[BACK]Return to groebner.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Annotation of OpenXM/src/asir-doc/parts/groebner.texi, Revision 1.2

1.2     ! noro        1: @comment $OpenXM$
        !             2: \BJP
1.1       noro        3: @node $B%0%l%V%J4pDl$N7W;;(B,,, Top
                      4: @chapter $B%0%l%V%J4pDl$N7W;;(B
1.2     ! noro        5: \E
        !             6: \BEG
        !             7: @node Groebner basis computation,,, Top
        !             8: @chapter Groebner basis computation
        !             9: \E
1.1       noro       10:
                     11: @menu
1.2     ! noro       12: \BJP
1.1       noro       13: * $BJ,;6I=8=B?9`<0(B::
                     14: * $B%U%!%$%k$NFI$_9~$_(B::
                     15: * $B4pK\E*$JH!?t(B::
                     16: * $B7W;;$*$h$SI=<($N@)8f(B::
                     17: * $B9`=g=x$N@_Dj(B::
                     18: * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::
                     19: * $B4pDlJQ49(B::
                     20: * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::
1.2     ! noro       21: \E
        !            22: \BEG
        !            23: * Distributed polynomial::
        !            24: * Reading files::
        !            25: * Fundamental functions::
        !            26: * Controlling Groebner basis computations::
        !            27: * Setting term orderings::
        !            28: * Groebner basis computation with rational function coefficients::
        !            29: * Change of ordering::
        !            30: * Functions for Groebner basis computation::
        !            31: \E
1.1       noro       32: @end menu
                     33:
1.2     ! noro       34: \BJP
1.1       noro       35: @node $BJ,;6I=8=B?9`<0(B,,, $B%0%l%V%J4pDl$N7W;;(B
                     36: @section $BJ,;6I=8=B?9`<0(B
1.2     ! noro       37: \E
        !            38: \BEG
        !            39: @node Distributed polynomial,,, Groebner basis computation
        !            40: @section Distributed polynomial
        !            41: \E
1.1       noro       42:
                     43: @noindent
1.2     ! noro       44: \BJP
1.1       noro       45: $BJ,;6I=8=B?9`<0$H$O(B, $BB?9`<0$NFbIt7A<0$N0l$D$G$"$k(B. $BDL>o$NB?9`<0(B
                     46: (@code{type} $B$,(B 2) $B$O(B, $B:F5"I=8=$H8F$P$l$k7A<0$GI=8=$5$l$F$$$k(B. $B$9$J$o(B
                     47: $B$A(B, $BFCDj$NJQ?t$r<gJQ?t$H$9$k(B 1 $BJQ?tB?9`<0$G(B, $B$=$NB>$NJQ?t$O(B, $B$=$N(B 1 $BJQ(B
                     48: $B?tB?9`<0$N78?t$K(B, $B<gJQ?t$r4^$^$J$$B?9`<0$H$7$F8=$l$k(B. $B$3$N78?t$,(B, $B$^$?(B,
                     49: $B$"$kJQ?t$r<gJQ?t$H$9$kB?9`<0$H$J$C$F$$$k$3$H$+$i:F5"I=8=$H8F$P$l$k(B.
1.2     ! noro       50: \E
        !            51: \BEG
        !            52: A distributed polynomial is a polynomial with a special internal
        !            53: representation different from the ordinary one.
        !            54:
        !            55: An ordinary polynomial (having @code{type} 2) is internally represented
        !            56: in a format, called recursive representation.
        !            57: In fact, it is represented as an uni-variate polynomial with respect to
        !            58: a fixed variable, called main variable of that polynomial,
        !            59: where the other variables appear in the coefficients which may again
        !            60: polynomials in such variables other than the previous main variable.
        !            61: A polynomial in the coefficients is again represented as
        !            62: an uni-variate polynomial in a certain fixed variable,
        !            63: the main variable.  Thus, by this recursive structure of polynomial
        !            64: representation, it is called the `recursive representation.'
        !            65: \E
1.1       noro       66:
                     67: @iftex
                     68: @tex
1.2     ! noro       69: \JP $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$
        !            70: \EG $(x+y+z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2 ))$
1.1       noro       71: @end tex
                     72: @end iftex
                     73: @ifinfo
                     74: @example
                     75: (x+y+z)^2 = 1 x^2 + (2 y + (2 z)) x + ((2 z) y + (1 z^2 ))
                     76: @end example
                     77: @end ifinfo
                     78:
                     79: @noindent
1.2     ! noro       80: \BJP
1.1       noro       81: $B$3$l$KBP$7(B, $BB?9`<0$r(B, $BJQ?t$NQQ@Q$H78?t$N@Q$NOB$H$7$FI=8=$7$?$b$N$rJ,;6(B
                     82: $BI=8=$H8F$V(B.
1.2     ! noro       83: \E
        !            84: \BEG
        !            85: On the other hand,
        !            86: we call a representation the distributed representation of a polynomial,
        !            87: if a polynomial is represented, according to its original meaning,
        !            88: as a sum of monomials,
        !            89: where a monomial is the product of power product of variables
        !            90: and a coefficient.  We call a polynomial, represented in such an
        !            91: internal format, a distributed polynomial. (This naming may sounds
        !            92: something strange.)
        !            93: \E
1.1       noro       94:
                     95: @iftex
                     96: @tex
1.2     ! noro       97: \JP $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$
        !            98: \EG $(x+y+z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz +1 \cdot z^2$
1.1       noro       99: @end tex
                    100: @end iftex
                    101: @ifinfo
                    102: @example
                    103: (x+y+z)^2 = 1 x^2 + 2 xy + 2 xz + 1 y^2 + 2 yz +1 z^2$
                    104: @end example
                    105: @end ifinfo
                    106:
                    107: @noindent
1.2     ! noro      108: \BJP
1.1       noro      109: $B%0%l%V%J4pDl7W;;$K$*$$$F$O(B, $BC19`<0$KCmL\$7$FA`:n$r9T$&$?$aB?9`<0$,J,;6I=8=(B
                    110: $B$5$l$F$$$kJ}$,$h$j8zN($N$h$$1i;;$,2DG=$K$J$k(B. $B$3$N$?$a(B, $BJ,;6I=8=B?9`<0$,(B,
                    111: $B<1JL;R(B 9 $B$N7?$H$7$F(B @b{Asir} $B$N%H%C%W%l%Y%k$+$iMxMQ2DG=$H$J$C$F$$$k(B.
                    112: $B$3$3$G(B, $B8e$N@bL@$N$?$a$K(B, $B$$$/$D$+$N8@MU$rDj5A$7$F$*$/(B.
1.2     ! noro      113: \E
        !           114: \BEG
        !           115: For computation of Groebner basis, efficient operation is expected if
        !           116: polynomials are represented in a distributed representation,
        !           117: because major operations for Groebner basis are performed with respect
        !           118: to monomials.
        !           119: From this view point, we provide the object type distributed polynomial
        !           120: with its object identification number 9, and objects having such a type
        !           121: are available by @b{Asir} language.
        !           122:
        !           123: Here, we provide several definitions for the later description.
        !           124: \E
1.1       noro      125:
                    126: @table @b
1.2     ! noro      127: \BJP
1.1       noro      128: @item $B9`(B (term)
                    129: $BJQ?t$NQQ@Q(B. $B$9$J$o$A(B, $B78?t(B 1 $B$NC19`<0$N$3$H(B. @b{Asir} $B$K$*$$$F$O(B,
1.2     ! noro      130: \E
        !           131: \BEG
        !           132: @item term
        !           133: The power product of variables, i.e., a monomial with coefficient 1.
        !           134: In an @b{Asir} session, it is displayed in the form like
        !           135: \E
1.1       noro      136:
                    137: @example
                    138: <<0,1,2,3,4>>
                    139: @end example
                    140:
1.2     ! noro      141: \BJP
1.1       noro      142: $B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B. $B$3$NNc$O(B, 5 $BJQ?t$N9`(B
                    143: $B$r<($9(B. $B3FJQ?t$r(B @code{a}, @code{b}, @code{c}, @code{d}, @code{e} $B$H$9$k$H(B
                    144: $B$3$N9`$O(B @code{b*c^2*d^3*e^4} $B$rI=$9(B.
1.2     ! noro      145: \E
        !           146: \BEG
        !           147: and also can be input in such a form.
        !           148: This example shows a term in 5 variables.  If we assume the 5 variables
        !           149: as @code{a}, @code{b}, @code{c}, @code{d}, and @code{e},
        !           150: the term represents @code{b*c^2*d^3*e^4} in the ordinary expression.
        !           151: \E
1.1       noro      152:
1.2     ! noro      153: \BJP
1.1       noro      154: @item $B9`=g=x(B (term order)
                    155: $BJ,;6I=8=B?9`<0$K$*$1$k9`$O(B, $B<!$N@-<A$rK~$?$9A4=g=x$K$h$j@0Ns$5$l$k(B.
1.2     ! noro      156: \E
        !           157: \BEG
        !           158: @item term order
        !           159: Terms are ordered according to a total order with the following properties.
        !           160: \E
1.1       noro      161:
                    162: @enumerate
                    163: @item
1.2     ! noro      164: \JP $BG$0U$N9`(B @code{t} $B$KBP$7(B @code{t} > 1
        !           165: \EG For all @code{t} @code{t} > 1.
1.1       noro      166:
                    167: @item
1.2     ! noro      168: \JP @code{t}, @code{s}, @code{u} $B$r9`$H$9$k;~(B, @code{t} > @code{s} $B$J$i$P(B @code{tu} > @code{su}
        !           169: \EG For all @code{t}, @code{s}, @code{u} @code{t} > @code{s} implies @code{tu} > @code{su}.
1.1       noro      170: @end enumerate
                    171:
1.2     ! noro      172: \BJP
1.1       noro      173: $B$3$N@-<A$rK~$?$9A4=g=x$r9`=g=x$H8F$V(B. $B$3$N=g=x$OJQ?t=g=x(B ($BJQ?t$N%j%9%H(B)
                    174: $B$H9`=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B) $B$K$h$j;XDj$5$l$k(B.
1.2     ! noro      175: \E
        !           176: \BEG
        !           177: Such a total order is called a term ordering. A term ordering is specified
        !           178: by a variable ordering (a list of variables) and a type of term ordering
        !           179: (an integer, a list or a matrix).
        !           180: \E
1.1       noro      181:
1.2     ! noro      182: \BJP
1.1       noro      183: @item $BC19`<0(B (monomial)
                    184: $B9`$H78?t$N@Q(B.
1.2     ! noro      185: \E
        !           186: \BEG
        !           187: @item monomial
        !           188: The product of a term and a coefficient.
        !           189: In an @b{Asir} session, it is displayed in the form like
        !           190: \E
1.1       noro      191:
                    192: @example
                    193: 2*<<0,1,2,3,4>>
                    194: @end example
                    195:
1.2     ! noro      196: \JP $B$H$$$&7A$GI=<($5$l(B, $B$^$?(B, $B$3$N7A$GF~NO2DG=$G$"$k(B.
        !           197: \EG and also can be input in such a form.
1.1       noro      198:
1.2     ! noro      199: \BJP
1.1       noro      200: @itemx $BF,C19`<0(B (head monomial)
                    201: @item $BF,9`(B (head term)
                    202: @itemx $BF,78?t(B (head coefficient)
                    203: $BJ,;6I=8=B?9`<0$K$*$1$k3FC19`<0$O(B, $B9`=g=x$K$h$j@0Ns$5$l$k(B. $B$3$N;~=g(B
                    204: $B=x:GBg$NC19`<0$rF,C19`<0(B, $B$=$l$K8=$l$k9`(B, $B78?t$r$=$l$>$lF,9`(B, $BF,78?t(B
                    205: $B$H8F$V(B.
1.2     ! noro      206: \E
        !           207: \BEG
        !           208: @itemx head monomial
        !           209: @item head term
        !           210: @itemx head coefficient
        !           211:
        !           212: Monomials in a distributed polynomial is sorted by a total order.
        !           213: In such representation, we call the monomial that is maximum
        !           214: with respect to the order the head monomial, and its term and coefficient
        !           215: the head term and the head coefficient respectively.
        !           216: \E
1.1       noro      217: @end table
                    218:
1.2     ! noro      219: \BJP
1.1       noro      220: @node $B%U%!%$%k$NFI$_9~$_(B,,, $B%0%l%V%J4pDl$N7W;;(B
                    221: @section $B%U%!%$%k$NFI$_9~$_(B
1.2     ! noro      222: \E
        !           223: \BEG
        !           224: @node Reading files,,, Groebner basis computation
        !           225: @section Reading files
        !           226: \E
1.1       noro      227:
                    228: @noindent
1.2     ! noro      229: \BJP
1.1       noro      230: $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B
                    231: @code{dp_gr_mod_main()} $B$J$k(B 2 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B
                    232: $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.
                    233: $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B
                    234: $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B
                    235: $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. $B$h$C$F(B, $B4D6-JQ?t(B @code{ASIR_LIBDIR}
                    236: $B$rFC$K0[$J$k%Q%9$K@_Dj$7$J$$8B$j(B, $B%U%!%$%kL>$N$_$GFI$_9~$`$3$H$,$G$-$k(B.
1.2     ! noro      237: \E
        !           238: \BEG
        !           239: Facilities for computing Groebner bases are provided not by built-in
        !           240: functions but by a set of user functions written in @b{Asir}.
        !           241: The set of functions is provided as a file (sometimes called package),
        !           242: named @samp{gr}.
        !           243: The facilities will be ready to use after you load the package by
        !           244: @code{load()}.  The package @samp{gr} is placed in the standard library
        !           245: directory of @b{Asir}.  Therefore, it is loaded simply by specifying
        !           246: its file name, unless the environment variable @code{ASIR_LIBDIR}
        !           247: is set to a non-standard one.
        !           248: \E
1.1       noro      249:
                    250: @example
                    251: [0] load("gr")$
                    252: @end example
                    253:
1.2     ! noro      254: \BJP
1.1       noro      255: @node $B4pK\E*$JH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
                    256: @section $B4pK\E*$JH!?t(B
1.2     ! noro      257: \E
        !           258: \BEG
        !           259: @node Fundamental functions,,, Groebner basis computation
        !           260: @section Fundamental functions
        !           261: \E
1.1       noro      262:
                    263: @noindent
1.2     ! noro      264: \BJP
1.1       noro      265: @samp{gr} $B$G$O?tB?$/$NH!?t$,Dj5A$5$l$F$$$k$,(B, $BD>@\(B
                    266: $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N%H%C%W%l%Y%k$O<!$N(B 3 $B$D$G$"$k(B.
                    267: $B0J2<$G(B, @var{plist} $B$OB?9`<0$N%j%9%H(B, @var{vlist} $B$OJQ?t(B ($BITDj85(B) $B$N%j%9%H(B,
                    268: @var{order} $B$OJQ?t=g=x7?(B, @var{p} $B$O(B @code{2^27} $BL$K~$NAG?t$G$"$k(B.
1.2     ! noro      269: \E
        !           270: \BEG
        !           271: There are many functions and options defined in the package @samp{gr}.
        !           272: Usually not so many of them are used.  Top level functions for Groebner
        !           273: basis computation are the following three functions.
        !           274:
        !           275: In the following description, @var{plist}, @var{vlist}, @var{order}
        !           276: and @var{p} stand for  a list of polynomials,  a list of variables
        !           277: (indeterminates), a type of term ordering and a prime less than
        !           278: @code{2^27} respectively.
        !           279: \E
1.1       noro      280:
                    281: @table @code
                    282: @item gr(@var{plist},@var{vlist},@var{order})
                    283:
1.2     ! noro      284: \BJP
1.1       noro      285: Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar
                    286: strategy $B$*$h$S(B Traverso $B$K$h$k(B trace-lifting $B$rMQ$$$?(B Buchberger $B%"%k(B
                    287: $B%4%j%:%`$K$h$kM-M}?t78?t%0%l%V%J4pDl7W;;H!?t(B. $B0lHL$K$O$3$NH!?t$rMQ$$$k(B.
1.2     ! noro      288: \E
        !           289: \BEG
        !           290: Function that computes Groebner bases over the rationals. The
        !           291: algorithm is Buchberger algorithm with useless pair elimination
        !           292: criteria by Gebauer-Moeller, sugar strategy and trace-lifting by
        !           293: Traverso. For ordinary computation, this function is used.
        !           294: \E
1.1       noro      295:
                    296: @item hgr(@var{plist},@var{vlist},@var{order})
                    297:
1.2     ! noro      298: \BJP
1.1       noro      299: $BF~NOB?9`<0$r@F<!2=$7$?8e(B @code{gr()} $B$N%0%l%V%J4pDl8uJd@8@.It$K$h$j8u(B
                    300: $BJd@8@.$7(B, $BHs@F<!2=(B, interreduce $B$7$?$b$N$r(B @code{gr()} $B$N%0%l%V%J4pDl(B
                    301: $B%A%'%C%/It$G%A%'%C%/$9$k(B. 0 $B<!85%7%9%F%`(B ($B2r$N8D?t$,M-8B8D$NJ}Dx<07O(B)
                    302: $B$N>l9g(B, sugar strategy $B$,78?tKDD%$r0z$-5/$3$9>l9g$,$"$k(B. $B$3$N$h$&$J>l(B
                    303: $B9g(B, strategy $B$r@F<!2=$K$h$k(B strategy $B$KCV$-49$($k$3$H$K$h$j78?tKDD%$r(B
                    304: $BM^@)$9$k$3$H$,$G$-$k>l9g$,B?$$(B.
