp_subd}
3430: @findex dp_subd
3431:
3432: @table @t
3433: @item dp_subd(@var{dpoly1},@var{dpoly2})
1.2 noro 3434: \JP :: $BF,9`$N>&C19`<0$rJV$9(B.
3435: \EG :: Returns the quotient monomial of the head terms.
1.1 noro 3436: @end table
3437:
3438: @table @var
3439: @item return
1.2 noro 3440: \JP $BJ,;6I=8=B?9`<0(B
3441: \EG distributed polynomial
1.4 noro 3442: @item dpoly1 dpoly2
1.2 noro 3443: \JP $BJ,;6I=8=B?9`<0(B
3444: \EG distributed polynomial
1.1 noro 3445: @end table
3446:
3447: @itemize @bullet
1.2 noro 3448: \BJP
1.1 noro 3449: @item
3450: @code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})} $B$r5a$a$k(B. $B7k2L$N78?t$O(B 1
3451: $B$G$"$k(B.
3452: @item
3453: $B3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$kI,MW$,$"$k(B.
1.2 noro 3454: \E
3455: \BEG
3456: @item
3457: Gets @code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})}.
3458: The coefficient of the result is always set to 1.
3459: @item
3460: Divisibility assumed.
3461: \E
1.1 noro 3462: @end itemize
3463:
3464: @example
3465: [162] dp_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);
3466: (1)*<<0,1,1,1,1>>
3467: @end example
3468:
3469: @table @t
1.2 noro 3470: \JP @item $B;2>H(B
3471: \EG @item References
1.1 noro 3472: @fref{dp_red dp_red_mod}.
3473: @end table
3474:
1.2 noro 3475: \JP @node dp_vtoe dp_etov,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3476: \EG @node dp_vtoe dp_etov,,, Functions for Groebner basis computation
1.1 noro 3477: @subsection @code{dp_vtoe}, @code{dp_etov}
3478: @findex dp_vtoe
3479: @findex dp_etov
3480:
3481: @table @t
3482: @item dp_vtoe(@var{vect})
1.2 noro 3483: \JP :: $B;X?t%Y%/%H%k$r9`$KJQ49(B
3484: \EG :: Converts an exponent vector into a term.
1.1 noro 3485: @item dp_etov(@var{dpoly})
1.2 noro 3486: \JP :: $BF,9`$r;X?t%Y%/%H%k$KJQ49(B
3487: \EG :: Convert the head term of a distributed polynomial into an exponent vector.
1.1 noro 3488: @end table
3489:
3490: @table @var
3491: @item return
1.2 noro 3492: \JP @code{dp_vtoe} : $BJ,;6I=8=B?9`<0(B, @code{dp_etov} : $B%Y%/%H%k(B
3493: \EG @code{dp_vtoe} : distributed polynomial, @code{dp_etov} : vector
1.1 noro 3494: @item vect
1.2 noro 3495: \JP $B%Y%/%H%k(B
3496: \EG vector
1.1 noro 3497: @item dpoly
1.2 noro 3498: \JP $BJ,;6I=8=B?9`<0(B
3499: \EG distributed polynomial
1.1 noro 3500: @end table
3501:
3502: @itemize @bullet
1.2 noro 3503: \BJP
1.1 noro 3504: @item
3505: @code{dp_vtoe()} $B$O(B, $B%Y%/%H%k(B @var{vect} $B$r;X?t%Y%/%H%k$H$9$k9`$r@8@.$9$k(B.
3506: @item
3507: @code{dp_etov()} $B$O(B, $BJ,;6I=8=B?9`<0(B @code{dpoly} $B$NF,9`$N;X?t%Y%/%H%k$r(B
3508: $B%Y%/%H%k$KJQ49$9$k(B.
1.2 noro 3509: \E
3510: \BEG
3511: @item
3512: @code{dp_vtoe()} generates a term whose exponent vector is @var{vect}.
3513: @item
3514: @code{dp_etov()} generates a vector which is the exponent vector of the
3515: head term of @code{dpoly}.
3516: \E
1.1 noro 3517: @end itemize
3518:
3519: @example
3520: [211] X=<<1,2,3>>;
3521: (1)*<<1,2,3>>
3522: [212] V=dp_etov(X);
3523: [ 1 2 3 ]
3524: [213] V[2]++$
3525: [214] Y=dp_vtoe(V);
3526: (1)*<<1,2,4>>
3527: @end example
3528:
1.2 noro 3529: \JP @node dp_mbase,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3530: \EG @node dp_mbase,,, Functions for Groebner basis computation
1.1 noro 3531: @subsection @code{dp_mbase}
3532: @findex dp_mbase
3533:
3534: @table @t
3535: @item dp_mbase(@var{dplist})
1.2 noro 3536: \JP :: monomial $B4pDl$N7W;;(B
3537: \EG :: Computes the monomial basis
1.1 noro 3538: @end table
3539:
3540: @table @var
3541: @item return
1.2 noro 3542: \JP $BJ,;6I=8=B?9`<0$N%j%9%H(B
3543: \EG list of distributed polynomial
1.1 noro 3544: @item dplist
1.2 noro 3545: \JP $BJ,;6I=8=B?9`<0$N%j%9%H(B
3546: \EG list of distributed polynomial
1.1 noro 3547: @end table
3548:
3549: @itemize @bullet
1.2 noro 3550: \BJP
1.1 noro 3551: @item
3552: $B$"$k=g=x$G%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0=89g$N(B, $B$=$N=g=x$K4X$9$kJ,;6I=8=(B
3553: $B$G$"$k(B @var{dplist} $B$K$D$$$F(B,
3554: @var{dplist} $B$,(B K[X] $BCf$G@8@.$9$k%$%G%"%k(B I $B$,(B 0 $B<!85$N;~(B,
3555: K $B>eM-8B<!85@~7A6u4V$G$"$k(B K[X]/I $B$N(B monomial $B$K$h$k4pDl$r5a$a$k(B.
3556: @item
3557: $BF@$i$l$?4pDl$N8D?t$,(B, K[X]/I $B$N(B K-$B@~7A6u4V$H$7$F$N<!85$KEy$7$$(B.
1.2 noro 3558: \E
3559: \BEG
3560: @item
3561: Assuming that @var{dplist} is a list of distributed polynomials which
3562: is a Groebner basis with respect to the current ordering type and
3563: that the ideal @var{I} generated by @var{dplist} in K[X] is zero-dimensional,
3564: this function computes the monomial basis of a finite dimenstional K-vector
3565: space K[X]/I.
3566: @item
3567: The number of elements in the monomial basis is equal to the
3568: K-dimenstion of K[X]/I.
3569: \E
1.1 noro 3570: @end itemize
3571:
3572: @example
3573: [215] K=katsura(5)$
3574: [216] V=[u5,u4,u3,u2,u1,u0]$
3575: [217] G0=gr(K,V,0)$
3576: [218] H=map(dp_ptod,G0,V)$
3577: [219] map(dp_ptod,dp_mbase(H),V)$
3578: [u0^5,u4*u0^3,u3*u0^3,u2*u0^3,u1*u0^3,u0^4,u3^2*u0,u2*u3*u0,u1*u3*u0,
3579: u1*u2*u0,u1^2*u0,u4*u0^2,u3*u0^2,u2*u0^2,u1*u0^2,u0^3,u3^2,u2*u3,u1*u3,
3580: u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0,1]
3581: @end example
3582:
3583: @table @t
1.2 noro 3584: \JP @item $B;2>H(B
3585: \EG @item References
1.1 noro 3586: @fref{gr hgr gr_mod}.
3587: @end table
3588:
1.2 noro 3589: \JP @node dp_mag,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3590: \EG @node dp_mag,,, Functions for Groebner basis computation
1.1 noro 3591: @subsection @code{dp_mag}
3592: @findex dp_mag
3593:
3594: @table @t
3595: @item dp_mag(@var{p})
1.2 noro 3596: \JP :: $B78?t$N%S%C%HD9$NOB$rJV$9(B
3597: \EG :: Computes the sum of bit lengths of coefficients of a distributed polynomial.
1.1 noro 3598: @end table
3599:
3600: @table @var
3601: @item return
1.2 noro 3602: \JP $B?t(B
3603: \EG integer
1.1 noro 3604: @item p
1.2 noro 3605: \JP $BJ,;6I=8=B?9`<0(B
3606: \EG distributed polynomial
1.1 noro 3607: @end table
3608:
3609: @itemize @bullet
1.2 noro 3610: \BJP
1.1 noro 3611: @item
3612: $BJ,;6I=8=B?9`<0$N78?t$K8=$l$kM-M}?t$K$D$-(B, $B$=$NJ,JlJ,;R(B ($B@0?t$N>l9g$OJ,;R(B)
3613: $B$N%S%C%HD9$NAmOB$rJV$9(B.
3614: @item
3615: $BBP>]$H$J$kB?9`<0$NBg$-$5$NL\0B$H$7$FM-8z$G$"$k(B. $BFC$K(B, 0 $B<!85%7%9%F%`$K$*$$$F$O(B
3616: $B78?tKDD%$,LdBj$H$J$j(B, $BESCf@8@.$5$l$kB?9`<0$,78?tKDD%$r5/$3$7$F$$$k$+$I$&$+(B
3617: $B$NH=Dj$KLrN)$D(B.
3618: @item
3619: @code{dp_gr_flags()} $B$G(B, @code{ShowMag}, @code{Print} $B$r(B on $B$K$9$k$3$H$K$h$j(B
3620: $BESCf@8@.$5$l$kB?9`<0$K$?$$$9$k(B @code{dp_mag()} $B$NCM$r8+$k$3$H$,$G$-$k(B.
1.2 noro 3621: \E
3622: \BEG
3623: @item
3624: This function computes the sum of bit lengths of coefficients of a
3625: distributed polynomial @var{p}. If a coefficient is non integral,
3626: the sum of bit lengths of the numerator and the denominator is taken.
3627: @item
3628: This is a measure of the size of a polynomial. Especially for
3629: zero-dimensional system coefficient swells are often serious and
3630: the returned value is useful to detect such swells.
3631: @item
3632: If @code{ShowMag} and @code{Print} for @code{dp_gr_flags()} are on,
3633: values of @code{dp_mag()} for intermediate basis elements are shown.
3634: \E
1.1 noro 3635: @end itemize
3636:
3637: @example
3638: [221] X=dp_ptod((x+2*y)^10,[x,y])$
3639: [222] dp_mag(X);
3640: 115
3641: @end example
3642:
3643: @table @t
1.2 noro 3644: \JP @item $B;2>H(B
3645: \EG @item References
1.1 noro 3646: @fref{dp_gr_flags dp_gr_print}.