1.2     ! noro      305: \E
        !           306: \BEG
        !           307: After homogenizing the input polynomials a candidate of the \gr basis
        !           308: is computed by trace-lifting. Then the candidate is dehomogenized and
        !           309: checked whether it is indeed a Groebner basis of the input.  Sugar
        !           310: strategy often causes intermediate coefficient swells.  It is
        !           311: empirically known that the combination of homogenization and supresses
        !           312: the swells for such cases.
        !           313: \E
1.1       noro      314:
                    315: @item gr_mod(@var{plist},@var{vlist},@var{order},@var{p})
                    316:
1.2     ! noro      317: \BJP
1.1       noro      318: Gebauer-Moeller $B$K$h$k(B useless pair elimination criteria, sugar
                    319: strategy $B$*$h$S(B Buchberger $B%"%k%4%j%:%`$K$h$k(B GF(p) $B78?t%0%l%V%J4pDl7W(B
                    320: $B;;H!?t(B.
1.2     ! noro      321: \E
        !           322: \BEG
        !           323: Function that computes Groebner bases over GF(@var{p}). The same
        !           324: algorithm as @code{gr()} is used.
        !           325: \E
1.1       noro      326:
                    327: @end table
                    328:
1.2     ! noro      329: \BJP
1.1       noro      330: @node $B7W;;$*$h$SI=<($N@)8f(B,,, $B%0%l%V%J4pDl$N7W;;(B
                    331: @section $B7W;;$*$h$SI=<($N@)8f(B
1.2     ! noro      332: \E
        !           333: \BEG
        !           334: @node Controlling Groebner basis computations,,, Groebner basis computation
        !           335: @section Controlling Groebner basis computations
        !           336: \E
1.1       noro      337:
                    338: @noindent
1.2     ! noro      339: \BJP
1.1       noro      340: $B%0%l%V%J4pDl$N7W;;$K$*$$$F(B, $B$5$^$6$^$J%Q%i%a%?@_Dj$r9T$&$3$H$K$h$j7W;;(B,
                    341: $BI=<($r@)8f$9$k$3$H$,$G$-$k(B. $B$3$l$i$O(B, $BAH$_9~$_H!?t(B @code{dp_gr_flags()}
                    342: $B$K$h$j@_Dj;2>H$9$k$3$H$,$G$-$k(B. $BL50z?t$G(B @code{dp_gr_flags()} $B$r<B9T$9$k(B
                    343: $B$H(B, $B8=:_@_Dj$5$l$F$$$k%Q%i%a%?$,(B, $BL>A0$HCM$N%j%9%H$GJV$5$l$k(B.
1.2     ! noro      344: \E
        !           345: \BEG
        !           346: One can cotrol a Groebner basis computation by setting various parameters.
        !           347: These parameters can be set and examined by a built-in function
        !           348: @code{dp_gr_flags()}. Without argument it returns the current settings.
        !           349: \E
1.1       noro      350:
                    351: @example
                    352: [100] dp_gr_flags();
                    353: [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1,
                    354: Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
                    355: [101]
                    356: @end example
                    357:
1.2     ! noro      358: \BJP
1.1       noro      359: $B0J2<$G(B, $B3F%Q%i%a%?$N0UL#$r@bL@$9$k(B. on $B$N>l9g$H$O(B, $B%Q%i%a%?$,(B 0 $B$G$J$$>l9g$r(B
                    360: $B$$$&(B. $B$3$l$i$N%Q%i%a%?$N=i4|CM$OA4$F(B 0 (off) $B$G$"$k(B.
1.2     ! noro      361: \E
        !           362: \BEG
        !           363: The return value is a list which contains the names of parameters and their
        !           364: values. The meaning of the parameters are as follows. `on' means that the
        !           365: parameter is not zero.
        !           366: \E
1.1       noro      367:
                    368: @table @code
                    369: @item NoSugar
1.2     ! noro      370: \BJP
1.1       noro      371: on $B$N>l9g(B, sugar strategy $B$NBe$o$j$K(B Buchberger$B$N(B normal strategy $B$,MQ(B
                    372: $B$$$i$l$k(B.
1.2     ! noro      373: \E
        !           374: \BEG
        !           375: If `on', Buchberger's normal strategy is used instead of sugar strategy.
        !           376: \E
1.1       noro      377:
                    378: @item NoCriB
1.2     ! noro      379: \JP on $B$N>l9g(B, $BITI,MWBP8!=P5,=`$N$&$A(B, $B5,=`(B B $B$rE,MQ$7$J$$(B.
        !           380: \EG If `on', criterion B among the Gebauer-Moeller's criteria is not applied.
1.1       noro      381:
                    382: @item NoGC
1.2     ! noro      383: \JP on $B$N>l9g(B, $B7k2L$,%0%l%V%J4pDl$K$J$C$F$$$k$+$I$&$+$N%A%'%C%/$r9T$o$J$$(B.
        !           384: \BEG
        !           385: If `on', the check that a Groebner basis candidate is indeed a Groebner basis,
        !           386: is not executed.
        !           387: \E
1.1       noro      388:
                    389: @item NoMC
1.2     ! noro      390: \BJP
1.1       noro      391: on $B$N>l9g(B, $B7k2L$,F~NO%$%G%"%k$HF1Ey$N%$%G%"%k$G$"$k$+$I$&$+$N%A%'%C%/(B
                    392: $B$r9T$o$J$$(B.
1.2     ! noro      393: \E
        !           394: \BEG
        !           395: If `on', the check that the resulting polynomials generates the same ideal as
        !           396: the ideal generated by the input, is not executed.
        !           397: \E
1.1       noro      398:
                    399: @item NoRA
1.2     ! noro      400: \BJP
1.1       noro      401: on $B$N>l9g(B, $B7k2L$r(B reduced $B%0%l%V%J4pDl$K$9$k$?$a$N(B
                    402: interreduce $B$r9T$o$J$$(B.
1.2     ! noro      403: \E
        !           404: \BEG
        !           405: If `on', the interreduction, which makes the Groebner basis reduced, is not
        !           406: executed.
        !           407: \E
1.1       noro      408:
                    409: @item NoGCD
1.2     ! noro      410: \BJP
1.1       noro      411: on $B$N>l9g(B, $BM-M}<078?t$N%0%l%V%J4pDl7W;;$K$*$$$F(B, $B@8@.$5$l$?B?9`<0$N(B,
                    412: $B78?t$N(B content $B$r$H$i$J$$(B.
1.2     ! noro      413: \E
        !           414: \BEG
        !           415: If `on', content removals are not executed during a Groebner basis computation
        !           416: over a rational function field.
        !           417: \E
1.1       noro      418:
                    419: @item Top
1.2     ! noro      420: \JP on $B$N>l9g(B, normal form $B7W;;$K$*$$$FF,9`>C5n$N$_$r9T$&(B.
        !           421: \EG If `on', Only the head term of the polynomial being reduced is reduced.
1.1       noro      422:
1.2     ! noro      423: @comment @item Interreduce
        !           424: @comment \BJP
        !           425: @comment on $B$N>l9g(B, $BB?9`<0$r@8@.$9$kKh$K(B, $B$=$l$^$G@8@.$5$l$?4pDl$r$=$NB?9`<0$K(B
        !           426: @comment $B$h$k(B normal form $B$GCV$-49$($k(B.
        !           427: @comment \E
        !           428: @comment \BEG
        !           429: @comment If `on', intermediate basis elements are reduced by using a newly generated
        !           430: @comment basis element.
        !           431: @comment \E
1.1       noro      432:
                    433: @item Reverse
1.2     ! noro      434: \BJP
1.1       noro      435: on $B$N>l9g(B, normal form $B7W;;$N:]$N(B reducer $B$r(B, $B?7$7$/@8@.$5$l$?$b$N$rM%(B
                    436: $B@h$7$FA*$V(B.
1.2     ! noro      437: \E
        !           438: \BEG
        !           439: If `on', the selection strategy of reducer in a normal form computation
        !           440: is such that a newer reducer is used first.
        !           441: \E
1.1       noro      442:
                    443: @item Print
1.2     ! noro      444: \JP on $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$K$*$1$k$5$^$6$^$J>pJs$rI=<($9$k(B.
        !           445: \BEG
        !           446: If `on', various informations during a Groebner basis computation is
        !           447: displayed.
        !           448: \E
1.1       noro      449:
                    450: @item Stat
1.2     ! noro      451: \BJP
1.1       noro      452: on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B
                    453: $B$l$k%G!<%?$NFb(B, $B=87W%G!<%?$N$_$,I=<($5$l$k(B.
1.2     ! noro      454: \E
        !           455: \BEG
        !           456: If `on', a summary of informations is shown after a Groebner basis
        !           457: computation. Note that the summary is always shown if @code{Print} is `on'.
        !           458: \E
1.1       noro      459:
                    460: @item ShowMag
1.2     ! noro      461: \BJP
1.1       noro      462: on $B$G(B @code{Print} $B$,(B on $B$J$i$P(B, $B@8@.$,@8@.$5$l$kKh$K(B, $B$=$NB?9`<0$N(B
                    463: $B78?t$N%S%C%HD9$NOB$rI=<($7(B, $B:G8e$K(B, $B$=$l$i$NOB$N:GBgCM$rI=<($9$k(B.
1.2     ! noro      464: \E
        !           465: \BEG
        !           466: If `on' and @code{Print} is `on', the sum of bit length of
        !           467: coefficients of a generated basis element, which we call @var{magnitude},
        !           468: is shown after every normal computation.  After comleting the
        !           469: computation the maximal value among the sums is shown.
        !           470: \E
1.1       noro      471:
                    472: @item Multiple
1.2     ! noro      473: \BJP
1.1       noro      474: 0 $B$G$J$$@0?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B
                    475: @code{Multiple} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B
                    476: $B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Multiple} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B
                    477: GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Multiple} $B$r(B 2 $BDxEY(B
                    478: $B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B.
1.2     ! noro      479: \E
        !           480: \BEG
        !           481: If a non-zero integer, in a normal form computation
        !           482: over the rationals, the integer content of the polynomial being
        !           483: reduced is removed when its magnitude becomes @code{Multiple} times
        !           484: larger than a registered value, which is set to the magnitude of the
        !           485: input polynomial. After each content removal the registered value is
        !           486: set to the magnitude of the resulting polynomial. @code{Multiple} is
        !           487: equal to 1, the simiplification is done after every normal form computation.
        !           488: It is empirically known that it is often efficient to set @code{Multiple} to 2
        !           489: for the case where large integers appear during the computation.
        !           490: \E
1.1       noro      491:
                    492: @item Demand
1.2     ! noro      493:
        !           494: \BJP
1.1       noro      495: $B@5Ev$J%G%#%l%/%H%jL>(B ($BJ8;zNs(B) $B$rCM$K;}$D$H$-(B, $B@8@.$5$l$?B?9`<0$O%a%b%j(B
                    496: $BCf$K$*$+$l$:(B, $B$=$N%G%#%l%/%H%jCf$K%P%$%J%j%G!<%?$H$7$FCV$+$l(B, $B$=$NB?9`(B
                    497: $B<0$rMQ$$$k(B normal form $B7W;;$N:](B, $B<+F0E*$K%a%b%jCf$K%m!<%I$5$l$k(B. $B3FB?(B
                    498: $B9`<0$O(B, $BFbIt$G$N%$%s%G%C%/%9$r%U%!%$%kL>$K;}$D%U%!%$%k$K3JG<$5$l$k(B.
                    499: $B$3$3$G;XDj$5$l$?%G%#%l%/%H%j$K=q$+$l$?%U%!%$%k$O<+F0E*$K$O>C5n$5$l$J$$(B
                    500: $B$?$a(B, $B%f!<%6$,@UG$$r;}$C$F>C5n$9$kI,MW$,$"$k(B.
1.2     ! noro      501: \E
        !           502: \BEG
        !           503: If the value (a character string) is a valid directory name, then
        !           504: generated basis elements are put in the directory and are loaded on
        !           505: demand during normal form computations.  Each elements is saved in the
        !           506: binary form and its name coincides with the index internally used in
        !           507: the computation. These binary files are not removed automatically
        !           508: and one should remove them by hand.
        !           509: \E
1.1       noro      510: @end table
                    511:
                    512: @noindent
1.2     ! noro      513: \JP @code{Print} $B$,(B 0 $B$G$J$$>l9g<!$N$h$&$J%G!<%?$,I=<($5$l$k(B.
        !           514: \EG If @code{Print} is `on', the following informations are shown.
1.1       noro      515:
                    516: @example
                    517: [93] gr(cyclic(4),[c0,c1,c2,c3],0)$
                    518: mod= 99999989, eval = []
                    519: (0)(0)<<0,2,0,0>>(2,3),nb=2,nab=5,rp=2,sugar=2,mag=4
                    520: (0)(0)<<0,1,2,0>>(1,2),nb=3,nab=6,rp=2,sugar=3,mag=4
                    521: (0)(0)<<0,1,1,2>>(0,1),nb=4,nab=7,rp=3,sugar=4,mag=6
                    522: .
                    523: (0)(0)<<0,0,3,2>>(5,6),nb=5,nab=8,rp=2,sugar=5,mag=4
                    524: (0)(0)<<0,1,0,4>>(4,6),nb=6,nab=9,rp=3,sugar=5,mag=4
                    525: (0)(0)<<0,0,2,4>>(6,8),nb=7,nab=10,rp=4,sugar=6,mag=6
                    526: ....gb done
                    527: reduceall
                    528: .......
                    529: membercheck
                    530: (0,0)(0,0)(0,0)(0,0)
                    531: gbcheck total 8 pairs
                    532: ........
                    533: UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)PZ=(0,0)
                    534: NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 D=12 ZR=5 NZR=6
                    535: Max_mag=6
                    536: [94]
                    537: @end example
                    538:
                    539: @noindent
1.2     ! noro      540: \BJP
1.1       noro      541: $B:G=i$KI=<($5$l$k(B @code{mod}, @code{eval} $B$O(B, trace-lifting $B$GMQ$$$i$l$kK!(B
                    542: $B$G$"$k(B. @code{mod} $B$OAG?t(B, @code{eval} $B$OM-M}<078?t$N>l9g$KMQ$$$i$l$k(B
                    543: $B?t$N%j%9%H$G$"$k(B.
1.2     ! noro      544: \E
        !           545: \BEG
        !           546: In this example @code{mod} and @code{eval} indicate moduli used in
        !           547: trace-lifting. @code{mod} is a prime and @code{eval} is a list of integers
        !           548: used for evaluation when the ground field is a field of rational functions.
        !           549: \E
1.1       noro      550:
                    551: @noindent
1.2     ! noro      552: \JP $B7W;;ESCf$GB?9`<0$,@8@.$5$l$kKh$K<!$N7A$N%G!<%?$,I=<($5$l$k(B.
        !           553: \EG The following information is shown after every normal form computation.
1.1       noro      554:
                    555: @example
                    556: (TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M
                    557: @end example
                    558:
                    559: @noindent
1.2     ! noro      560: \JP $B$=$l$i$N0UL#$O<!$NDL$j(B.
        !           561: \EG Meaning of each component is as follows.
1.1       noro      562:
                    563: @table @code
1.2     ! noro      564: \BJP
1.1       noro      565: @item TNF
1.2     ! noro      566:
1.1       noro      567: normal form $B7W;;;~4V(B ($BIC(B)
                    568:
                    569: @item TCONT
1.2     ! noro      570:
1.1       noro      571: content $B7W;;;~4V(B ($BIC(B)
                    572:
                    573: @item HT
1.2     ! noro      574:
1.1       noro      575: $B@8@.$5$l$?B?9`<0$NF,9`(B
                    576:
                    577: @item INDEX
1.2     ! noro      578:
1.1       noro      579: S-$BB?9`<0$r9=@.$9$kB?9`<0$N%$%s%G%C%/%9$N%Z%"(B
                    580:
                    581: @item NB
1.2     ! noro      582:
1.1       noro      583: $B8=:_$N(B, $B>iD9@-$r=|$$$?4pDl$N?t(B
                    584:
                    585: @item NAB
1.2     ! noro      586:
1.1       noro      587: $B8=:_$^$G$K@8@.$5$l$?4pDl$N?t(B
                    588:
                    589: @item RP
1.2     ! noro      590:
1.1       noro      591: $B;D$j$N%Z%"$N?t(B
                    592:
                    593: @item S
1.2     ! noro      594:
1.1       noro      595: $B@8@.$5$l$?B?9`<0$N(B sugar $B$NCM(B
                    596:
                    597: @item M
1.2     ! noro      598:
1.1       noro      599: $B@8@.$5$l$?B?9`<0$N78?t$N%S%C%HD9$NOB(B (@code{ShowMag} $B$,(B on $B$N;~$KI=<($5$l$k(B. )
1.2     ! noro      600: \E
        !           601: \BEG
        !           602: @item TNF
        !           603:
        !           604: CPU time for normal form computation (second)
        !           605:
        !           606: @item TCONT
        !           607:
        !           608: CPU time for content removal(second)
        !           609:
        !           610: @item HT
        !           611:
        !           612: Head term of the generated basis element
        !           613:
        !           614: @item INDEX
        !           615:
        !           616: Pair of indices which corresponds to the reduced S-polynomial
        !           617:
        !           618: @item NB
        !           619:
        !           620: Number of basis elements after removing redundancy
        !           621:
        !           622: @item NAB
        !           623:
        !           624: Number of all the basis elements
        !           625:
        !           626: @item RP
        !           627:
        !           628: Number of remaining pairs
        !           629:
        !           630: @item S
        !           631:
        !           632: Sugar of the generated basis element
        !           633:
        !           634: @item M
        !           635:
        !           636: Magnitude of the genrated basis element (shown if @code{ShowMag} is `on'.)