3647: @end table
3648:
1.2 noro 3649: \JP @node dp_red dp_red_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3650: \EG @node dp_red dp_red_mod,,, Functions for Groebner basis computation
1.1 noro 3651: @subsection @code{dp_red}, @code{dp_red_mod}
3652: @findex dp_red
3653: @findex dp_red_mod
3654:
3655: @table @t
3656: @item dp_red(@var{dpoly1},@var{dpoly2},@var{dpoly3})
3657: @item dp_red_mod(@var{dpoly1},@var{dpoly2},@var{dpoly3},@var{mod})
1.2 noro 3658: \JP :: $B0l2s$N4JLsA`:n(B
3659: \EG :: Single reduction operation
1.1 noro 3660: @end table
3661:
3662: @table @var
3663: @item return
1.2 noro 3664: \JP $B%j%9%H(B
3665: \EG list
1.4 noro 3666: @item dpoly1 dpoly2 dpoly3
1.2 noro 3667: \JP $BJ,;6I=8=B?9`<0(B
3668: \EG distributed polynomial
1.1 noro 3669: @item vlist
1.2 noro 3670: \JP $B%j%9%H(B
3671: \EG list
1.1 noro 3672: @item mod
1.2 noro 3673: \JP $BAG?t(B
3674: \EG prime
1.1 noro 3675: @end table
3676:
3677: @itemize @bullet
1.2 noro 3678: \BJP
1.1 noro 3679: @item
3680: @var{dpoly1} + @var{dpoly2} $B$J$kJ,;6I=8=B?9`<0$r(B @var{dpoly3} $B$G(B
3681: 1 $B2s4JLs$9$k(B.
3682: @item
3683: @code{dp_red_mod()} $B$NF~NO$O(B, $BA4$FM-8BBN78?t$KJQ49$5$l$F$$$kI,MW$,$"$k(B.
3684: @item
3685: $B4JLs$5$l$k9`$O(B @var{dpoly2} $B$NF,9`$G$"$k(B. $B=>$C$F(B, @var{dpoly2} $B$N(B
3686: $BF,9`$,(B @var{dpoly3} $B$NF,9`$G3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$J$1$l$P(B
3687: $B$J$i$J$$(B.
3688: @item
3689: $B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b},
1.4 noro 3690: $B9`(B @var{t} $B$K$h$j(B @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} $B$H$7$F7W;;$5$l$k(B.
1.1 noro 3691: @item
3692: $B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B.
1.2 noro 3693: \E
3694: \BEG
3695: @item
3696: Reduces a distributed polynomial, @var{dpoly1} + @var{dpoly2},
3697: by @var{dpoly3} for single time.
3698: @item
3699: An input for @code{dp_red_mod()} must be converted into a distributed
3700: polynomial with coefficients in a finite field.
3701: @item
3702: This implies that
3703: the divisibility of the head term of @var{dpoly2} by the head term of
3704: @var{dpoly3} is assumed.
3705: @item
3706: When integral coefficients, computation is so carefully performed that
3707: no rational operations appear in the reduction procedure.
3708: It is computed for integers @var{a} and @var{b}, and a term @var{t} as:
1.4 noro 3709: @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}.
1.2 noro 3710: @item
3711: The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}.
3712: \E
1.1 noro 3713: @end itemize
3714:
3715: @example
3716: [157] D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
3717: (3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>
3718: [158] R=(6)*<<1,1,1,0,0>>;
3719: (6)*<<1,1,1,0,0>>
3720: [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
3721: (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
3722: [160] dp_red(D,R,C);
1.5 noro 3723: [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
3724: (-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>]
1.1 noro 3725: @end example
3726:
3727: @table @t
1.2 noro 3728: \JP @item $B;2>H(B
3729: \EG @item References
1.1 noro 3730: @fref{dp_mod dp_rat}.
3731: @end table
3732:
1.2 noro 3733: \JP @node dp_sp dp_sp_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3734: \EG @node dp_sp dp_sp_mod,,, Functions for Groebner basis computation
1.1 noro 3735: @subsection @code{dp_sp}, @code{dp_sp_mod}
3736: @findex dp_sp
3737: @findex dp_sp_mod
3738:
3739: @table @t
3740: @item dp_sp(@var{dpoly1},@var{dpoly2})
3741: @item dp_sp_mod(@var{dpoly1},@var{dpoly2},@var{mod})
1.2 noro 3742: \JP :: S-$BB?9`<0$N7W;;(B
3743: \EG :: Computation of an S-polynomial
1.1 noro 3744: @end table
3745:
3746: @table @var
3747: @item return
1.2 noro 3748: \JP $BJ,;6I=8=B?9`<0(B
3749: \EG distributed polynomial
1.4 noro 3750: @item dpoly1 dpoly2
1.2 noro 3751: \JP $BJ,;6I=8=B?9`<0(B
3752: \EG distributed polynomial
1.1 noro 3753: @item mod
1.2 noro 3754: \JP $BAG?t(B
3755: \EG prime
1.1 noro 3756: @end table
3757:
3758: @itemize @bullet
1.2 noro 3759: \BJP
1.1 noro 3760: @item
3761: @var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B.
3762: @item
3763: @code{dp_sp_mod()} $B$NF~NO$O(B, $BA4$FM-8BBN78?t$KJQ49$5$l$F$$$kI,MW$,$"$k(B.
3764: @item
3765: $B7k2L$KM-M}?t(B, $BM-M}<0$,F~$k$N$rHr$1$k$?$a(B, $B7k2L$,Dj?tG\(B, $B$"$k$$$OB?9`<0(B
3766: $BG\$5$l$F$$$k2DG=@-$,$"$k(B.
1.2 noro 3767: \E
3768: \BEG
3769: @item
3770: This function computes the S-polynomial of @var{dpoly1} and @var{dpoly2}.
3771: @item
3772: Inputs of @code{dp_sp_mod()} must be polynomials with coefficients in a
3773: finite field.
3774: @item
3775: The result may be multiplied by a constant in the ground field in order to
3776: make the result integral.
3777: \E
1.1 noro 3778: @end itemize
3779:
3780: @example
3781: [227] X=dp_ptod(x^2*y+x*y,[x,y]);
3782: (1)*<<2,1>>+(1)*<<1,1>>
3783: [228] Y=dp_ptod(x*y^2+x*y,[x,y]);
3784: (1)*<<1,2>>+(1)*<<1,1>>
3785: [229] dp_sp(X,Y);
3786: (-1)*<<2,1>>+(1)*<<1,2>>
3787: @end example
3788:
3789: @table @t
1.2 noro 3790: \JP @item $B;2>H(B
3791: \EG @item References
1.1 noro 3792: @fref{dp_mod dp_rat}.