        !           637: \E
1.1       noro      638: @end table
                    639:
                    640: @noindent
1.2     ! noro      641: \BJP
1.1       noro      642: $B:G8e$K(B, $B=87W%G!<%?$,I=<($5$l$k(B. $B0UL#$O<!$NDL$j(B.
                    643: ($B;~4V$NI=<($K$*$$$F(B, $B?t;z$,(B 2 $B$D$"$k$b$N$O(B, $B7W;;;~4V$H(B GC $B;~4V$N%Z%"$G$"$k(B.)
1.2     ! noro      644: \E
        !           645: \BEG
        !           646: The summary of the informations shown after a Groebner basis
        !           647: computation is as follows.  If a component shows timings and it
        !           648: contains two numbers, they are a pair of time for computation and time
        !           649: for garbage colection.
        !           650: \E
1.1       noro      651:
                    652: @table @code
1.2     ! noro      653: \BJP
1.1       noro      654: @item UP
1.2     ! noro      655:
1.1       noro      656: $B%Z%"$N%j%9%H$NA`:n$K$+$+$C$?;~4V(B
                    657:
                    658: @item SP
1.2     ! noro      659:
1.1       noro      660: $BM-M}?t>e$N(B S-$BB?9`<07W;;;~4V(B
                    661:
                    662: @item SPM
1.2     ! noro      663:
1.1       noro      664: $BM-8BBN>e$N(B S-$BB?9`<07W;;;~4V(B
                    665:
                    666: @item NF
1.2     ! noro      667:
1.1       noro      668: $BM-M}?t>e$N(B normal form $B7W;;;~4V(B
                    669:
                    670: @item NFM
1.2     ! noro      671:
1.1       noro      672: $BM-8BBN>e$N(B normal form $B7W;;;~4V(B
                    673:
                    674: @item ZNFM
1.2     ! noro      675:
1.1       noro      676: @code{NFM} $B$NFb(B, 0 $B$X$N(B reduction $B$K$+$+$C$?;~4V(B
                    677:
                    678: @item PZ
1.2     ! noro      679:
1.1       noro      680: content $B7W;;;~4V(B
                    681:
                    682: @item NP
1.2     ! noro      683:
1.1       noro      684: $BM-M}?t78?tB?9`<0$N78?t$KBP$9$k>jM>1i;;$N7W;;;~4V(B
                    685:
                    686: @item MP
1.2     ! noro      687:
1.1       noro      688: S-$BB?9`<0$r@8@.$9$k%Z%"$NA*Br$K$+$+$C$?;~4V(B
                    689:
                    690: @item RA
1.2     ! noro      691:
1.1       noro      692: interreduce $B7W;;;~4V(B
                    693:
                    694: @item MC
1.2     ! noro      695:
1.1       noro      696: trace-lifting $B$K$*$1$k(B, $BF~NOB?9`<0$N%a%s%P%7%C%W7W;;;~4V(B
                    697:
                    698: @item GC
1.2     ! noro      699:
1.1       noro      700: $B7k2L$N%0%l%V%J4pDl8uJd$N%0%l%V%J4pDl%A%'%C%/;~4V(B
                    701:
                    702: @item T
1.2     ! noro      703:
1.1       noro      704: $B@8@.$5$l$?%Z%"$N?t(B
                    705:
                    706: @item B, M, F, D
1.2     ! noro      707:
1.1       noro      708: $B3F(B criterion $B$K$h$j=|$+$l$?%Z%"$N?t(B
                    709:
                    710: @item ZR
1.2     ! noro      711:
1.1       noro      712: 0 $B$K(B reduce $B$5$l$?%Z%"$N?t(B
                    713:
                    714: @item NZR
1.2     ! noro      715:
1.1       noro      716: 0 $B$G$J$$B?9`<0$K(B reduce $B$5$l$?%Z%"$N?t(B
                    717:
                    718: @item Max_mag
1.2     ! noro      719:
1.1       noro      720: $B@8@.$5$l$?B?9`<0$N(B, $B78?t$N%S%C%HD9$NOB$N:GBgCM(B
1.2     ! noro      721: \E
        !           722: \BEG
        !           723: @item UP
        !           724:
        !           725: Time to manipulate the list of critical pairs
        !           726:
        !           727: @item SP
        !           728:
        !           729: Time to compute S-polynomials over the rationals
        !           730:
        !           731: @item SPM
        !           732:
        !           733: Time to compute S-polynomials over a finite field
        !           734:
        !           735: @item NF
        !           736:
        !           737: Time to compute normal forms over the rationals
        !           738:
        !           739: @item NFM
        !           740:
        !           741: Time to compute normal forms over a finite field
        !           742:
        !           743: @item ZNFM
        !           744:
        !           745: Time for zero reductions in @code{NFM}
        !           746:
        !           747: @item PZ
        !           748:
        !           749: Time to remove integer contets
        !           750:
        !           751: @item NP
        !           752:
        !           753: Time to compute remainders for coefficients of polynomials with coeffieints
        !           754: in the rationals
        !           755:
        !           756: @item MP
        !           757:
        !           758: Time to select pairs from which S-polynomials are computed
        !           759:
        !           760: @item RA
        !           761:
        !           762: Time to interreduce the Groebner basis candidate
        !           763:
        !           764: @item MC
1.1       noro      765:
1.2     ! noro      766: Time to check that each input polynomial is a member of the ideal
        !           767: generated by the Groebner basis candidate.
        !           768:
        !           769: @item GC
        !           770:
        !           771: Time to check that the Groebner basis candidate is a Groebner basis
        !           772:
        !           773: @item T
        !           774:
        !           775: Number of critical pairs generated
        !           776:
        !           777: @item B, M, F, D
        !           778:
        !           779: Number of critical pairs removed by using each criterion
        !           780:
        !           781: @item ZR
        !           782:
        !           783: Number of S-polynomials reduced to 0
        !           784:
        !           785: @item NZR
        !           786:
        !           787: Number of S-polynomials reduced to non-zero results
        !           788:
        !           789: @item Max_mag
        !           790:
        !           791: Maximal magnitude among all the generated polynomials
        !           792: \E
1.1       noro      793: @end table
                    794:
1.2     ! noro      795: \BJP
1.1       noro      796: @node $B9`=g=x$N@_Dj(B,,, $B%0%l%V%J4pDl$N7W;;(B
                    797: @section $B9`=g=x$N@_Dj(B
1.2     ! noro      798: \E
        !           799: \BEG
        !           800: @node Setting term orderings,,, Groebner basis computation
        !           801: @section Setting term orderings
        !           802: \E
1.1       noro      803:
                    804: @noindent
1.2     ! noro      805: \BJP
1.1       noro      806: $B9`$OFbIt$G$O(B, $B3FJQ?t$K4X$9$k;X?t$r@.J,$H$9$k@0?t%Y%/%H%k$H$7$FI=8=$5$l(B
                    807: $B$k(B. $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k:](B, $B3FJQ?t$,$I$N@.J,$KBP1~$9$k$+$r(B
                    808: $B;XDj$9$k$N$,(B, $BJQ?t%j%9%H$G$"$k(B. $B$5$i$K(B, $B$=$l$i@0?t%Y%/%H%k$NA4=g=x$r(B
                    809: $B;XDj$9$k$N$,9`=g=x$N7?$G$"$k(B. $B9`=g=x7?$O(B, $B?t(B, $B?t$N%j%9%H$"$k$$$O(B
                    810: $B9TNs$GI=8=$5$l$k(B.
1.2     ! noro      811: \E
        !           812: \BEG
        !           813: A term is internally represented as an integer vector whose components
        !           814: are exponents with respect to variables. A variable list specifies the
        !           815: correspondences between variables and components. A type of term ordering
        !           816: specifies a total order for integer vectors. A type of term ordering is
        !           817: represented by an integer, a list of integer or matrices.
        !           818: \E
1.1       noro      819:
                    820: @noindent
1.2     ! noro      821: \JP $B4pK\E*$J9`=g=x7?$H$7$F<!$N(B 3 $B$D$,$"$k(B.
        !           822: \EG There are following three fundamental types.
1.1       noro      823:
                    824: @table @code
1.2     ! noro      825: \JP @item 0 (DegRevLex; @b{$BA4<!?t5U<-=q<0=g=x(B})
        !           826: \EG @item 0 (DegRevLex; @b{total degree reverse lexicographic ordering})
1.1       noro      827:
1.2     ! noro      828: \BJP
1.1       noro      829: $B0lHL$K(B, $B$3$N=g=x$K$h$k%0%l%V%J4pDl7W;;$,:G$b9bB.$G$"$k(B. $B$?$@$7(B,
                    830: $BJ}Dx<0$r2r$/$H$$$&L\E*$KMQ$$$k$3$H$O(B, $B0lHL$K$O$G$-$J$$(B. $B$3$N(B
                    831: $B=g=x$K$h$k%0%l%V%J4pDl$O(B, $B2r$N8D?t$N7W;;(B, $B%$%G%"%k$N%a%s%P%7%C%W$d(B,
                    832: $BB>$NJQ?t=g=x$X$N4pDlJQ49$N$?$a$N%=!<%9$H$7$FMQ$$$i$l$k(B.
1.2     ! noro      833: \E
        !           834: \BEG
        !           835: In general, computation by this ordering shows the fastest speed
        !           836: in most Groebner basis computations.
        !           837: However, for the purpose to solve polynomial equations, this type
        !           838: of ordering is, in general, not so suitable.
        !           839: The Groebner bases obtained by this ordering is used for computing
        !           840: the number of solutions, solving ideal membership problem and seeds
        !           841: for conversion to other Groebner bases under different ordering.
        !           842: \E
1.1       noro      843:
1.2     ! noro      844: \JP @item 1 (DegLex; @b{$BA4<!?t<-=q<0=g=x(B})
        !           845: \EG @item 1 (DegLex; @b{total degree lexicographic ordering})
1.1       noro      846:
1.2     ! noro      847: \BJP
1.1       noro      848: $B$3$N=g=x$b(B, $B<-=q<0=g=x$KHf$Y$F9bB.$K%0%l%V%J4pDl$r5a$a$k$3$H$,$G$-$k$,(B,
                    849: @code{DegRevLex} $B$HF1MMD>@\$=$N7k2L$rMQ$$$k$3$H$O:$Fq$G$"$k(B. $B$7$+$7(B,
                    850: $B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k:]$K(B, $B@F<!2=8e$K$3$N=g=x$G%0%l%V%J4pDl(B
                    851: $B$r5a$a$F$$$k(B.
1.2     ! noro      852: \E
        !           853: \BEG
        !           854: By this type term ordering, Groebner bases are obtained fairly faster
        !           855: than Lex (lexicographic) ordering, too.
        !           856: Alike the @code{DegRevLex} ordering, the result, in general, cannot directly
        !           857: be used for solving polynomial equations.
        !           858: It is used, however, in such a way
        !           859: that a Groebner basis is computed in this ordering after homogenization
        !           860: to obtain the final lexicographic Groebner basis.
        !           861: \E
1.1       noro      862:
1.2     ! noro      863: \JP @item 2 (Lex; @b{$B<-=q<0=g=x(B})
        !           864: \EG @item 2 (Lex; @b{lexicographic ordering})
1.1       noro      865:
1.2     ! noro      866: \BJP
1.1       noro      867: $B$3$N=g=x$K$h$k%0%l%V%J4pDl$O(B, $BJ}Dx<0$r2r$/>l9g$K:GE,$N7A$N4pDl$rM?$($k$,(B
                    868: $B7W;;;~4V$,$+$+$j2a$.$k$N$,FqE@$G$"$k(B. $BFC$K(B, $B2r$,M-8B8D$N>l9g(B, $B7k2L$N(B
                    869: $B78?t$,6K$a$FD9Bg$JB?G\D9?t$K$J$k>l9g$,B?$$(B. $B$3$N>l9g(B, @code{gr()},
                    870: @code{hgr()} $B$K$h$k7W;;$,6K$a$FM-8z$K$J$k>l9g$,B?$$(B.
1.2     ! noro      871: \E
        !           872: \BEG
        !           873: Groebner bases computed by this ordering give the most convenient
        !           874: Groebner bases for solving the polynomial equations.
        !           875: The only and serious shortcoming is the enormously long computation
        !           876: time.
        !           877: It is often observed that the number coefficients of the result becomes
        !           878: very very long integers, especially if the ideal is 0-dimensional.
        !           879: For such a case, it is empirically true for many cases
        !           880: that i.e., computation by
        !           881: @code{gr()} and/or @code{hgr()} may be quite effective.
        !           882: \E
1.1       noro      883: @end table
                    884:
                    885: @noindent
1.2     ! noro      886: \BJP
1.1       noro      887: $B$3$l$i$rAH$_9g$o$;$F%j%9%H$G;XDj$9$k$3$H$K$h$j(B, $BMM!9$J>C5n=g=x$,;XDj$G$-$k(B.
                    888: $B$3$l$O(B,
1.2     ! noro      889: \E
        !           890: \BEG
        !           891: By combining these fundamental orderingl into a list, one can make
        !           892: various term ordering called elimination orderings.
        !           893: \E
1.1       noro      894:
                    895: @code{[[O1,L1],[O2,L2],...]}
                    896:
                    897: @noindent
1.2     ! noro      898: \BJP
1.1       noro      899: $B$G;XDj$5$l$k(B. @code{Oi} $B$O(B 0, 1, 2 $B$N$$$:$l$+$G(B, @code{Li} $B$OJQ?t$N8D(B
                    900: $B?t$rI=$9(B. $B$3$N;XDj$O(B, $BJQ?t$r@hF,$+$i(B @code{L1}, @code{L2} , ...$B8D(B
                    901: $B$:$D$NAH$KJ,$1(B, $B$=$l$>$l$NJQ?t$K4X$7(B, $B=g$K(B @code{O1}, @code{O2},
                    902: ...$B$N9`=g=x7?$GBg>.$,7hDj$9$k$^$GHf3S$9$k$3$H$r0UL#$9$k(B. $B$3$N7?$N(B
                    903: $B=g=x$O0lHL$K>C5n=g=x$H8F$P$l$k(B.
1.2     ! noro      904: \E
        !           905: \BEG
        !           906: In this example @code{Oi} indicates 0, 1 or 2 and @code{Li} indicates
        !           907: the number of variables subject to the correspoinding orderings.
        !           908: This specification means the following.
        !           909:
        !           910: The variable list is separated into sub lists from left to right where
        !           911: the @code{i}-th list contains @code{Li} members and it corresponds to
        !           912: the ordering of type @code{Oi}. The result of a comparison is equal
        !           913: to that for the leftmost different sub components. This type of ordering
        !           914: is called an elimination ordering.
        !           915: \E
1.1       noro      916:
                    917: @noindent
1.2     ! noro      918: \BJP
1.1       noro      919: $B$5$i$K(B, $B9TNs$K$h$j9`=g=x$r;XDj$9$k$3$H$,$G$-$k(B. $B0lHL$K(B, @code{n} $B9T(B
                    920: @code{m} $BNs$N<B?t9TNs(B @code{M} $B$,<!$N@-<A$r;}$D$H$9$k(B.
1.2     ! noro      921: \E
        !           922: \BEG
        !           923: Furthermore one can specify a term ordering by a matix.
        !           924: Suppose that a real @code{n}, @code{m} matrix @code{M} has the
        !           925: following properties.
        !           926: \E
1.1       noro      927:
                    928: @enumerate
                    929: @item
1.2     ! noro      930: \JP $BD9$5(B @code{m} $B$N@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B @code{Mv=0} $B$H(B @code{v=0} $B$OF1CM(B.
        !           931: \BEG
        !           932: For all integer verctors @code{v} of length @code{m} @code{Mv=0} is equivalent
        !           933: to @code{v=0}.