3793: @end table
1.2 noro 3794: \JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3795: \EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation
1.1 noro 3796: @subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod}
3797: @findex p_nf
3798: @findex p_nf_mod
3799: @findex p_true_nf
3800: @findex p_true_nf_mod
3801:
3802: @table @t
3803: @item p_nf(@var{poly},@var{plist},@var{vlist},@var{order})
3804: @itemx p_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod})
1.2 noro 3805: \JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B)
3806: \BEG
3807: :: Computes the normal form of the given polynomial.
3808: (The result may be multiplied by a constant.)
3809: \E
1.1 noro 3810: @item p_true_nf(@var{poly},@var{plist},@var{vlist},@var{order})
3811: @itemx p_true_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod})
1.2 noro 3812: \JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B)
3813: \BEG
3814: :: Computes the normal form of the given polynomial. (The result is returned
3815: as a form of @code{[numerator, denominator]})
3816: \E
1.1 noro 3817: @end table
3818:
3819: @table @var
3820: @item return
1.2 noro 3821: \JP @code{p_nf} : $BB?9`<0(B, @code{p_true_nf} : $B%j%9%H(B
3822: \EG @code{p_nf} : polynomial, @code{p_true_nf} : list
1.1 noro 3823: @item poly
1.2 noro 3824: \JP $BB?9`<0(B
3825: \EG polynomial
1.4 noro 3826: @item plist vlist
1.2 noro 3827: \JP $B%j%9%H(B
3828: \EG list
1.1 noro 3829: @item order
1.2 noro 3830: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
3831: \EG number, list or matrix
1.1 noro 3832: @item mod
1.2 noro 3833: \JP $BAG?t(B
3834: \EG prime
1.1 noro 3835: @end table
3836:
3837: @itemize @bullet
1.2 noro 3838: \BJP
1.1 noro 3839: @item
3840: @samp{gr} $B$GDj5A$5$l$F$$$k(B.
3841: @item
3842: $BB?9`<0$N(B, $BB?9`<0%j%9%H$K$h$k@55,7A$r5a$a$k(B.
3843: @item
3844: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()}, @code{dp_true_nf_mod}
3845: $B$KBP$9$k%$%s%?%U%'!<%9$G$"$k(B.
3846: @item
3847: @var{poly} $B$*$h$S(B @var{plist} $B$O(B, $BJQ?t=g=x(B @var{vlist} $B$*$h$S(B
3848: $BJQ?t=g=x7?(B @var{otype} $B$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$5$l(B,
3849: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
3850: @code{dp_true_nf_mod()} $B$KEO$5$l$k(B.
3851: @item
3852: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
3853: @code{dp_true_nf_mod()} $B$O(B @var{fullreduce} $B$,(B 1 $B$G8F$S=P$5$l$k(B.
3854: @item
3855: $B7k2L$OB?9`<0$KJQ49$5$l$F=PNO$5$l$k(B.
3856: @item
3857: @code{p_true_nf()}, @code{p_true_nf_mod()} $B$N=PNO$K4X$7$F$O(B,
3858: @code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$N9`$r;2>H(B.
1.2 noro 3859: \E
3860: \BEG
3861: @item
3862: Defined in the package @samp{gr}.
3863: @item
3864: Obtains the normal form of a polynomial by a polynomial list.
3865: @item
3866: These are interfaces to @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
3867: @code{dp_true_nf_mod}
3868: @item
3869: The polynomial @var{poly} and the polynomials in @var{plist} is
3870: converted, according to the variable ordering @var{vlist} and
3871: type of term ordering @var{otype}, into their distributed polynomial
3872: counterparts and passed to @code{dp_nf()}.
3873: @item
3874: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()} and
3875: @code{dp_true_nf_mod()}
3876: is called with value 1 for @var{fullreduce}.
3877: @item
3878: The result is converted back into an ordinary polynomial.
3879: @item
3880: As for @code{p_true_nf()}, @code{p_true_nf_mod()}
3881: refer to @code{dp_true_nf()} and @code{dp_true_nf_mod()}.
3882: \E
1.1 noro 3883: @end itemize
3884:
3885: @example
3886: [79] K = katsura(5)$
3887: [80] V = [u5,u4,u3,u2,u1,u0]$
3888: [81] G = hgr(K,V,2)$
3889: [82] p_nf(K[1],G,V,2);
3890: 0
3891: [83] L = p_true_nf(K[1]+1,G,V,2);
3892: [-1503...,-1503...]
3893: [84] L[0]/L[1];
3894: 1
3895: @end example
3896:
3897: @table @t
1.2 noro 3898: \JP @item $B;2>H(B
3899: \EG @item References
1.1 noro 3900: @fref{dp_ptod},
3901: @fref{dp_dtop},
3902: @fref{dp_ord},
3903: @fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}.
3904: @end table
3905:
1.2 noro 3906: \JP @node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3907: \EG @node p_terms,,, Functions for Groebner basis computation
1.1 noro 3908: @subsection @code{p_terms}
3909: @findex p_terms
3910:
3911: @table @t
3912: @item p_terms(@var{poly},@var{vlist},@var{order})
1.2 noro 3913: \JP :: $BB?9`<0$K$"$i$o$l$kC19`$r%j%9%H$K$9$k(B.
3914: \EG :: Monomials appearing in the given polynomial is collected into a list.