        !           934: \E
1.1       noro      935:
                    936: @item
1.2     ! noro      937: \BJP
1.1       noro      938: $BHsIi@.J,$r;}$DD9$5(B @code{m} $B$N(B 0 $B$G$J$$@0?t%Y%/%H%k(B @code{v} $B$KBP$7(B,
                    939: @code{Mv} $B$N(B 0 $B$G$J$$:G=i$N@.J,$OHsIi(B.
1.2     ! noro      940: \E
        !           941: \BEG
        !           942: For all non-negative integer vectors @code{v} the first non-zero component
        !           943: of @code{Mv} is non-negative.
        !           944: \E
1.1       noro      945: @end enumerate
                    946:
                    947: @noindent
1.2     ! noro      948: \BJP
1.1       noro      949: $B$3$N;~(B, 2 $B$D$N%Y%/%H%k(B @code{t}, @code{s} $B$KBP$7(B,
                    950: @code{t>s} $B$r(B, @code{M(t-s)} $B$N(B 0 $B$G$J$$:G=i$N@.J,$,HsIi(B,
                    951: $B$GDj5A$9$k$3$H$K$h$j9`=g=x$,Dj5A$G$-$k(B.
1.2     ! noro      952: \E
        !           953: \BEG
        !           954: Then we can define a term ordering such that, for two vectors
        !           955: @code{t}, @code{s}, @code{t>s} means that the first non-zero component
        !           956: of @code{M(t-s)} is non-negative.
        !           957: \E
1.1       noro      958:
                    959: @noindent
1.2     ! noro      960: \BJP
1.1       noro      961: $B9`=g=x7?$O(B, @code{gr()} $B$J$I$N0z?t$H$7$F;XDj$5$l$kB>(B, $BAH$_9~$_H!?t(B
                    962: @code{dp_ord()} $B$G;XDj$5$l(B, $B$5$^$6$^$JH!?t$N<B9T$N:]$K;2>H$5$l$k(B.
1.2     ! noro      963: \E
        !           964: \BEG
        !           965: Types of term orderings are used as arguments of functions such as
        !           966: @code{gr()}. It is also set internally by @code{dp_ord()} and is used
        !           967: during executions of various functions.
        !           968: \E
1.1       noro      969:
                    970: @noindent
1.2     ! noro      971: \BJP
1.1       noro      972: $B$3$l$i$N=g=x$N6qBNE*$JDj5A$*$h$S%0%l%V%J4pDl$K4X$9$k99$K>\$7$$2r@b$O(B
                    973: @code{[Becker,Weispfenning]} $B$J$I$r;2>H$N$3$H(B.
1.2     ! noro      974: \E
        !           975: \BEG
        !           976: For concrete definitions of term ordering and more information
        !           977: about Groebner basis, refer to, for example, the book
        !           978: @code{[Becker,Weispfenning]}.
        !           979: \E
1.1       noro      980:
                    981: @noindent
1.2     ! noro      982: \JP $B9`=g=x7?$N@_Dj$NB>$K(B, $BJQ?t$N=g=x<+BN$b7W;;;~4V$KBg$-$J1F6A$rM?$($k(B.
        !           983: \BEG
        !           984: Note that the variable ordering have strong effects on the computation
        !           985: time as well as the choice of types of term orderings.
        !           986: \E
1.1       noro      987:
                    988: @example
                    989: [90] B=[x^10-t,x^8-z,x^31-x^6-x-y]$
                    990: [91] gr(B,[x,y,z,t],2);
                    991: [x^2-2*y^7+(-41*t^2-13*t-1)*y^2+(2*t^17-12*t^14+42*t^12+30*t^11-168*t^9
                    992: -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y
                    993: +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5
                    994: -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,
                    995: (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9
                    996: +20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13
                    997: +14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4,
                    998: (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y
                    999: +(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3
                   1000: -11*t^2-5*t+9)*z^2,
                   1001: -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7
                   1002: -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19
                   1003: +28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9
                   1004: +84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z,
                   1005: 2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14
                   1006: -32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,
                   1007: -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,
                   1008: 2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,
                   1009: z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,
                   1010: -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,
                   1011: -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,
                   1012: z^5-t^4]
                   1013: [93] gr(B,[t,z,y,x],2);
                   1014: [x^10-t,x^8-z,x^31-x^6-x-y]
                   1015: @end example
                   1016:
                   1017: @noindent
1.2     ! noro     1018: \BJP
1.1       noro     1019: $BJQ?t=g=x(B @code{[x,y,z,t]} $B$K$*$1$k%0%l%V%J4pDl$O(B, $B4pDl$N?t$bB?$/(B, $B$=$l$>$l$N(B
                   1020: $B<0$bBg$-$$(B. $B$7$+$7(B, $B=g=x(B @code{[t,z,y,x]} $B$K$b$H$G$O(B, @code{B} $B$,$9$G$K(B
                   1021: $B%0%l%V%J4pDl$H$J$C$F$$$k(B. $BBg;(GD$K$$$($P(B, $B<-=q<0=g=x$G%0%l%V%J4pDl$r5a$a$k(B
                   1022: $B$3$H$O(B, $B:8B&$N(B ($B=g=x$N9b$$(B) $BJQ?t$r(B, $B1&B&$N(B ($B=g=x$NDc$$(B) $BJQ?t$G=q$-I=$9(B
                   1023: $B$3$H$G$"$j(B, $B$3$NNc$N>l9g$O(B, @code{t},  @code{z}, @code{y} $B$,4{$K(B
                   1024: @code{x} $B$GI=$5$l$F$$$k$3$H$+$i$3$N$h$&$J6KC<$J7k2L$H$J$C$?$o$1$G$"$k(B.
                   1025: $B<B:]$K8=$l$k7W;;$K$*$$$F$O(B, $B$3$N$h$&$KA*$V$Y$-JQ?t=g=x$,L@$i$+$G$"$k(B
                   1026: $B$3$H$O>/$J$/(B, $B;n9T:x8m$,I,MW$J>l9g$b$"$k(B.
1.2     ! noro     1027: \E
        !          1028: \BEG
        !          1029: As you see in the above example, the Groebner base under variable
        !          1030: ordering @code{[x,y,z,t]} has a lot of bases and each base itself is
        !          1031: large.  Under variable ordering @code{[t,z,y,x]}, however, @code{B} itself
        !          1032: is already the Groebner basis.
        !          1033: Roughly speaking, to obtain a Groebner base under the lexicographic
        !          1034: ordering is to express the variables on the left (having higher order)
        !          1035: in terms of variables on the right (having lower order).
        !          1036: In the example, variables @code{t},  @code{z}, and @code{y} are already
        !          1037: expressed by variable @code{x}, and the above explanation justifies
        !          1038: such a drastic experimental results.
        !          1039: In practice, however, optimum ordering for variables may not known
        !          1040: beforehand, and some heuristic trial may be inevitable.
        !          1041: \E
1.1       noro     1042:
1.2     ! noro     1043: \BJP
1.1       noro     1044: @node $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B,,, $B%0%l%V%J4pDl$N7W;;(B
                   1045: @section $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B
1.2     ! noro     1046: \E
        !          1047: \BEG
        !          1048: @node Groebner basis computation with rational function coefficients,,, Groebner basis computation
        !          1049: @section Groebner basis computation with rational function coefficients
        !          1050: \E
1.1       noro     1051:
                   1052: @noindent
1.2     ! noro     1053: \BJP
1.1       noro     1054: @code{gr()} $B$J$I$N%H%C%W%l%Y%kH!?t$O(B, $B$$$:$l$b(B, $BF~NOB?9`<0%j%9%H$K(B
                   1055: $B8=$l$kJQ?t(B ($BITDj85(B) $B$H(B, $BJQ?t%j%9%H$K8=$l$kJQ?t$rHf3S$7$F(B, $BJQ?t%j%9%H$K(B
                   1056: $B$J$$JQ?t$,F~NOB?9`<0$K8=$l$F$$$k>l9g$K$O(B, $B<+F0E*$K(B, $B$=$NJQ?t$r(B, $B78?t(B
                   1057: $BBN$N85$H$7$F07$&(B.
1.2     ! noro     1058: \E
        !          1059: \BEG
        !          1060: Such variables that appear within the input polynomials but
        !          1061: not appearing in the input variable list are automatically treated
        !          1062: as elements in the coefficient field
        !          1063: by top level functions, such as @code{gr()}.
        !          1064: \E
1.1       noro     1065:
                   1066: @example
                   1067: [64] gr([a*x+b*y-c,d*x+e*y-f],[x,y],2);
                   1068: [(-e*a+d*b)*x-f*b+e*c,(-e*a+d*b)*y+f*a-d*c]
                   1069: @end example
                   1070:
                   1071: @noindent
1.2     ! noro     1072: \BJP
1.1       noro     1073: $B$3$NNc$G$O(B, @code{a}, @code{b}, @code{c}, @code{d} $B$,78?tBN$N85$H$7$F(B
                   1074: $B07$o$l$k(B. $B$9$J$o$A(B, $BM-M}H!?tBN(B
                   1075: @b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}) $B>e$N(B 2 $BJQ?tB?9`<04D(B
                   1076: @b{F}[@code{x},@code{y}] $B$K$*$1$k%0%l%V%J4pDl$r5a$a$k$3$H$K$J$k(B.
                   1077: $BCm0U$9$Y$-$3$H$O(B,
                   1078: $B78?t$,BN$H$7$F07$o$l$F$$$k$3$H$G$"$k(B. $B$9$J$o$A(B, $B78?t$N4V$KB?9`<0(B
                   1079: $B$H$7$F$N6&DL0x;R$,$"$C$?>l9g$K$O(B, $B7k2L$+$i$=$N0x;R$O=|$+$l$F$$$k(B
                   1080: $B$?$a(B, $BM-M}?tBN>e$NB?9`<04D>e$NLdBj$H$7$F9M$($?>l9g$N7k2L$H$O0lHL(B
                   1081: $B$K$O0[$J$k(B. $B$^$?(B, $B<g$H$7$F7W;;8zN(>e$NLdBj$N$?$a(B, $BJ,;6I=8=B?9`<0(B
                   1082: $B$N78?t$H$7$F<B:]$K5v$5$l$k$N$OB?9`<0$^$G$G$"$k(B. $B$9$J$o$A(B, $BJ,Jl$r(B
                   1083: $B;}$DM-M}<0$OJ,;6I=8=B?9`<0$N78?t$H$7$F$O5v$5$l$J$$(B.
1.2     ! noro     1084: \E
        !          1085: \BEG
        !          1086: In this example, variables @code{a}, @code{b}, @code{c}, and @code{d}
        !          1087: are treated as elements in the coefficient field.
        !          1088: In this case, a Groebner basis is computed
        !          1089: on a bi-variate polynomial ring
        !          1090: @b{F}[@code{x},@code{y}]
        !          1091: over rational function field
        !          1092:  @b{F} = @b{Q}(@code{a},@code{b},@code{c},@code{d}).
        !          1093: Notice that coefficients are considered as a member in a field.
        !          1094: As a consequence, polynomial factors common to the coefficients
        !          1095: are removed so that the result, in general, is different from
        !          1096: the result that would be obtained when the problem is considered
        !          1097: as a computation of Groebner basis over a polynomial ring
        !          1098: with rational function coefficients.
        !          1099: And note that coefficients of a distributed polynomial are limited
        !          1100: to numbers and polynomials because of efficiency.
        !          1101: \E
1.1       noro     1102:
1.2     ! noro     1103: \BJP
1.1       noro     1104: @node $B4pDlJQ49(B,,, $B%0%l%V%J4pDl$N7W;;(B
                   1105: @section $B4pDlJQ49(B
1.2     ! noro     1106: \E
        !          1107: \BEG
        !          1108: @node Change of ordering,,, Groebner basis computation
        !          1109: @section Change of orderng
        !          1110: \E
1.1       noro     1111:
                   1112: @noindent
1.2     ! noro     1113: \BJP
1.1       noro     1114: $B<-=q<0=g=x$N%0%l%V%J4pDl$r5a$a$k>l9g(B, $BD>@\(B @code{gr()} $B$J$I$r5/F0$9$k(B
                   1115: $B$h$j(B, $B0lC6B>$N=g=x(B ($BNc$($PA4<!?t5U<-=q<0=g=x(B) $B$N%0%l%V%J4pDl$r7W;;$7$F(B,
                   1116: $B$=$l$rF~NO$H$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$kJ}$,8zN($,$h$$>l9g(B
                   1117: $B$,$"$k(B. $B$^$?(B, $BF~NO$,2?$i$+$N=g=x$G$N%0%l%V%J4pDl$K$J$C$F$$$k>l9g(B, $B4pDl(B
                   1118: $BJQ49$H8F$P$l$kJ}K!$K$h$j(B, Buchberger $B%"%k%4%j%:%`$K$h$i$:$K8zN(NI$/(B
                   1119: $B<-=q<0=g=x$N%0%l%V%J4pDl$,7W;;$G$-$k>l9g$,$"$k(B. $B$3$N$h$&$JL\E*$N$?$a$N(B
                   1120: $BH!?t$,(B, $B%f!<%6Dj5AH!?t$H$7$F(B @samp{gr} $B$K$$$/$D$+Dj5A$5$l$F$$$k(B.
                   1121: $B0J2<$N(B 2 $B$D$NH!?t$O(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$G(B
                   1122: $B4{$K%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0%j%9%H(B @var{gbase} $B$r(B, $BJQ?t=g=x(B
                   1123: @var{vlist2} $B$K$*$1$k<-=q<0=g=x$N%0%l%V%J4pDl$KJQ49$9$kH!?t$G$"$k(B.
1.2     ! noro     1124: \E
        !          1125: \BEG
        !          1126: When we compute a lex order Groebner basis, it is often efficient to
        !          1127: compute it via Groebner basis with respect to another order such as
        !          1128: degree reverse lex order, rather than to compute it directory by
        !          1129: @code{gr()} etc. If we know that an input is a Groebner basis with
        !          1130: respect to an order, we can apply special methods called change of
        !          1131: ordering for a Groebner basis computation with respect to another
        !          1132: order, without using Buchberger algorithm. The following two functions
        !          1133: are ones for change of ordering such that they convert a Groebner
        !          1134: basis @var{gbase} with respect to the variable order @var{vlist1} and
        !          1135: the order type @var{order} into a lex Groebner basis with respect
        !          1136: to the variable order @var{vlist2}.
        !          1137: \E
1.1       noro     1138:
                   1139: @table @code
                   1140: @item tolex(@var{gbase},@var{vlist1},@var{order},@var{vlist2})
                   1141:
1.2     ! noro     1142: \BJP
1.1       noro     1143: $B$3$NH!?t$O(B, @var{gbase} $B$,M-M}?tBN>e$N%7%9%F%`$N>l9g$K$N$_;HMQ2DG=$G$"$k(B.
                   1144: $B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B, $BM-8BBN>e$G7W;;$5$l$?%0%l%V%J4pDl(B
                   1145: $B$r?w7?$H$7$F(B, $BL$Dj78?tK!$*$h$S(B Hensel $B9=@.$K$h$j5a$a$k$b$N$G$"$k(B.
1.2     ! noro     1146: \E
        !          1147: \BEG
        !          1148: This function can be used only when @var{gbase} is an ideal over the
        !          1149: rationals.  The input @var{gbase} must be a Groebner basis with respect
        !          1150: to the variable order @var{vlist1} and the order type @var{order}. Moreover
        !          1151: the ideal generated by @var{gbase} must be zero-dimensional.
        !          1152: This computes the lex Groebner basis of @var{gbase}
        !          1153: by using the modular change of ordering algorithm. The algorithm first
        !          1154: computes the lex Groebner basis over a finite field. Then each element
        !          1155: in the lex Groebner basis over the rationals is computed with undetermined
        !          1156: coefficient method and linear equation solving by Hensel lifting.
        !          1157: \E
1.1       noro     1158:
                   1159: @item tolex_tl(@var{gbase},@var{vlist1},@var{order},@var{vlist2},@var{homo})
                   1160:
1.2     ! noro     1161: \BJP
1.1       noro     1162: $B$3$NH!?t$O(B, $B<-=q<0=g=x$N%0%l%V%J4pDl$r(B Buchberger $B%"%k%4%j%:%`$K$h$j5a(B
                   1163: $B$a$k$b$N$G$"$k$,(B, $BF~NO$,$"$k=g=x$K$*$1$k%0%l%V%J4pDl$G$"$k>l9g$N(B
                   1164: trace-lifting$B$K$*$1$k%0%l%V%J4pDl8uJd$NF,9`(B, $BF,78?t$N@-<A$rMxMQ$7$F(B,
                   1165: $B:G=*E*$J%0%l%V%J4pDl%A%'%C%/(B, $B%$%G%"%k%a%s%P%7%C%W%A%'%C%/$r>JN,$7$F$$(B
                   1166: $B$k$?$a(B, $BC1$K(BBuchberger $B%"%k%4%j%:%`$r7+$jJV$9$h$j8zN($h$/7W;;$G$-$k(B.
                   1167: $B99$K(B, $BF~NO$,(B 0 $B<!85%7%9%F%`$N>l9g(B, $B<+F0E*$K$b$&(B 1 $B$D$NCf4VE*$J9`=g=x$r(B
                   1168: $B7PM3$7$F<-=q<0=g=x$N%0%l%V%J4pDl$r7W;;$9$k(B. $BB?$/$N>l9g(B, $B$3$NJ}K!$O(B,
                   1169: $BD>@\<-=q<0=g=x$N7W;;$r9T$&$h$j8zN($,$h$$(B. ($B$b$A$m$sNc30$"$j(B. )
                   1170: $B0z?t(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, @code{hgr()} $B$HF1MM$K@F<!2=$r7PM3$7$F(B
                   1171: $B7W;;$r9T$&(B.
1.2     ! noro     1172: \E
        !          1173: \BEG
        !          1174: This function computes the lex Groebner basis of @var{gbase}.  The
        !          1175: input @var{gbase} must be a Groebner basis with respect to the
        !          1176: variable order @var{vlist1} and the order type @var{order}.
        !          1177: Buchberger algorithm with trace lifting is used to compute the lex
        !          1178: Groebner basis, however the Groebner basis check and the ideal
        !          1179: membership check can be omitted by using several properties derived
        !          1180: from the fact that the input is a Groebner basis. So it is more
        !          1181: efficient than simple repetition of Buchberger algorithm. If the input
        !          1182: is zero-dimensional, this function inserts automatically a computation
        !          1183: of Groebner basis with respect to an elimination order, which makes
        !          1184: the whole computation more efficient for many cases. If @var{homo} is
        !          1185: not equal to 0, homogenization is used in each step.
        !          1186: \E
1.1       noro     1187: @end table
                   1188:
                   1189: @noindent
1.2     ! noro     1190: \BJP
1.1       noro     1191: $B$=$NB>(B, 0 $B<!85%7%9%F%`$KBP$7(B, $BM?$($i$l$?B?9`<0$N:G>.B?9`<0$r5a$a$k(B
                   1192: $BH!?t(B, 0 $B<!85%7%9%F%`$N2r$r(B, $B$h$j%3%s%Q%/%H$KI=8=$9$k$?$a$NH!?t$J$I$,(B
                   1193: @samp{gr} $B$GDj5A$5$l$F$$$k(B. $B$3$l$i$K$D$$$F$O8D!9$NH!?t$N@bL@$r;2>H$N$3$H(B.
1.2     ! noro     1194: \E
        !          1195: \BEG
        !          1196: For zero-dimensional systems, there are several fuctions to
        !          1197: compute the minimal polynomial of a polynomial and or a more compact
        !          1198: representation for zeros of the system. They are all defined in @samp{gr}.
        !          1199: Refer to the sections for each functions.
        !          1200: \E
1.1       noro     1201:
1.2     ! noro     1202: \BJP
1.1       noro     1203: @node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
                   1204: @section $B%0%l%V%J4pDl$K4X$9$kH!?t(B
1.2     ! noro     1205: \E
        !          1206: \BEG
        !          1207: @node Functions for Groebner basis computation,,, Groebner basis computation
        !          1208: @section Functions for Groebner basis computation
        !          1209: \E
1.1       noro     1210:
                   1211: @menu
                   1212: * gr hgr gr_mod::
                   1213: * lex_hensel lex_tl tolex tolex_d tolex_tl::
                   1214: * lex_hensel_gsl tolex_gsl tolex_gsl_d::
                   1215: * gr_minipoly minipoly::
                   1216: * tolexm minipolym::
                   1217: * dp_gr_main dp_gr_mod_main::
                   1218: * dp_f4_main dp_f4_mod_main::
                   1219: * dp_gr_flags dp_gr_print::
                   1220: * dp_ord::
                   1221: * dp_ptod::
                   1222: * dp_dtop::
                   1223: * dp_mod dp_rat::
                   1224: * dp_homo dp_dehomo::
                   1225: * dp_ptozp dp_prim::
                   1226: * dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod::
                   1227: * dp_hm dp_ht dp_hc dp_rest::
                   1228: * dp_td dp_sugar::
                   1229: * dp_lcm::
                   1230: * dp_redble::
                   1231: * dp_subd::
                   1232: * dp_mbase::
                   1233: * dp_mag::
                   1234: * dp_red dp_red_mod::
                   1235: * dp_sp dp_sp_mod::
                   1236: * p_nf p_nf_mod p_true_nf p_true_nf_mod ::
                   1237: * p_terms::
                   1238: * gb_comp::
                   1239: * katsura hkatsura cyclic hcyclic::
                   1240: * dp_vtoe dp_etov::
                   1241: * lex_hensel_gsl tolex_gsl tolex_gsl_d::
                   1242: @end menu
                   1243:
1.2     ! noro     1244: \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1245: \EG @node gr hgr gr_mod,,, Functions for Groebner basis computation
1.1       noro     1246: @subsection @code{gr}, @code{hgr}, @code{gr_mod}, @code{dgr}
                   1247: @findex gr
                   1248: @findex hgr
                   1249: @findex gr_mod
                   1250: @findex dgr
                   1251:
                   1252: @table @t
                   1253: @item gr(@var{plist},@var{vlist},@var{order})
                   1254: @itemx hgr(@var{plist},@var{vlist},@var{order})
                   1255: @itemx gr_mod(@var{plist},@var{vlist},@var{order},@var{p})
                   1256: @itemx dgr(@var{plist},@var{vlist},@var{order},@var{procs})
1.2     ! noro     1257: \JP :: $B%0%l%V%J4pDl$N7W;;(B
        !          1258: \EG :: Groebner basis computation
1.1       noro     1259: @end table
                   1260:
                   1261: @table @var
                   1262: @item return
1.2     ! noro     1263: \JP $B%j%9%H(B
        !          1264: \EG list
1.1       noro     1265: @item plist, vlist, procs
1.2     ! noro     1266: \JP $B%j%9%H(B
        !          1267: \EG list
1.1       noro     1268: @item order
1.2     ! noro     1269: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1270: \EG number, list or matrix
1.1       noro     1271: @item p
1.2     ! noro     1272: \JP 2^27 $BL$K~$NAG?t(B
        !          1273: \EG prime less than 2^27
1.1       noro     1274: @end table
                   1275:
                   1276: @itemize @bullet
1.2     ! noro     1277: \BJP
1.1       noro     1278: @item
                   1279: $BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B.
                   1280: @item
                   1281: $B$$$:$l$b(B, $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist}, $B9`=g=x7?(B
                   1282: @var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a$k(B. @code{gr()}, @code{hgr()}
                   1283: $B$O(B $BM-M}?t78?t(B, @code{gr_mod()} $B$O(B GF(@var{p}) $B78?t$H$7$F7W;;$9$k(B.
                   1284: @item
                   1285: @var{vlist} $B$OITDj85$N%j%9%H(B. @var{vlist} $B$K8=$l$J$$ITDj85$O(B,
                   1286: $B78?tBN$KB0$9$k$H8+$J$5$l$k(B.
                   1287: @item
                   1288: @code{gr()}, trace-lifting ($B%b%8%e%i1i;;$rMQ$$$?9bB.2=(B) $B$*$h$S(B sugar
                   1289: strategy $B$K$h$k7W;;(B, @code{hgr()} $B$O(B trace-lifting $B$*$h$S(B
                   1290: $B@F<!2=$K$h$k(B $B6:@5$5$l$?(B sugar strategy $B$K$h$k7W;;$r9T$&(B.
                   1291: @item
                   1292: @code{dgr()} $B$O(B, @code{gr()}, @code{dgr()} $B$r(B
                   1293: $B;R%W%m%;%9%j%9%H(B @var{procs} $B$N(B 2 $B$D$N%W%m%;%9$K$h$jF1;~$K7W;;$5$;(B,
                   1294: $B@h$K7k2L$rJV$7$?J}$N7k2L$rJV$9(B. $B7k2L$OF10l$G$"$k$,(B, $B$I$A$i$NJ}K!$,(B
                   1295: $B9bB.$+0lHL$K$OITL@$N$?$a(B, $B<B:]$N7P2a;~4V$rC;=L$9$k$N$KM-8z$G$"$k(B.
                   1296: @item
                   1297: @code{dgr()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$G$N(B
                   1298: CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B.
1.2     ! noro     1299: \E
        !          1300: \BEG
        !          1301: @item
        !          1302: These functions are defined in @samp{gr} in the standard library
        !          1303: directory.
        !          1304: @item
        !          1305: They compute a Groebner basis of a polynomial list @var{plist} with
        !          1306: respect to the variable order @var{vlist} and the order type @var{order}.
        !          1307: @code{gr()} and @code{hgr()} compute a Groebner basis over the rationals
        !          1308: and @code{gr_mod} computes over GF(@var{p}).
        !          1309: @item
        !          1310: Variables not included in @var{vlist} are regarded as
        !          1311: included in the ground field.
        !          1312: @item
        !          1313: @code{gr()} uses trace-lifting (an improvement by modular computation)
        !          1314:  and sugar strategy.
        !          1315: @code{hgr()} uses trace-lifting and a cured sugar strategy
        !          1316: by using homogenization.
        !          1317: @item
        !          1318: @code{dgr()} executes @code{gr()}, @code{dgr()} simultaneously on
        !          1319: two process in a child process list @var{procs} and returns
        !          1320: the result obtained first. The results returned from both the process
        !          1321: should be equal, but it is not known in advance which method is faster.
        !          1322: Therefore this function is useful to reduce the actual elapsed time.
        !          1323: @item
        !          1324: The CPU time shown after an exection of @code{dgr()} indicates
        !          1325: that of the master process, and most of the time corresponds to the time
        !          1326: for communication.
        !          1327: \E
1.1       noro     1328: @end itemize
                   1329:
                   1330: @example
                   1331: [0] load("gr")$
                   1332: [64] load("cyclic")$
                   1333: [74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
                   1334: [c4^15+122*c4^10-122*c4^5-1,...]
                   1335: [75] GM=gr_mod(cyclic(5),[c0,c1,c2,c3,c4],2,31991)$
                   1336: 24628*c4^15+29453*c4^10+2538*c4^5+7363
                   1337: [76] (G[0]*24628-GM[0])%31991;
                   1338: 0
                   1339: @end example
                   1340:
                   1341: @table @t
1.2     ! noro     1342: \JP @item $B;2>H(B
        !          1343: \EG @item References
1.1       noro     1344: @comment @fref{dp_gr_main dp_gr_mod_main},
                   1345: @fref{dp_gr_main dp_gr_mod_main},
                   1346: @fref{dp_ord}.
                   1347: @end table
                   1348:
1.2     ! noro     1349: \JP @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1350: \EG @node lex_hensel lex_tl tolex tolex_d tolex_tl,,, Functions for Groebner basis computation
1.1       noro     1351: @subsection @code{lex_hensel}, @code{lex_tl}, @code{tolex}, @code{tolex_d}, @code{tolex_tl}
                   1352: @findex lex_hensel
                   1353: @findex lex_tl
                   1354: @findex tolex
                   1355: @findex tolex_d
                   1356: @findex tolex_tl
                   1357:
                   1358: @table @t
                   1359: @item lex_hensel(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
                   1360: @itemx lex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2     ! noro     1361: \JP :: $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B
        !          1362: \EG:: Groebner basis computation with respect to a lex order by change of ordering
1.1       noro     1363: @item tolex(@var{plist},@var{vlist1},@var{order},@var{vlist2})
                   1364: @itemx tolex_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs})
                   1365: @itemx tolex_tl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2     ! noro     1366: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $B4pDlJQ49$K$h$k<-=q<0=g=x%0%l%V%J4pDl$N7W;;(B
        !          1367: \EG :: Groebner basis computation with respect to a lex order by change of ordering, starting from a Groebner basis
1.1       noro     1368: @end table
                   1369:
                   1370: @table @var
                   1371: @item return
1.2     ! noro     1372: \JP $B%j%9%H(B
        !          1373: \EG list
1.1       noro     1374: @item plist, vlist1, vlist2, procs
1.2     ! noro     1375: \JP $B%j%9%H(B
        !          1376: \EG list
1.1       noro     1377: @item order
1.2     ! noro     1378: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1379: \EG number, list or matrix
1.1       noro     1380: @item homo
1.2     ! noro     1381: \JP $B%U%i%0(B
        !          1382: \EG flag
1.1       noro     1383: @end table
                   1384:
                   1385: @itemize @bullet
1.2     ! noro     1386: \BJP
1.1       noro     1387: @item
                   1388: $BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B.
                   1389: @item
                   1390: @code{lex_hensel()}, @code{lex_tl()} $B$O(B,
                   1391: $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B
                   1392: @var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a(B, $B$=$l$r(B, $BJQ?t=g=x(B @var{vlist2}
                   1393: $B$N<-=q<0=g=x%0%l%V%J4pDl$KJQ49$9$k(B.
                   1394: @item
                   1395: @code{tolex()}, @code{tolex_tl()} $B$O(B,
                   1396: $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order} $B$K4X$9$k%0%l%V%J4pDl$G$"$k(B
                   1397: $BB?9`<0%j%9%H(B @var{plist} $B$rJQ?t=g=x(B @var{vlist2} $B$N<-=q<0=g=x%0%l%V%J(B
                   1398: $B4pDl$KJQ49$9$k(B.
                   1399: @code{tolex_d()} $B$O(B, @code{tolex()} $B$K$*$1$k(B, $B3F4pDl$N7W;;$r(B, $B;R%W%m%;%9(B
                   1400: $B%j%9%H(B @var{procs} $B$N3F%W%m%;%9$KJ,;67W;;$5$;$k(B.
                   1401: @item
                   1402: @code{lex_hensel()}, @code{lex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B
                   1403: $B7W;;$O<!$N$h$&$K9T$o$l$k(B. (@code{[Noro,Yokoyama]} $B;2>H(B.)
                   1404: @enumerate
                   1405: @item
                   1406: @var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B.
                   1407: (@code{lex_hensel()} $B$N$_(B. )
                   1408: @item
                   1409: @var{G0} $B$N3F85$N(B @var{vlist2} $B$K4X$9$k<-=q<0=g=x$K$*$1$kF,78?t$r3d$i$J$$(B
                   1410: $B$h$&$JAG?t(B @var{p} $B$rA*$S(B, GF(@var{p}) $B>e$G$N<-=q<0=g=x%0%l%V%J4pDl(B
                   1411: @var{Gp} $B$r7W;;$9$k(B.
                   1412: @item
                   1413: @var{Gp} $B$K8=$l$k$9$Y$F$N9`$N(B, @var{G0} $B$K4X$9$k@55,7A(B @var{NF} $B$r7W;;$9$k(B.
                   1414: @item
                   1415: @var{Gp} $B$N3F85(B @var{f} $B$K$D$-(B, @var{f} $B$N78?t$rL$Dj78?t$G(B,
                   1416: @var{f} $B$N3F9`$rBP1~$9$k(B @var{NF} $B$N85$GCV$-49$((B, $B3F9`$N78?t$r(B 0 $B$HCV$$$?(B,
                   1417: $BL$Dj78?t$K4X$9$k@~7AJ}Dx<07O(B @var{Lf} $B$r:n$k(B.
                   1418: @item
                   1419: @var{Lf} $B$,(B, $BK!(B @var{p} $B$G0l0U2r$r;}$D$3$H$rMQ$$$F(B @var{Lf} $B$N2r$r(B
                   1420: $BK!(B @var{p}$B$N2r$+$i(B Hensel $B9=@.$K$h$j5a$a$k(B.
                   1421: @item
                   1422: $B$9$Y$F$N(B @var{Gp} $B$N85$K$D$-@~7AJ}Dx<0$,2r$1$?$i$=$N2rA4BN$,5a$a$k(B
                   1423: $B<-=q<0=g=x$G$N%0%l%V%J4pDl(B. $B$b$7$I$l$+$N@~7AJ}Dx<0$N5a2r$K<:GT$7$?$i(B,
                   1424: @var{p} $B$r$H$jD>$7$F$d$jD>$9(B.
                   1425: @end enumerate
                   1426:
                   1427: @item
                   1428: @code{lex_tl()}, @code{tolex_tl()} $B$K$*$$$F$O(B, $B<-=q<0=g=x%0%l%V%J4pDl$N(B
                   1429: $B7W;;$O<!$N$h$&$K9T$o$l$k(B.
                   1430:
                   1431: @enumerate
                   1432: @item
                   1433: @var{vlist1}, @var{order} $B$K4X$9$k%0%l%V%J4pDl(B @var{G0} $B$r7W;;$9$k(B.
                   1434: (@code{lex_hensel()} $B$N$_(B. )
                   1435: @item
                   1436: @var{G0} $B$,(B 0 $B<!85%7%9%F%`$G$J$$$H$-(B, @var{G0} $B$rF~NO$H$7$F(B,
                   1437: @var{G0} $B$N3F85$N(B @var{vlist2} $B$K4X$9$k<-=q<0=g=x$K$*$1$kF,78?t$r3d$i$J$$(B
                   1438: $B$h$&$JAG?t(B @var{p} $B$rA*$S(B, @var{p} $B$rMQ$$$?(B trace-lifting $B$K$h$j<-=q<0(B
                   1439: $B=g=x$N%0%l%V%J4pDl8uJd$r5a$a(B, $B$b$75a$^$C$?$J$i%A%'%C%/$J$7$K$=$l$,5a$a$k(B
                   1440: $B%0%l%V%J4pDl$H$J$k(B. $B$b$7<:GT$7$?$i(B, @var{p} $B$r$H$jD>$7$F$d$jD>$9(B.