1.1 noro 3915: @end table
3916:
3917: @table @var
3918: @item return
1.2 noro 3919: \JP $B%j%9%H(B
3920: \EG list
1.1 noro 3921: @item poly
1.2 noro 3922: \JP $BB?9`<0(B
3923: \EG polynomial
1.1 noro 3924: @item vlist
1.2 noro 3925: \JP $B%j%9%H(B
3926: \EG list
1.1 noro 3927: @item order
1.2 noro 3928: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
3929: \EG number, list or matrix
1.1 noro 3930: @end table
3931:
3932: @itemize @bullet
1.2 noro 3933: \BJP
1.1 noro 3934: @item
3935: @samp{gr} $B$GDj5A$5$l$F$$$k(B.
3936: @item
3937: $BB?9`<0$rC19`$KE83+$7$?;~$K8=$l$k9`$r%j%9%H$K$7$FJV$9(B.
3938: @var{vlist} $B$*$h$S(B @var{order} $B$K$h$jDj$^$k9`=g=x$K$h$j(B, $B=g=x$N9b$$$b$N(B
3939: $B$,%j%9%H$N@hF,$KMh$k$h$&$K%=!<%H$5$l$k(B.
3940: @item
3941: $B%0%l%V%J4pDl$O$7$P$7$P78?t$,5pBg$K$J$k$?$a(B, $B<B:]$K$I$N9`$,8=$l$F(B
3942: $B$$$k$N$+$r8+$k$?$a$J$I$KMQ$$$k(B.
1.2 noro 3943: \E
3944: \BEG
3945: @item
3946: Defined in the package @samp{gr}.
3947: @item
3948: This returns a list which contains all non-zero monomials in the given
3949: polynomial. The monomials are ordered according to the current
3950: type of term ordering and @var{vlist}.
3951: @item
3952: Since polynomials in a Groebner base often have very large coefficients,
3953: examining a polynomial as it is may sometimes be difficult to perform.
3954: For such a case, this function enables to examine which term is really
3955: exists.
3956: \E
1.1 noro 3957: @end itemize
3958:
3959: @example
3960: [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$
3961: [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);
1.5 noro 3962: [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,
3963: u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,
3964: u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
1.1 noro 3965: @end example
3966:
1.2 noro 3967: \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
3968: \EG @node gb_comp,,, Functions for Groebner basis computation
1.1 noro 3969: @subsection @code{gb_comp}
3970: @findex gb_comp
3971:
3972: @table @t
3973: @item gb_comp(@var{plist1}, @var{plist2})
1.2 noro 3974: \JP :: $BB?9`<0%j%9%H$,(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+D4$Y$k(B.
3975: \EG :: Checks whether two polynomial lists are equal or not as a set
1.1 noro 3976: @end table
3977:
3978: @table @var
1.2 noro 3979: \JP @item return 0 $B$^$?$O(B 1
3980: \EG @item return 0 or 1
1.4 noro 3981: @item plist1 plist2
1.1 noro 3982: @end table
3983:
3984: @itemize @bullet
1.2 noro 3985: \BJP
1.1 noro 3986: @item
3987: @var{plist1}, @var{plist2} $B$K$D$$$F(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+(B
3988: $BD4$Y$k(B.
3989: @item
3990: $B0[$J$kJ}K!$G5a$a$?%0%l%V%J4pDl$O(B, $B4pDl$N=g=x(B, $BId9f$,0[$J$k>l9g$,$"$j(B,
3991: $B$=$l$i$,Ey$7$$$+$I$&$+$rD4$Y$k$?$a$KMQ$$$k(B.
1.2 noro 3992: \E
3993: \BEG
3994: @item
3995: This function checks whether @var{plist1} and @var{plist2} are equal or
3996: not as a set .
3997: @item
3998: For the same input and the same term ordering different
3999: functions for Groebner basis computations may produce different outputs
4000: as lists. This function compares such lists whether they are equal
4001: as a generating set of an ideal.
4002: \E
1.1 noro 4003: @end itemize
4004:
4005: @example
4006: [243] C=cyclic(6)$
4007: [244] V=[c0,c1,c2,c3,c4,c5]$
4008: [245] G0=gr(C,V,0)$
4009: [246] G=tolex(G0,V,0,V)$
4010: [247] GG=lex_tl(C,V,0,V,0)$
4011: [248] gb_comp(G,GG);
4012: 1
4013: @end example
4014:
1.2 noro 4015: \JP @node katsura hkatsura cyclic hcyclic,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
4016: \EG @node katsura hkatsura cyclic hcyclic,,, Functions for Groebner basis computation
1.1 noro 4017: @subsection @code{katsura}, @code{hkatsura}, @code{cyclic}, @code{hcyclic}
4018: @findex katsura
4019: @findex hkatsura
4020: @findex cyclic
4021: @findex hcyclic
4022:
4023: @table @t
4024: @item katsura(@var{n})
4025: @item hkatsura(@var{n})
4026: @item cyclic(@var{n})
4027: @item hcyclic(@var{n})
1.2 noro 4028: \JP :: $BB?9`<0%j%9%H$N@8@.(B
4029: \EG :: Generates a polynomial list of standard benchmark.
1.1 noro 4030: @end table
4031:
4032: @table @var
4033: @item return
1.2 noro 4034: \JP $B%j%9%H(B
4035: \EG list
1.1 noro 4036: @item n
1.2 noro 4037: \JP $B@0?t(B
4038: \EG integer
1.1 noro 4039: @end table
4040:
4041: @itemize @bullet
1.2 noro 4042: \BJP
1.1 noro 4043: @item
4044: @code{katsura()} $B$O(B @samp{katsura}, @code{cyclic()} $B$O(B @samp{cyclic}
4045: $B$GDj5A$5$l$F$$$k(B.
4046: @item
4047: $B%0%l%V%J4pDl7W;;$G$7$P$7$P%F%9%H(B, $B%Y%s%A%^!<%/$KMQ$$$i$l$k(B @code{katsura},
4048: @code{cyclic} $B$*$h$S$=$N@F<!2=$r@8@.$9$k(B.