                   1441: @item
                   1442: @var{G0} $B$,(B 0 $B<!85%7%9%F%`$N$H$-(B, @var{G0} $B$rF~NO$H$7$F(B,
                   1443: $B$^$:(B, @var{vlist2} $B$N:G8e$NJQ?t0J30$r>C5n$9$k>C5n=g=x$K$h$j(B
                   1444: $B%0%l%V%J4pDl(B @var{G1} $B$r7W;;$7(B, $B$=$l$+$i<-=q<0=g=x$N%0%l%V%J4pDl$r(B
                   1445: $B7W;;$9$k(B. $B$=$N:](B, $B3F%9%F%C%W$G$O(B, $BF~NO$N3F85$N(B, $B5a$a$k=g=x$K$*$1$k(B
                   1446: $BF,78?t$r3d$i$J$$AG?t$rMQ$$$?(B trace-lifting $B$G%0%l%V%J4pDl8uJd$r5a$a(B,
                   1447: $B$b$75a$^$C$?$i%A%'%C%/$J$7$K$=$l$,$=$N=g=x$G$N%0%l%V%J4pDl$H$J$k(B.
                   1448: @end enumerate
                   1449:
                   1450: @item
                   1451: $BM-M}<078?t$N7W;;$O(B, @code{lex_tl()}, @code{tolex_tl()} $B$N$_<u$1IU$1$k(B.
                   1452: @item
                   1453: @code{homo} $B$,(B 0 $B$G$J$$>l9g(B, $BFbIt$G5/F0$5$l$k(B Buchberger $B%"%k%4%j%:%`$K(B
                   1454: $B$*$$$F(B, $B@F<!2=$,9T$o$l$k(B.
                   1455: @item
                   1456: @code{tolex_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B
                   1457: $B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B.
1.2     ! noro     1458: \E
        !          1459: \BEG
        !          1460: @item
        !          1461: These functions are defined in @samp{gr} in the standard library
        !          1462: directory.
        !          1463: @item
        !          1464: @code{lex_hensel()} and @code{lex_tl()} first compute a Groebner basis
        !          1465: with respect to the variable order @var{vlist1} and the order type @var{order}.
        !          1466: Then the Groebner basis is converted into a lex order Groebner basis
        !          1467: with respect to the varable order @var{vlist2}.
        !          1468: @item
        !          1469: @code{tolex()} and @code{tolex_tl()} convert a Groebner basis @var{plist}
        !          1470: with respect to the variable order @var{vlist1} and the order type @var{order}
        !          1471: into a lex order Groebner basis
        !          1472: with respect to the varable order @var{vlist2}.
        !          1473: @code{tolex_d()} does computations of basis elements in @code{tolex()}
        !          1474: in parallel on the processes in a child process list @var{procs}.
        !          1475: @item
        !          1476: In @code{lex_hensel()} and @code{tolex_hensel()} a lex order Groebner basis
        !          1477: is computed as follows.(Refer to @code{[Noro,Yokoyama]}.)
        !          1478: @enumerate
        !          1479: @item
        !          1480: Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}.
        !          1481: (Only in @code{lex_hensel()}. )
        !          1482: @item
        !          1483: Choose a prime which does not divide head coefficients of elements in @var{G0}
        !          1484: with respect to @var{vlist1} and @var{order}. Then compute a lex order
        !          1485: Groebner basis @var{Gp} over GF(@var{p}) with respect to @var{vlist2}.
        !          1486: @item
        !          1487: Compute @var{NF}, the set of all the normal forms with respect to
        !          1488: @var{G0} of terms appearing in @var{Gp}.
        !          1489: @item
        !          1490: For each element @var{f} in @var{Gp}, replace coefficients and terms in @var{f}
        !          1491: with undetermined coefficients and the corresponding polynomials in @var{NF}
        !          1492: respectively, and generate a system of liear equation @var{Lf} by equating
        !          1493: the coefficients of terms in the replaced polynomial with 0.
        !          1494: @item
        !          1495: Solve @var{Lf} by Hensel lifting, starting from the unique mod @var{p}
        !          1496: solution.
        !          1497: @item
        !          1498: If all the linear equations generated from the elements in @var{Gp}
        !          1499: could be solved, then the set of solutions corresponds to a lex order
        !          1500: Groebner basis. Otherwise redo the whole process with another @var{p}.
        !          1501: @end enumerate
        !          1502:
        !          1503: @item
        !          1504: In @code{lex_tl()} and @code{tolex_tl()} a lex order Groebner basis
        !          1505: is computed as follows.(Refer to @code{[Noro,Yokoyama]}.)
        !          1506:
        !          1507: @enumerate
        !          1508: @item
        !          1509: Compute a Groebner basis @var{G0} with respect to @var{vlist1} and @var{order}.
        !          1510: (Only in @code{lex_tl()}. )
        !          1511: @item
        !          1512: If @var{G0} is not zero-dimensional, choose a prime which does not divide
        !          1513: head coefficients of elements in @var{G0} with respect to @var{vlist1} and
        !          1514: @var{order}. Then compute a candidate of a lex order Groebner basis
        !          1515: via trace lifting with @var{p}. If it succeeds the candidate is indeed
        !          1516: a lex order Groebner basis without any check. Otherwise redo the whole
        !          1517: process with another @var{p}.
        !          1518: @item
        !          1519:
        !          1520: If @var{G0} is zero-dimensional, starting from @var{G0},
        !          1521: compute a Groebner basis @var{G1} with respect to an elimination order
        !          1522: to eliminate variables other than the last varibale in @var{vlist2}.
        !          1523: Then compute a lex order Groebner basis stating from @var{G1}. These
        !          1524: computations are done by trace lifting and the selection of a mudulus
        !          1525: @var{p} is the same as in non zero-dimensional cases.
        !          1526: @end enumerate
        !          1527:
        !          1528: @item
        !          1529: Computations with rational function coefficients can be done only by
        !          1530: @code{lex_tl()} and @code{tolex_tl()}.
        !          1531: @item
        !          1532: If @code{homo} is not equal to 0, homogenization is used in Buchberger
        !          1533: algorithm.
        !          1534: @item
        !          1535: The CPU time shown after an execution of @code{tolex_d()} indicates
        !          1536: that of the master process, and it does not include the time in child
        !          1537: processes.
        !          1538: \E
1.1       noro     1539: @end itemize
                   1540:
                   1541: @example
                   1542: [78] K=katsura(5)$
                   1543: 30msec + gc : 20msec
                   1544: [79] V=[u5,u4,u3,u2,u1,u0]$
                   1545: 0msec
                   1546: [80] G0=hgr(K,V,2)$
                   1547: 91.558sec + gc : 15.583sec
                   1548: [81] G1=lex_hensel(K,V,0,V,0)$
                   1549: 49.049sec + gc : 9.961sec
                   1550: [82] G2=lex_tl(K,V,0,V,1)$
                   1551: 31.186sec + gc : 3.500sec
                   1552: [83] gb_comp(G0,G1);
                   1553: 1
                   1554: 10msec
                   1555: [84] gb_comp(G0,G2);
                   1556: 1
                   1557: @end example
                   1558:
                   1559: @table @t
1.2     ! noro     1560: \JP @item $B;2>H(B
        !          1561: \EG @item References
1.1       noro     1562: @fref{dp_gr_main dp_gr_mod_main},
1.2     ! noro     1563: \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}
        !          1564: \EG @fref{dp_ord}, @fref{Distributed computation}
1.1       noro     1565: @end table
                   1566:
1.2     ! noro     1567: \JP @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1568: \EG @node lex_hensel_gsl tolex_gsl tolex_gsl_d,,, Functions for Groebner basis computation
1.1       noro     1569: @subsection @code{lex_hensel_gsl}, @code{tolex_gsl}, @code{tolex_gsl_d}
                   1570: @findex lex_hensel_gsl
                   1571: @findex tolex_gsl
                   1572: @findex tolex_gsl_d
                   1573:
                   1574: @table @t
                   1575: @item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
1.2     ! noro     1576: \JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B
        !          1577: \EG ::Computation of an GSL form ideal basis
1.1       noro     1578: @item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo})
                   1579: @itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo},@var{procs})
1.2     ! noro     1580: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B
        !          1581: \EG :: Computation of an GSL form ideal basis stating from a Groebner basis
1.1       noro     1582: @end table
                   1583:
                   1584: @table @var
                   1585: @item return
1.2     ! noro     1586: \JP $B%j%9%H(B
        !          1587: \EG list
1.1       noro     1588: @item plist, vlist1, vlist2, procs
1.2     ! noro     1589: \JP $B%j%9%H(B
        !          1590: \EG list
1.1       noro     1591: @item order
1.2     ! noro     1592: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1593: \EG number, list or matrix
1.1       noro     1594: @item homo
1.2     ! noro     1595: \JP $B%U%i%0(B
        !          1596: \EG flag
1.1       noro     1597: @end table
                   1598:
                   1599: @itemize @bullet
1.2     ! noro     1600: \BJP
1.1       noro     1601: @item
                   1602: @code{lex_hensel_gsl()} $B$O(B @code{lex_hensel()} $B$N(B, @code{tolex_gsl()} $B$O(B
                   1603: @code{tolex()} $B$NJQ<o$G(B, $B7k2L$N$_$,0[$J$k(B.
                   1604: @code{tolex_gsl_d()} $B$O(B, $B4pDl7W;;$r(B, @code{procs} $B$G;XDj$5$l$k;R%W%m%;%9$K(B
                   1605: $BJ,;67W;;$5$;$k(B.
                   1606: @item
                   1607: $BF~NO$,(B 0 $B<!85%7%9%F%`$G(B, $B$=$N<-=q<0=g=x%0%l%V%J4pDl$,(B
                   1608: @code{[f0,x1-f1,...,xn-fn]} (@code{f0},...,@code{fn} $B$O(B
                   1609: @code{x0} $B$N(B 1 $BJQ?tB?9`<0(B) $B$J$k7A(B ($B$3$l$r(B SL $B7A<0$H8F$V(B) $B$r;}$D>l9g(B,
                   1610: @code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} $B$J$k%j%9%H(B ($B$3$l$r(B GSL $B7A<0$H8F$V(B)
                   1611: $B$rJV$9(B.
1.2     ! noro     1612: $B$3$3$G(B, @code{gi} $B$O(B, @code{di*f0'*fi-gi} $B$,(B @code{f0} $B$G3d$j@Z$l$k$h$&$J(B
1.1       noro     1613: @code{x0} $B$N(B1 $BJQ?tB?9`<0$G(B,
                   1614: $B2r$O(B @code{f0(x0)=0} $B$J$k(B @code{x0} $B$KBP$7(B, @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]}
                   1615: $B$H$J$k(B. $B<-=q<0=g=x%0%l%V%J4pDl$,>e$N$h$&$J7A$G$J$$>l9g(B, @code{tolex()} $B$K(B
                   1616: $B$h$kDL>o$N%0%l%V%J4pDl$rJV$9(B.
                   1617: @item
                   1618: GSL $B7A<0$K$h$jI=$5$l$k4pDl$O%0%l%V%J4pDl$G$O$J$$$,(B, $B0lHL$K78?t$,(B SL $B7A<0(B
                   1619: $B$N%0%l%V%J4pDl$h$jHs>o$K>.$5$$$?$a7W;;$bB.$/(B, $B2r$b5a$a$d$9$$(B.
                   1620: @code{tolex_gsl_d()} $B$GI=<($5$l$k;~4V$O(B, $B$3$NH!?t$,<B9T$5$l$F$$$k%W%m%;%9$K(B
                   1621: $B$*$$$F9T$o$l$?7W;;$KBP1~$7$F$$$F(B, $B;R%W%m%;%9$K$*$1$k;~4V$O4^$^$l$J$$(B.
1.2     ! noro     1622: \E
        !          1623: \BEG
        !          1624: @item
        !          1625: @code{lex_hensel_gsl()} and @code{lex_hensel()} are variants of
        !          1626: @code{tolex_gsl()} and @code{tolex()} respectively. The results are
        !          1627: Groebner basis or a kind of ideal basis, called GSL form.
        !          1628: @code{tolex_gsl_d()} does basis computations in parallel on child
        !          1629: processes specified in @code{procs}.
        !          1630:
        !          1631: @item
        !          1632: If the input is zero-dimensional and a lex order Groebner basis has
        !          1633: the form @code{[f0,x1-f1,...,xn-fn]} (@code{f0},...,@code{fn} are
        !          1634: univariate polynomials of @code{x0}; SL form), then this these
        !          1635: functions return a list such as
        !          1636: @code{[[x1,g1,d1],...,[xn,gn,dn],[x0,f0,f0']]} (GSL form).  In this list
        !          1637: @code{gi} is a univariate polynomial of @code{x0} such that
        !          1638: @code{di*f0'*fi-gi} divides @code{f0} and the roots of the input ideal is
        !          1639: @code{[x1=g1/(d1*f0'),...,xn=gn/(dn*f0')]} for @code{x0}
        !          1640: such that @code{f0(x0)=0}.
        !          1641: If the lex order Groebner basis does not have the above form,
        !          1642: these functions return
        !          1643: a lex order Groebner basis computed by @code{tolex()}.
        !          1644: @item
        !          1645: Though an ideal basis represented as GSL form is not a Groebner basis
        !          1646: we can expect that the coefficients are much smaller than those in a Groebner
        !          1647: basis and that the computation is efficient.
        !          1648: The CPU time shown after an execution of @code{tolex_gsl_d()} indicates
        !          1649: that of the master process, and it does not include the time in child
        !          1650: processes.
        !          1651: \E
1.1       noro     1652: @end itemize
                   1653:
                   1654: @example
                   1655: [103] K=katsura(5)$
                   1656: [104] V=[u5,u4,u3,u2,u1,u0]$
                   1657: [105] G0=gr(K,V,0)$
                   1658: [106] GSL=tolex_gsl(G0,V,0,V)$
                   1659: [107] GSL[0];
                   1660: [u1,8635837421130477667200000000*u0^31-...]
                   1661: [108] GSL[1];
                   1662: [u2,10352277157007342793600000000*u0^31-...]
                   1663: [109] GSL[5];
                   1664: [u0,11771021876193064124640000000*u0^32-...,376672700038178051988480000000*u0^31-...]
                   1665: @end example
                   1666:
                   1667: @table @t
1.2     ! noro     1668: \JP @item $B;2>H(B
        !          1669: \EG @item References
1.1       noro     1670: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl},
1.2     ! noro     1671: \JP @fref{$BJ,;67W;;(B}
        !          1672: \EG @fref{Distributed computation}
1.1       noro     1673: @end table
                   1674:
1.2     ! noro     1675: \JP @node gr_minipoly minipoly,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1676: \EG @node gr_minipoly minipoly,,, Functions for Groebner basis computation
1.1       noro     1677: @subsection @code{gr_minipoly}, @code{minipoly}
                   1678: @findex gr_minipoly
                   1679: @findex minipoly
                   1680:
                   1681: @table @t
                   1682: @item gr_minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v},@var{homo})
1.2     ! noro     1683: \JP :: $BB?9`<0$N(B, $B%$%G%"%k$rK!$H$7$?:G>.B?9`<0$N7W;;(B
        !          1684: \EG :: Computation of the minimal polynomial of a polynomial modulo an ideal
1.1       noro     1685: @item minipoly(@var{plist},@var{vlist},@var{order},@var{poly},@var{v})
1.2     ! noro     1686: \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, $BB?9`<0$N:G>.B?9`<0$N7W;;(B
        !          1687: \EG :: Computation of the minimal polynomial of a polynomial modulo an ideal
1.1       noro     1688: @end table
                   1689:
                   1690: @table @var
                   1691: @item return
1.2     ! noro     1692: \JP $BB?9`<0(B
        !          1693: \EG polynomial
1.1       noro     1694: @item plist, vlist
1.2     ! noro     1695: \JP $B%j%9%H(B
        !          1696: \EG list
1.1       noro     1697: @item order
1.2     ! noro     1698: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1699: \EG number, list or matrix
1.1       noro     1700: @item poly
1.2     ! noro     1701: \JP $BB?9`<0(B
        !          1702: \EG polynomial
1.1       noro     1703: @item v
1.2     ! noro     1704: \JP $BITDj85(B
        !          1705: \EG indeterminate
1.1       noro     1706: @item homo
1.2     ! noro     1707: \JP $B%U%i%0(B
        !          1708: \EG flag
1.1       noro     1709: @end table
                   1710:
                   1711: @itemize @bullet
1.2     ! noro     1712: \BJP
1.1       noro     1713: @item
                   1714: @code{gr_minipoly()} $B$O%0%l%V%J4pDl$N7W;;$+$i9T$$(B, @code{minipoly()} $B$O(B
                   1715: $BF~NO$r%0%l%V%J4pDl$H$_$J$9(B.