4049: @item
4050: @code{cyclic} $B$O(B @code{Arnborg}, @code{Lazard}, @code{Davenport} $B$J$I$N(B
4051: $BL>$G8F$P$l$k$3$H$b$"$k(B.
1.2 noro 4052: \E
4053: \BEG
4054: @item
4055: Function @code{katsura()} is defined in @samp{katsura}, and
4056: function @code{cyclic()} in @samp{cyclic}.
4057: @item
4058: These functions generate a series of polynomial sets, respectively,
4059: which are often used for testing and bench marking:
4060: @code{katsura}, @code{cyclic} and their homogenized versions.
4061: @item
4062: Polynomial set @code{cyclic} is sometimes called by other name:
4063: @code{Arnborg}, @code{Lazard}, and @code{Davenport}.
4064: \E
1.1 noro 4065: @end itemize
4066:
4067: @example
4068: [74] load("katsura")$
4069: [79] load("cyclic")$
4070: [89] katsura(5);
4071: [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
1.5 noro 4072: 2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3
4073: -u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
1.1 noro 4074: u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
4075: [90] hkatsura(5);
4076: [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
4077: -u4*t+2*u4*u0+2*u1*u3+u2^2+2*u5*u1,-u3*t+2*u3*u0+2*u1*u4+(2*u1+2*u5)*u2,
4078: -u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
4079: -u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
4080: -u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
4081: [91] cyclic(6);
4082: [c5*c4*c3*c2*c1*c0-1,
4083: ((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
4084: (((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
4085: ((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
4086: (c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
4087: [92] hcyclic(6);
4088: [-c^6+c5*c4*c3*c2*c1*c0,
4089: ((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
4090: (((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
4091: ((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
4092: (c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
4093: @end example
4094:
4095: @table @t
1.2 noro 4096: \JP @item $B;2>H(B
4097: \EG @item References
1.1 noro 4098: @fref{dp_dtop}.
4099: @end table
4100:
1.3 noro 4101: \JP @node primadec primedec,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
4102: \EG @node primadec primedec,,, Functions for Groebner basis computation
4103: @subsection @code{primadec}, @code{primedec}
4104: @findex primadec
4105: @findex primedec
4106:
4107: @table @t
4108: @item primadec(@var{plist},@var{vlist})
4109: @item primedec(@var{plist},@var{vlist})
4110: \JP :: $B%$%G%"%k$NJ,2r(B
4111: \EG :: Computes decompositions of ideals.
4112: @end table
4113:
4114: @table @var
4115: @item return
4116: @itemx plist
4117: \JP $BB?9`<0%j%9%H(B
4118: \EG list of polynomials
4119: @item vlist
4120: \JP $BJQ?t%j%9%H(B
4121: \EG list of variables
4122: @end table
4123:
4124: @itemize @bullet
4125: \BJP
4126: @item
4127: @code{primadec()}, @code{primedec} $B$O(B @samp{primdec} $B$GDj5A$5$l$F$$$k(B.
4128: @item
4129: @code{primadec()}, @code{primedec()} $B$O$=$l$>$lM-M}?tBN>e$G$N%$%G%"%k$N(B
4130: $B=`AGJ,2r(B, $B:,4p$NAG%$%G%"%kJ,2r$r9T$&(B.
4131: @item
4132: $B0z?t$OB?9`<0%j%9%H$*$h$SJQ?t%j%9%H$G$"$k(B. $BB?9`<0$OM-M}?t78?t$N$_$,5v$5$l$k(B.
4133: @item
4134: @code{primadec} $B$O(B @code{[$B=`AG@.J,(B, $BIUB0AG%$%G%"%k(B]} $B$N%j%9%H$rJV$9(B.
4135: @item
4136: @code{primadec} $B$O(B $BAG0x;R$N%j%9%H$rJV$9(B.
4137: @item
4138: $B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B
4139: $B%0%l%V%J4pDl$G$"$k(B. $BBP1~$9$k9`=g=x$O(B, $B$=$l$>$l(B
4140: $BJQ?t(B @code{PRIMAORD}, @code{PRIMEORD} $B$K3JG<$5$l$F$$$k(B.
4141: @item
4142: @code{primadec} $B$O(B @code{[Shimoyama,Yokoyama]} $B$N=`AGJ,2r%"%k%4%j%:%`(B
4143: $B$r<BAu$7$F$$$k(B.
4144: @item
4145: $B$b$7AG0x;R$N$_$r5a$a$?$$$J$i(B, @code{primedec} $B$r;H$&J}$,$h$$(B.
4146: $B$3$l$O(B, $BF~NO%$%G%"%k$,:,4p%$%G%"%k$G$J$$>l9g$K(B, @code{primadec}
4147: $B$N7W;;$KM>J,$J%3%9%H$,I,MW$H$J$k>l9g$,$"$k$+$i$G$"$k(B.
4148: \E
4149: \BEG
4150: @item
4151: Function @code{primadec()} and @code{primedec} are defined in @samp{primdec}.
4152: @item
4153: @code{primadec()}, @code{primedec()} are the function for primary
4154: ideal decomposition and prime decomposition of the radical over the
4155: rationals respectively.
4156: @item
4157: The arguments are a list of polynomials and a list of variables.
4158: These functions accept ideals with rational function coefficients only.
4159: @item
4160: @code{primadec} returns the list of pair lists consisting a primary component
4161: and its associated prime.
4162: @item
4163: @code{primedec} returns the list of prime components.
4164: @item
4165: Each component is a Groebner basis and the corresponding term order
4166: is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD}
4167: respectively.
4168: @item
4169: @code{primadec} implements the primary decompostion algorithm
4170: in @code{[Shimoyama,Yokoyama]}.
4171: @item
4172: If one only wants to know the prime components of an ideal, then
4173: use @code{primedec} because @code{primadec} may need additional costs
4174: if an input ideal is not radical.