                   1716: @item
                   1717: $B%$%G%"%k(B I $B$,BN(B K $B>e$NB?9`<04D(B K[X] $B$N(B 0 $B<!85%$%G%"%k$N;~(B,
                   1718: K[@var{v}] $B$N85(B f(@var{v}) $B$K(B f(@var{p}) mod I $B$rBP1~$5$;$k(B
                   1719: $B4D=`F17?$N3K$O(B 0 $B$G$J$$B?9`<0$K$h$j@8@.$5$l$k(B. $B$3$N@8@.85$r(B @var{p}
                   1720: $B$N(B, $BK!(B @var{I} $B$G$N:G>.B?9`<0$H8F$V(B.
                   1721: @item
                   1722: @code{gr_minipoly()}, @code{minipoly()} $B$O(B, $BB?9`<0(B @var{p} $B$N:G>.B?9`<0(B
                   1723: $B$r5a$a(B, @var{v} $B$rJQ?t$H$9$kB?9`<0$H$7$FJV$9(B.
                   1724: @item
                   1725: $B:G>.B?9`<0$O(B, $B%0%l%V%J4pDl$N(B 1 $B$D$N85$H$7$F7W;;$9$k$3$H$b$G$-$k$,(B,
                   1726: $B:G>.B?9`<0$N$_$r5a$a$?$$>l9g(B, @code{minipoly()}, @code{gr_minipoly()} $B$O(B
                   1727: $B%0%l%V%J4pDl$rMQ$$$kJ}K!$KHf$Y$F8zN($,$h$$(B.
                   1728: @item
                   1729: @code{gr_minipoly()} $B$K;XDj$9$k9`=g=x$H$7$F$O(B, $BDL>oA4<!?t5U<-=q<0=g=x$r(B
                   1730: $BMQ$$$k(B.
1.2     ! noro     1731: \E
        !          1732: \BEG
        !          1733: @item
        !          1734: @code{gr_minipoly()} begins by computing a Groebner basis.
        !          1735: @code{minipoly()} regards an input as a Groebner basis with respect to
        !          1736: the variable order @var{vlist} and the order type @var{order}.
        !          1737: @item
        !          1738: Let K be a field. If an ideal @var{I} in K[X] is zero-dimensional, then, for
        !          1739: a polynomial @var{p} in K[X], the kernel of a homomorphism from
        !          1740: K[@var{v}] to K[X]/@var{I} which maps f(@var{v}) to f(@var{p}) mod @var{I}
        !          1741: is generated by a polynomial. The generator is called the minimal polynomial
        !          1742: of @var{p} modulo @var{I}.
        !          1743: @item
        !          1744: @code{gr_minipoly()} and @code{minipoly()} computes the minimal polynomial
        !          1745: of a polynomial @var{p} and returns it as a polynomial of @var{v}.
        !          1746: @item
        !          1747: The minimal polynomial can be computed as an element of a Groebner basis.
        !          1748: But if we are only interested in the minimal polynomial,
        !          1749: @code{minipoly()} and @code{gr_minipoly()} can compute it more efficiently
        !          1750: than methods using Groebner basis computation.
        !          1751: @item
        !          1752: It is recommended to use a degree reverse lex order as a term order
        !          1753: for @code{gr_minipoly()}.
        !          1754: \E
1.1       noro     1755: @end itemize
                   1756:
                   1757: @example
                   1758: [117] G=tolex(G0,V,0,V)$
                   1759: 43.818sec + gc : 11.202sec
                   1760: [118] GSL=tolex_gsl(G0,V,0,V)$
                   1761: 17.123sec + gc : 2.590sec
                   1762: [119] MP=minipoly(G0,V,0,u0,z)$
                   1763: 4.370sec + gc : 780msec
                   1764: @end example
                   1765:
                   1766: @table @t
1.2     ! noro     1767: \JP @item $B;2>H(B
        !          1768: \EG @item References
1.1       noro     1769: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl}.
                   1770: @end table
                   1771:
1.2     ! noro     1772: \JP @node tolexm minipolym,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1773: \EG @node tolexm minipolym,,, Functions for Groebner basis computation
1.1       noro     1774: @subsection @code{tolexm}, @code{minipolym}
                   1775: @findex tolexm
                   1776: @findex minipolym
                   1777:
                   1778: @table @t
                   1779: @item tolexm(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{mod})
1.2     ! noro     1780: \JP :: $BK!(B @var{mod} $B$G$N4pDlJQ49$K$h$k%0%l%V%J4pDl7W;;(B
        !          1781: \EG :: Groebner basis computation modulo @var{mod} by change of ordering.
1.1       noro     1782: @item minipolym(@var{plist},@var{vlist1},@var{order},@var{poly},@var{v},@var{mod})
1.2     ! noro     1783: \JP :: $BK!(B @var{mod} $B$G$N%0%l%V%J4pDl$K$h$kB?9`<0$N:G>.B?9`<0$N7W;;(B
        !          1784: \EG :: Minimal polynomial computation modulo @var{mod} the same method as
1.1       noro     1785: @end table
                   1786:
                   1787: @table @var
                   1788: @item return
1.2     ! noro     1789: \JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B
        !          1790: \EG @code{tolexm()} : list, @code{minipolym()} : polynomial
1.1       noro     1791: @item plist, vlist1, vlist2
1.2     ! noro     1792: \JP $B%j%9%H(B
        !          1793: \EG list
1.1       noro     1794: @item order
1.2     ! noro     1795: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1796: \EG number, list or matrix
1.1       noro     1797: @item mod
1.2     ! noro     1798: \JP $BAG?t(B
        !          1799: \EG prime
1.1       noro     1800: @end table
                   1801:
                   1802: @itemize @bullet
1.2     ! noro     1803: \BJP
1.1       noro     1804: @item
                   1805: $BF~NO(B @var{plist} $B$O$$$:$l$b(B $BJQ?t=g=x(B @var{vlist1}, $B9`=g=x7?(B @var{order},
                   1806: $BK!(B @var{mod} $B$K$*$1$k%0%l%V%J4pDl$G$J$1$l$P$J$i$J$$(B.
                   1807: @item
                   1808: @code{minipolym()} $B$O(B @code{minipoly} $B$KBP1~$9$k7W;;$rK!(B @var{mod}$B$G9T$&(B.
                   1809: @item
                   1810: @code{tolexm()} $B$O(B FGLM $BK!$K$h$k4pDlJQ49$K$h$j(B @var{vlist2},
                   1811: $B<-=q<0=g=x$K$h$k%0%l%V%J4pDl$r7W;;$9$k(B.
1.2     ! noro     1812: \E
        !          1813: \BEG
        !          1814: @item
        !          1815: An input @var{plist} must be a Groebner basis modulo @var{mod}
        !          1816: with respect to the variable order @var{vlist1} and the order type @var{order}.
        !          1817: @item
        !          1818: @code{minipolym()} executes the same computation as in @code{minipoly}.
        !          1819: @item
        !          1820: @code{tolexm()} computes a lex order Groebner basis modulo @var{mod}
        !          1821: with respect to the variable order @var{vlist2}, by using FGLM algorithm.
        !          1822: \E
1.1       noro     1823: @end itemize
                   1824:
                   1825: @example
                   1826: [197] tolexm(G0,V,0,V,31991);
                   1827: [8271*u0^31+10435*u0^30+816*u0^29+26809*u0^28+...,...]
                   1828: [198] minipolym(G0,V,0,u0,z,31991);
                   1829: z^32+11405*z^31+20868*z^30+21602*z^29+...
                   1830: @end example
                   1831:
                   1832: @table @t
1.2     ! noro     1833: \JP @item $B;2>H(B
        !          1834: \EG @item References
1.1       noro     1835: @fref{lex_hensel lex_tl tolex tolex_d tolex_tl},
                   1836: @fref{gr_minipoly minipoly}.
                   1837: @end table
                   1838:
1.2     ! noro     1839: \JP @node dp_gr_main dp_gr_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1840: \EG @node dp_gr_main dp_gr_mod_main,,, Functions for Groebner basis computation
1.1       noro     1841: @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}
                   1842: @findex dp_gr_main
                   1843: @findex dp_gr_mod_main
                   1844:
                   1845: @table @t
                   1846: @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
                   1847: @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
1.2     ! noro     1848: \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
        !          1849: \EG :: Groebner basis computation (built-in functions)
1.1       noro     1850: @end table
                   1851:
                   1852: @table @var
                   1853: @item return
1.2     ! noro     1854: \JP $B%j%9%H(B
        !          1855: \EG list
1.1       noro     1856: @item plist, vlist
1.2     ! noro     1857: \JP $B%j%9%H(B
        !          1858: \EG list
1.1       noro     1859: @item order
1.2     ! noro     1860: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1861: \EG number, list or matrix
1.1       noro     1862: @item homo
1.2     ! noro     1863: \JP $B%U%i%0(B
        !          1864: \EG flag
1.1       noro     1865: @item modular
1.2     ! noro     1866: \JP $B%U%i%0$^$?$OAG?t(B
        !          1867: \EG flag or prime
1.1       noro     1868: @end table
                   1869:
                   1870: @itemize @bullet
1.2     ! noro     1871: \BJP
1.1       noro     1872: @item
                   1873: $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()},
                   1874: @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B
                   1875: $B$r9T$C$F$$$k(B.
                   1876: @item
                   1877: $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B
                   1878: $B$r<B9T$9$k(B.
                   1879: @item
                   1880: @code{dp_gr_mod_main()} $B$KBP$7$F$O(B, @var{modular} $B$O(B, GF(@var{modular}) $B>e(B
                   1881: $B$G$N7W;;$r0UL#$9$k(B.
                   1882: @code{dp_gr_main()} $B$KBP$7$F$O(B, @var{modular} $B$O<!$N$h$&$J0UL#$r;}$D(B.
                   1883: @enumerate
                   1884: @item
                   1885: @var{modular} $B$,(B 1 $B$N;~(B, trace-lifting $B$K$h$k7W;;$r9T$&(B. $BAG?t$O(B
                   1886: @code{lprime(0)} $B$+$i=g$K@.8y$9$k$^$G(B @code{lprime()} $B$r8F$S=P$7$F@8@.$9$k(B.
                   1887: @item
                   1888: @var{modular} $B$,(B 2 $B0J>e$N<+A3?t$N;~(B, $B$=$NCM$rAG?t$H$_$J$7$F(B trace-lifting
                   1889: $B$r9T$&(B. $B$=$NAG?t$G<:GT$7$?>l9g(B, 0 $B$rJV$9(B.
                   1890: @item
                   1891: @var{modular} $B$,Ii$N>l9g(B,
                   1892: @var{-modular} $B$KBP$7$F>e=R$N5,B'$,E,MQ$5$l$k$,(B, trace-lifting $B$N:G=*(B
                   1893: $BCJ3,$N%0%l%V%J4pDl%A%'%C%/$H%$%G%"%k%a%s%P%7%C%W%A%'%C%/$,>JN,$5$l$k(B.
                   1894: @end enumerate
                   1895:
                   1896: @item
                   1897: @code{gr(P,V,O)} $B$O(B @code{dp_gr_main(P,V,0,1,O)}, @code{hgr(P,V,O)} $B$O(B
                   1898: @code{dp_gr_main(P,V,1,1,O)}, @code{gr_mod(P,V,O,M)} $B$O(B
                   1899: @code{dp_gr_mod_main(P,V,0,M,O)} $B$r$=$l$>$l<B9T$9$k(B.
                   1900: @item
                   1901: @var{homo}, @var{modular} $B$NB>$K(B, @code{dp_gr_flags()} $B$G@_Dj$5$l$k(B
                   1902: $B$5$^$6$^$J%U%i%0$K$h$j7W;;$,@)8f$5$l$k(B.
1.2     ! noro     1903: \E
        !          1904: \BEG
        !          1905: @item
        !          1906: These functions are fundamental built-in functions for Groebner basis
        !          1907: computation and @code{gr()},@code{hgr()} and @code{gr_mod()}
        !          1908: are all interfaces to these functions.
        !          1909: @item
        !          1910: If @var{homo} is not equal to 0, homogenization is applied before entering
        !          1911: Buchberger algorithm
        !          1912: @item
        !          1913: For @code{dp_gr_mod_main()}, @var{modular} means a computation over
        !          1914: GF(@var{modular}).
        !          1915: For @code{dp_gr_main()}, @var{modular} has the following mean.
        !          1916: @enumerate
        !          1917: @item
        !          1918: If @var{modular} is 1 , trace lifting is used. Primes for trace lifting
        !          1919: are generated by @code{lprime()}, starting from @code{lprime(0)}, until
        !          1920: the computation succeeds.
        !          1921: @item
        !          1922: If @var{modular} is an integer  greater than 1, the integer is regarded as a
        !          1923: prime and trace lifting is executed by using the prime. If the computation
        !          1924: fails then 0 is returned.
        !          1925: @item
        !          1926: If @var{modular} is negative, the above rule is applied for @var{-modular}
        !          1927: but the Groebner basis check and ideal-membership check are omitted in
        !          1928: the last stage of trace lifting.
        !          1929: @end enumerate
        !          1930:
        !          1931: @item
        !          1932: @code{gr(P,V,O)}, @code{hgr(P,V,O)} and @code{gr_mod(P,V,O,M)} execute
        !          1933: @code{dp_gr_main(P,V,0,1,O)}, @code{dp_gr_main(P,V,1,1,O)}
        !          1934: and @code{dp_gr_mod_main(P,V,0,M,O)} respectively.
        !          1935: @item
        !          1936: Actual computation is controlled by various parameters set by
        !          1937: @code{dp_gr_flags()}, other then by @var{homo} and @var{modular}.
        !          1938: \E
1.1       noro     1939: @end itemize
                   1940:
                   1941: @table @t
1.2     ! noro     1942: \JP @item $B;2>H(B
        !          1943: \EG @item References
1.1       noro     1944: @fref{dp_ord},
                   1945: @fref{dp_gr_flags dp_gr_print},
                   1946: @fref{gr hgr gr_mod},
1.2     ! noro     1947: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
        !          1948: \EG @fref{Controlling Groebner basis computations}
1.1       noro     1949: @end table
                   1950:
1.2     ! noro     1951: \JP @node dp_f4_main dp_f4_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          1952: \EG @node dp_f4_main dp_f4_mod_main,,, Functions for Groebner basis computation
1.1       noro     1953: @subsection @code{dp_f4_main}, @code{dp_f4_mod_main}
                   1954: @findex dp_f4_main
                   1955: @findex dp_f4_mod_main
                   1956:
                   1957: @table @t
                   1958: @item dp_f4_main(@var{plist},@var{vlist},@var{order})
                   1959: @itemx dp_f4_mod_main(@var{plist},@var{vlist},@var{order})
1.2     ! noro     1960: \JP :: F4 $B%"%k%4%j%:%`$K$h$k%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
        !          1961: \EG :: Groebner basis computation by F4 algorithm (built-in functions)
1.1       noro     1962: @end table
                   1963:
                   1964: @table @var
                   1965: @item return
1.2     ! noro     1966: \JP $B%j%9%H(B
        !          1967: \EG list
1.1       noro     1968: @item plist, vlist
1.2     ! noro     1969: \JP $B%j%9%H(B
        !          1970: \EG list
1.1       noro     1971: @item order
1.2     ! noro     1972: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          1973: \EG number, list or matrix
1.1       noro     1974: @end table
                   1975:
                   1976: @itemize @bullet
1.2     ! noro     1977: \BJP
1.1       noro     1978: @item
                   1979: F4 $B%"%k%4%j%:%`$K$h$j%0%l%V%J4pDl$N7W;;$r9T$&(B.
                   1980: @item
                   1981: F4 $B%"%k%4%j%:%`$O(B, J.C. Faugere $B$K$h$jDs>'$5$l$??7@$Be%0%l%V%J4pDl(B
                   1982: $B;;K!$G$"$j(B, $BK\<BAu$O(B, $BCf9q>jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B
                   1983: $B;n83E*$J<BAu$G$"$k(B.
                   1984: @item
                   1985: $B0z?t$*$h$SF0:n$O$=$l$>$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()}
                   1986: $B$HF1MM$G$"$k(B.
1.2     ! noro     1987: \E
        !          1988: \BEG
        !          1989: @item
        !          1990: These functions compute Groebner bases by F4 algorithm.
        !          1991: @item
        !          1992: F4 is a new generation algorithm for Groebner basis computation
        !          1993: invented by J.C. Faugere. The current implementation of @code{dp_f4_main()}
        !          1994: uses Chinese Remainder theorem and not highly optimized.
        !          1995: @item
        !          1996: Arguments and actions are the same as those of
        !          1997: @code{dp_gr_main()}, @code{dp_gr_mod_main()}.