4175: \E
4176: @end itemize
4177:
4178: @example
4179: [84] load("primdec")$
4180: [102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y,
4181: (q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3,
4182: -q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]);
4183: [[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]]
4184: [103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]);
4185: [[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]]
4186: @end example
4187:
4188: @table @t
4189: \JP @item $B;2>H(B
4190: \EG @item References
4191: @fref{fctr sqfr},
4192: \JP @fref{$B9`=g=x$N@_Dj(B}.
4193: \EG @fref{Setting term orderings}.
4194: @end table
1.5 noro 4195:
4196: \JP @node primedec_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
4197: \EG @node primedec_mod,,, Functions for Groebner basis computation
4198: @subsection @code{primedec_mod}
4199: @findex primedec_mod
4200:
4201: @table @t
4202: @item primedec_mod(@var{plist},@var{vlist},@var{ord},@var{mod},@var{strategy})
4203: \JP :: $B%$%G%"%k$NJ,2r(B
4204: \EG :: Computes decompositions of ideals over small finite fields.
4205: @end table
4206:
4207: @table @var
4208: @item return
4209: @itemx plist
4210: \JP $BB?9`<0%j%9%H(B
4211: \EG list of polynomials
4212: @item vlist
4213: \JP $BJQ?t%j%9%H(B
4214: \EG list of variables
4215: @item ord
4216: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
4217: \EG number, list or matrix
4218: @item mod
4219: \JP $B@5@0?t(B
4220: \EG positive integer
4221: @item strategy
4222: \JP $B@0?t(B
4223: \EG integer
4224: @end table
4225:
4226: @itemize @bullet
4227: \BJP
4228: @item
4229: @code{primedec_mod()} $B$O(B @samp{primdec_mod}
4230: $B$GDj5A$5$l$F$$$k(B. @code{[Yokoyama]} $B$NAG%$%G%"%kJ,2r%"%k%4%j%:%`(B
4231: $B$r<BAu$7$F$$$k(B.
4232: @item
4233: @code{primedec_mod()} $B$OM-8BBN>e$G$N%$%G%"%k$N(B
4234: $B:,4p$NAG%$%G%"%kJ,2r$r9T$$(B, $BAG%$%G%"%k$N%j%9%H$rJV$9(B.
4235: @item
4236: @code{primedec_mod()} $B$O(B, GF(@var{mod}) $B>e$G$NJ,2r$rM?$($k(B.
4237: $B7k2L$N3F@.J,$N@8@.85$O(B, $B@0?t78?tB?9`<0$G$"$k(B.
4238: @item
4239: $B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B
4240: [@var{vlist},@var{ord}] $B$G;XDj$5$l$k9`=g=x$K4X$9$k%0%l%V%J4pDl$G$"$k(B.
4241: @item
4242: @var{strategy} $B$,(B 0 $B$G$J$$$H$-(B, incremental $B$K(B component $B$N6&DL(B
4243: $BItJ,$r7W;;$9$k$3$H$K$h$k(B early termination $B$r9T$&(B. $B0lHL$K(B,
4244: $B%$%G%"%k$N<!85$,9b$$>l9g$KM-8z$@$,(B, 0 $B<!85$N>l9g$J$I(B, $B<!85$,>.$5$$(B
4245: $B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B.
1.7 noro 4246: @item
4247: $B7W;;ESCf$GFbIt>pJs$r8+$?$$>l9g$K$O!"(B
4248: $BA0$b$C$F(B @code{dp_gr_print(2)} $B$r<B9T$7$F$*$1$P$h$$(B.
1.5 noro 4249: \E
4250: \BEG
4251: @item
4252: Function @code{primedec_mod()}
4253: is defined in @samp{primdec_mod} and implements the prime decomposition
4254: algorithm in @code{[Yokoyama]}.
4255: @item
4256: @code{primedec_mod()}
4257: is the function for prime ideal decomposition
4258: of the radical of a polynomial ideal over small finite field,
4259: and they return a list of prime ideals, which are associated primes
4260: of the input ideal.
4261: @item
4262: @code{primedec_mod()} gives the decomposition over GF(@var{mod}).
4263: The generators of each resulting component consists of integral polynomials.
4264: @item
4265: Each resulting component is a Groebner basis with respect to
4266: a term order specified by [@var{vlist},@var{ord}].
4267: @item
4268: If @var{strategy} is non zero, then the early termination strategy
4269: is tried by computing the intersection of obtained components
4270: incrementally. In general, this strategy is useful when the krull
4271: dimension of the ideal is high, but it may add some overhead
4272: if the dimension is small.
1.7 noro 4273: @item
4274: If you want to see internal information during the computation,
4275: execute @code{dp_gr_print(2)} in advance.
1.5 noro 4276: \E
4277: @end itemize
4278:
4279: @example
4280: [0] load("primdec_mod")$
4281: [246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$
4282: [247] primedec_mod(PP444,[x,y,z,t],0,2,1);
4283: [[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t],
4284: [y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t],
4285: [y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t],
4286: [x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t],
4287: [x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]]
4288: [248]
4289: @end example
4290:
4291: @table @t
4292: \JP @item $B;2>H(B
4293: \EG @item References
4294: @fref{modfctr},
1.6 noro 4295: @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main},
1.5 noro 4296: \JP @fref{$B9`=g=x$N@_Dj(B}.
1.7 noro 4297: \EG @fref{Setting term orderings},
4298: @fref{dp_gr_flags dp_gr_print}.
1.5 noro 4299: @end table
4300:
1.10 noro 4301: \JP @node bfunction bfct generic_bfct ann ann0,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
4302: \EG @node bfunction bfct generic_bfct ann ann0,,, Functions for Groebner basis computation
4303: @subsection @code{bfunction}, @code{bfct}, @code{generic_bfct}, @code{ann}, @code{ann0}
1.6 noro 4304: @findex bfunction
1.9 noro 4305: @findex bfct
1.6 noro 4306: @findex generic_bfct
1.10 noro 4307: @findex ann
4308: @findex ann0
1.5 noro 4309:
1.6 noro 4310: @table @t
4311: @item bfunction(@var{f})
1.10 noro 4312: @itemx bfct(@var{f})
4313: @itemx generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight})
4314: \JP :: @var{b} $B4X?t$N7W;;(B
4315: \EG :: Computes the global @var{b} function of a polynomial or an ideal
4316: @item ann(@var{f})
4317: @itemx ann0(@var{f})
4318: \JP :: $BB?9`<0$N%Y%-$N(B annihilator $B$N7W;;(B
4319: \EG :: Computes the annihilator of a power of polynomial
1.6 noro 4320: @end table
1.10 noro 4321:
1.6 noro 4322: @table @var
4323: @item return
1.10 noro 4324: \JP $BB?9`<0$^$?$O%j%9%H(B
4325: \EG polynomial or list
4326: @item f
1.6 noro 4327: \JP $BB?9`<0(B
4328: \EG polynomial
4329: @item plist
4330: \JP $BB?9`<0%j%9%H(B
4331: \EG list of polynomials
4332: @item vlist dvlist
4333: \JP $BJQ?t%j%9%H(B
4334: \EG list of variables
4335: @end table
1.5 noro 4336:
1.6 noro 4337: @itemize @bullet
4338: \BJP
4339: @item @samp{bfct} $B$GDj5A$5$l$F$$$k(B.
1.10 noro 4340: @item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global @var{b} $B4X?t(B @code{b(s)} $B$r(B
1.6 noro 4341: $B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]}
4342: $B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B
4343: $BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B<!?t$,:G$bDc$$$b$N$G$"$k(B.
4344: @item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})}
4345: $B$O(B, @var{plist} $B$G@8@.$5$l$k(B @code{D} $B$N:8%$%G%"%k(B @code{I} $B$N(B,
1.10 noro 4346: $B%&%'%$%H(B @var{weight} $B$K4X$9$k(B global @var{b} $B4X?t$r7W;;$9$k(B.
1.6 noro 4347: @var{vlist} $B$O(B @code{x}-$BJQ?t(B, @var{vlist} $B$OBP1~$9$k(B @code{D}-$BJQ?t(B
4348: $B$r=g$KJB$Y$k(B.
1.9 noro 4349: @item @code{bfunction} $B$H(B @code{bfct} $B$G$OMQ$$$F$$$k%"%k%4%j%:%`$,(B
1.11 noro 4350: $B0[$J$k(B. $B$I$A$i$,9bB.$+$OF~NO$K$h$k(B.
1.10 noro 4351: @item @code{ann(@var{f})} $B$O(B, @code{@var{f}^s} $B$N(B annihilator ideal
4352: $B$N@8@.7O$rJV$9(B. @code{ann(@var{f})} $B$O(B, @code{[@var{a},@var{list}]}
4353: $B$J$k%j%9%H$rJV$9(B. $B$3$3$G(B, @var{a} $B$O(B @var{f} $B$N(B @var{b} $B4X?t$N:G>.@0?t:,(B,
4354: @var{list} $B$O(B @code{ann(@var{f})} $B$N7k2L$N(B @code{s}$ $B$K(B, @var{a} $B$r(B
4355: $BBeF~$7$?$b$N$G$"$k(B.
1.7 noro 4356: @item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B.
1.6 noro 4357: \E
4358: \BEG
4359: @item These functions are defined in @samp{bfct}.
1.10 noro 4360: @item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global @var{b}-function @code{b(s)} of
1.6 noro 4361: a polynomial @var{f}.
4362: @code{b(s)} is a polynomial of the minimal degree
4363: such that there exists @code{P(x,s)} in D[s], which is a polynomial
4364: ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds.
4365: @item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})}
1.10 noro 4366: computes the global @var{b}-function of a left ideal @code{I} in @code{D}
1.6 noro 4367: generated by @var{plist}, with respect to @var{weight}.
4368: @var{vlist} is the list of @code{x}-variables,
4369: @var{vlist} is the list of corresponding @code{D}-variables.
1.9 noro 4370: @item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement
4371: different algorithms and the efficiency depends on inputs.
1.10 noro 4372: @item @code{ann(@var{f})} returns the generator set of the annihilator
4373: ideal of @code{@var{f}^s}.
4374: @code{ann(@var{f})} returns a list @code{[@var{a},@var{list}]},
4375: where @var{a} is the minimal integral root of the global @var{b}-function
4376: of @var{f}, and @var{list} is a list of polynomials obtained by
4377: substituting @code{s} in @code{ann(@var{f})} with @var{a}.
1.7 noro 4378: @item See [Saito,Sturmfels,Takayama] for the details.
1.6 noro 4379: \E
4380: @end itemize
4381:
4382: @example
4383: [0] load("bfct")$
4384: [216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z);
4385: -9*s^5-63*s^4-173*s^3-233*s^2-154*s-40
4386: [217] fctr(@@);
4387: [[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]]
4388: [218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy,
4389: x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$
4390: [219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]);
4391: 20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5
4392: +1278*s^4-72*s^3
1.10 noro 4393: [220] P=x^3-y^2$
4394: [221] ann(P);
4395: [2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s]
4396: [222] ann0(P);
4397: [-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]]
1.6 noro 4398: @end example
4399:
4400: @table @t
4401: \JP @item $B;2>H(B
4402: \EG @item References
4403: \JP @fref{Weyl $BBe?t(B}.
4404: \EG @fref{Weyl algebra}.
4405: @end table
1.5 noro 4406:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>