        !          1998: \E
1.1       noro     1999: @end itemize
                   2000:
                   2001: @table @t
1.2     ! noro     2002: \JP @item $B;2>H(B
        !          2003: \EG @item References
1.1       noro     2004: @fref{dp_ord},
                   2005: @fref{dp_gr_flags dp_gr_print},
                   2006: @fref{gr hgr gr_mod},
1.2     ! noro     2007: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
        !          2008: \EG @fref{Controlling Groebner basis computations}
1.1       noro     2009: @end table
                   2010:
1.2     ! noro     2011: \JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2012: \EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation
1.1       noro     2013: @subsection @code{dp_gr_flags}, @code{dp_gr_print}
                   2014: @findex dp_gr_flags
                   2015: @findex dp_gr_print
                   2016:
                   2017: @table @t
                   2018: @item dp_gr_flags([@var{list}])
                   2019: @itemx dp_gr_print([@var{0|1}])
1.2     ! noro     2020: \JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B
        !          2021: \BEG :: Set and show various parameters for cotrolling computations
        !          2022: and showing informations.
        !          2023: \E
1.1       noro     2024: @end table
                   2025:
                   2026: @table @var
                   2027: @item return
1.2     ! noro     2028: \JP $B@_DjCM(B
        !          2029: \EG value currently set
1.1       noro     2030: @item list
1.2     ! noro     2031: \JP $B%j%9%H(B
        !          2032: \EG list
1.1       noro     2033: @end table
                   2034:
                   2035: @itemize @bullet
1.2     ! noro     2036: \BJP
1.1       noro     2037: @item
                   2038: @code{dp_gr_main()}, @code{dp_gr_mod_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B
                   2039: $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.
                   2040: @item
                   2041: $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.
                   2042: @item
                   2043: $B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B
                   2044: $B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B.
                   2045: @item
                   2046: @code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print} $B$NCM$rD>@\@_Dj(B, $B;2>H(B
                   2047: $B$G$-$k(B. $B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B
                   2048: $BH!?t$K$*$$$F(B, @code{Print} $B$NCM$r8+$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B
                   2049: $B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B.
1.2     ! noro     2050: \E
        !          2051: \BEG
        !          2052: @item
        !          2053: @code{dp_gr_flags()} sets and shows various parameters for Groebner basis
        !          2054:  computation.
        !          2055: @item
        !          2056: If no argument is specified the current settings are returned.
        !          2057: @item
        !          2058: Arguments must be specified as a list such as
        !          2059:  @code{["Print",1,"NoSugar",1,...]}. Names of parameters must be character
        !          2060: strings.
        !          2061: @item
        !          2062: @code{dp_gr_print()} is used to set and show the value of a parameter
        !          2063: @code{Print}. This functions is prepared to get quickly the value of
        !          2064: @code{Print} when a user defined function calling @code{dp_gr_main()} etc.
        !          2065: uses the value as a flag for showing intermediate informations.
        !          2066: \E
1.1       noro     2067: @end itemize
                   2068:
                   2069: @table @t
1.2     ! noro     2070: \JP @item $B;2>H(B
        !          2071: \EG @item References
        !          2072: \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}
        !          2073: \EG @fref{Controlling Groebner basis computations}
1.1       noro     2074: @end table
                   2075:
1.2     ! noro     2076: \JP @node dp_ord,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2077: \EG @node dp_ord,,, Functions for Groebner basis computation
1.1       noro     2078: @subsection @code{dp_ord}
                   2079: @findex dp_ord
                   2080:
                   2081: @table @t
                   2082: @item dp_ord([@var{order}])
1.2     ! noro     2083: \JP :: $BJQ?t=g=x7?$N@_Dj(B, $B;2>H(B
        !          2084: \EG :: Set and show the ordering type.
1.1       noro     2085: @end table
                   2086:
                   2087: @table @var
                   2088: @item return
1.2     ! noro     2089: \JP $BJQ?t=g=x7?(B ($B?t(B, $B%j%9%H$^$?$O9TNs(B)
        !          2090: \EG ordering type (number, list or matrix)
1.1       noro     2091: @item order
1.2     ! noro     2092: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          2093: \EG number, list or matrix
1.1       noro     2094: @end table
                   2095:
                   2096: @itemize @bullet
1.2     ! noro     2097: \BJP
1.1       noro     2098: @item
                   2099: $B0z?t$,$"$k;~(B, $BJQ?t=g=x7?$r(B @var{order} $B$K@_Dj$9$k(B. $B0z?t$,$J$$;~(B,
                   2100: $B8=:_@_Dj$5$l$F$$$kJQ?t=g=x7?$rJV$9(B.
                   2101:
                   2102: @item
                   2103: $BJ,;6I=8=B?9`<0$K4X$9$kH!?t(B, $B1i;;$O0z?t$H$7$FJQ?t=g=x7?$r$H$k$b$N$H$H$i$J$$$b$N(B
                   2104: $B$,$"$j(B, $B$H$i$J$$$b$N$K4X$7$F$O(B, $B$=$N;~E@$G@_Dj$5$l$F$$$kCM$rMQ$$$F7W;;$,(B
                   2105: $B9T$o$l$k(B.
                   2106:
                   2107: @item
                   2108: @code{gr()} $B$J$I(B, $B0z?t$H$7$FJQ?t=g=x7?$r$H$k$b$N$O(B, $BFbIt$G(B @code{dp_ord()}
                   2109: $B$r8F$S=P$7(B, $BJQ?t=g=x7?$r@_Dj$9$k(B. $B$3$N@_Dj$O(B, $B7W;;=*N;8e$b@8$-;D$k(B.
                   2110:
                   2111: @item
                   2112: $BJ,;6I=8=B?9`<0$N;MB'1i;;$b(B, $B@_Dj$5$l$F$$$kCM$rMQ$$$F7W;;$5$l$k(B. $B=>$C$F(B,
                   2113: $B$=$NB?9`<0$,@8@.$5$l$?;~E@$K$*$1$kJQ?t=g=x7?$,(B, $B;MB'1i;;;~$K@5$7$/@_Dj(B
                   2114: $B$5$l$F$$$J$1$l$P$J$i$J$$(B. $B$^$?(B, $B1i;;BP>]$H$J$kB?9`<0$O(B, $BF10l$NJQ?t=g=x(B
                   2115: $B7?$K4p$E$$$F@8@.$5$l$?$b$N$G$J$1$l$P$J$i$J$$(B.
                   2116:
                   2117: @item
                   2118: $B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B
                   2119: $BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B.
1.2     ! noro     2120: \E
        !          2121: \BEG
        !          2122: @item
        !          2123: If an argument is specified, the function
        !          2124: sets the current ordering type to @var{order}.
        !          2125: If no argument is specified, the function returns the ordering
        !          2126: type currently set.
        !          2127:
        !          2128: @item
        !          2129: There are two types of functions concerning distributed polynomial,
        !          2130: functions which take a ordering type and those which don't take it.
        !          2131: The latter ones use the current setting.
        !          2132:
        !          2133: @item
        !          2134: Functions such as @code{gr()}, which need a ordering type as an argument,
        !          2135: call @code{dp_ord()} internally during the execution.
        !          2136: The setting remains after the execution.
        !          2137:
        !          2138: Fundamental arithmetics for distributed polynomial also use the current
        !          2139: setting. Therefore, when such arithmetics for distributed polynomials
        !          2140: are done, the current setting must coincide with the ordering type
        !          2141: which was used upon the creation of the polynomials. It is assumed
        !          2142: that such polynomials were generated under the same ordering type.
        !          2143:
        !          2144: @item
        !          2145: Type of term ordering must be correctly set by this function
        !          2146: when functions other than top level functions are called directly.
        !          2147: \E
1.1       noro     2148: @end itemize
                   2149:
                   2150: @example
                   2151: [19] dp_ord(0)$
                   2152: [20] <<1,2,3>>+<<3,1,1>>;
                   2153: (1)*<<1,2,3>>+(1)*<<3,1,1>>
                   2154: [21] dp_ord(2)$
                   2155: [22] <<1,2,3>>+<<3,1,1>>;
                   2156: (1)*<<3,1,1>>+(1)*<<1,2,3>>
                   2157: @end example
                   2158:
                   2159: @table @t
1.2     ! noro     2160: \JP @item $B;2>H(B
        !          2161: \EG @item References
        !          2162: \JP @fref{$B9`=g=x$N@_Dj(B}
        !          2163: \EG @fref{Setting term orderings}
1.1       noro     2164: @end table
                   2165:
1.2     ! noro     2166: \JP @node dp_ptod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2167: \EG @node dp_ptod,,, Functions for Groebner basis computation
1.1       noro     2168: @subsection @code{dp_ptod}
                   2169: @findex dp_ptod
                   2170:
                   2171: @table @t
                   2172: @item dp_ptod(@var{poly},@var{vlist})
1.2     ! noro     2173: \JP :: $BB?9`<0$rJ,;6I=8=B?9`<0$KJQ49$9$k(B.
        !          2174: \EG :: Converts an ordinary polynomial into a distributed polynomial.
1.1       noro     2175: @end table
                   2176:
                   2177: @table @var
                   2178: @item return
1.2     ! noro     2179: \JP $BJ,;6I=8=B?9`<0(B
        !          2180: \EG distributed polynomial
1.1       noro     2181: @item poly
1.2     ! noro     2182: \JP $BB?9`<0(B
        !          2183: \EG polynomial
1.1       noro     2184: @item vlist
1.2     ! noro     2185: \JP $B%j%9%H(B
        !          2186: \EG list
1.1       noro     2187: @end table
                   2188:
                   2189: @itemize @bullet
1.2     ! noro     2190: \BJP
1.1       noro     2191: @item
                   2192: $BJQ?t=g=x(B @var{vlist} $B$*$h$S8=:_$NJQ?t=g=x7?$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$9$k(B.
                   2193: @item
                   2194: @var{vlist} $B$K4^$^$l$J$$ITDj85$O(B, $B78?tBN$KB0$9$k$H$7$FJQ49$5$l$k(B.
1.2     ! noro     2195: \E
        !          2196: \BEG
        !          2197: @item
        !          2198: According to the variable ordering @var{vlist} and current
        !          2199: type of term ordering, this function converts an ordinary
        !          2200: polynomial into a distributed polynomial.
        !          2201: @item
        !          2202: Indeterminates not included in @var{vlist} are regarded to belong to
        !          2203: the coefficient field.
        !          2204: \E
1.1       noro     2205: @end itemize
                   2206:
                   2207: @example
                   2208: [50] dp_ord(0);
                   2209: 1
                   2210: [51] dp_ptod((x+y+z)^2,[x,y,z]);
                   2211: (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>
                   2212: +(1)*<<0,0,2>>
                   2213: [52] dp_ptod((x+y+z)^2,[x,y]);
                   2214: (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>
                   2215: @end example
                   2216:
                   2217: @table @t
1.2     ! noro     2218: \JP @item $B;2>H(B
        !          2219: \EG @item References
1.1       noro     2220: @fref{dp_dtop},
                   2221: @fref{dp_ord}.
                   2222: @end table
                   2223:
1.2     ! noro     2224: \JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2225: \EG @node dp_dtop,,, Functions for Groebner basis computation
1.1       noro     2226: @subsection @code{dp_dtop}
                   2227: @findex dp_dtop
                   2228:
                   2229: @table @t
                   2230: @item dp_dtop(@var{dpoly},@var{vlist})
1.2     ! noro     2231: \JP :: $BJ,;6I=8=B?9`<0$rB?9`<0$KJQ49$9$k(B.
        !          2232: \EG :: Converts a distributed polynomial into an ordinary polynomial.
1.1       noro     2233: @end table
                   2234:
                   2235: @table @var
                   2236: @item return
1.2     ! noro     2237: \JP $BB?9`<0(B
        !          2238: \EG polynomial
1.1       noro     2239: @item dpoly
1.2     ! noro     2240: \JP $BJ,;6I=8=B?9`<0(B
        !          2241: \EG distributed polynomial
1.1       noro     2242: @item vlist
1.2     ! noro     2243: \JP $B%j%9%H(B
        !          2244: \EG list
1.1       noro     2245: @end table
                   2246:
                   2247: @itemize @bullet
1.2     ! noro     2248: \BJP
1.1       noro     2249: @item
                   2250: $BJ,;6I=8=B?9`<0$r(B, $BM?$($i$l$?ITDj85%j%9%H$rMQ$$$FB?9`<0$KJQ49$9$k(B.
                   2251: @item
                   2252: $BITDj85%j%9%H$O(B, $BD9$5J,;6I=8=B?9`<0$NJQ?t$N8D?t$H0lCW$7$F$$$l$P2?$G$b$h$$(B.
1.2     ! noro     2253: \E
        !          2254: \BEG
        !          2255: @item
        !          2256: This function converts a distributed polynomial into an ordinary polynomial
        !          2257: according to a list of indeterminates @var{vlist}.
        !          2258: @item
        !          2259: @var{vlist} is such a list that its length coincides with the number of
        !          2260: variables of @var{dpoly}.
        !          2261: \E
1.1       noro     2262: @end itemize
                   2263:
                   2264: @example
                   2265: [53] T=dp_ptod((x+y+z)^2,[x,y]);
                   2266: (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>
                   2267: [54] P=dp_dtop(T,[a,b]);
                   2268: z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
                   2269: @end example
                   2270:
1.2     ! noro     2271: \JP @node dp_mod dp_rat,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2272: \EG @node dp_mod dp_rat,,, Functions for Groebner basis computation
1.1       noro     2273: @subsection @code{dp_mod}, @code{dp_rat}
                   2274: @findex dp_mod
                   2275: @findex dp_rat
                   2276:
                   2277: @table @t
                   2278: @item dp_mod(@var{p},@var{mod},@var{subst})
1.2     ! noro     2279: \JP :: $BM-M}?t78?tJ,;6I=8=B?9`<0$NM-8BBN78?t$X$NJQ49(B
        !          2280: \EG :: Converts a disributed polynomial into one with coefficients in a finite field.
1.1       noro     2281: @item dp_rat(@var{p})
1.2     ! noro     2282: \JP :: $BM-8BBN78?tJ,;6I=8=B?9`<0$NM-M}?t78?t$X$NJQ49(B
        !          2283: \BEG
        !          2284: :: Converts a distributed polynomial with coefficients in a finite field into
        !          2285: one with coefficients in the rationals.
        !          2286: \E
1.1       noro     2287: @end table
                   2288:
                   2289: @table @var
                   2290: @item return
1.2     ! noro     2291: \JP $BJ,;6I=8=B?9`<0(B
        !          2292: \EG distributed polynomial
1.1       noro     2293: @item p
1.2     ! noro     2294: \JP $BJ,;6I=8=B?9`<0(B
        !          2295: \EG distributed polynomial
1.1       noro     2296: @item mod
1.2     ! noro     2297: \JP $BAG?t(B
        !          2298: \EG prime
1.1       noro     2299: @item subst
1.2     ! noro     2300: \JP $B%j%9%H(B
        !          2301: \EG list
1.1       noro     2302: @end table
                   2303:
                   2304: @itemize @bullet
1.2     ! noro     2305: \BJP
1.1       noro     2306: @item
                   2307: @code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$O(B, $BF~NO$H$7$FM-8BBN78?t$N(B
                   2308: $BJ,;6I=8=B?9`<0$rI,MW$H$9$k(B. $B$3$N$h$&$J>l9g(B, @code{dp_mod()} $B$K$h$j(B
                   2309: $BM-M}?t78?tJ,;6I=8=B?9`<0$rJQ49$7$FMQ$$$k$3$H$,$G$-$k(B. $B$^$?(B, $BF@$i$l$?(B
                   2310: $B7k2L$O(B, $BM-8BBN78?tB?9`<0$H$O1i;;$G$-$k$,(B, $BM-M}?t78?tB?9`<0$H$O1i;;$G$-$J$$(B
                   2311: $B$?$a(B, @code{dp_rat()} $B$K$h$jJQ49$9$kI,MW$,$"$k(B.
                   2312: @item
                   2313: $BM-8BBN78?t$N1i;;$K$*$$$F$O(B, $B$"$i$+$8$a(B @code{setmod()} $B$K$h$jM-8BBN$N85$N(B
                   2314: $B8D?t$r;XDj$7$F$*$/I,MW$,$"$k(B.
                   2315: @item
                   2316: @var{subst} $B$O(B, $B78?t$,M-M}<0$N>l9g(B, $B$=$NM-M}<0$NJQ?t$K$"$i$+$8$a?t$rBeF~(B
                   2317: $B$7$?8eM-8BBN78?t$KJQ49$9$k$H$$$&A`:n$r9T$&:]$N(B, $BBeF~CM$r;XDj$9$k$b$N$G(B,
                   2318: @code{[[@var{var},@var{value}],...]} $B$N7A$N%j%9%H$G$"$k(B.
1.2     ! noro     2319: \E
        !          2320: \BEG
        !          2321: @item
        !          2322: @code{dp_nf_mod()} and @code{dp_true_nf_mod()} require
        !          2323: distributed polynomials with coefficients in a finite field as arguments.
        !          2324: @code{dp_mod()} is used to convert distributed polynomials with rational
        !          2325: number coefficients into appropriate ones.
        !          2326: Polynomials with coefficients in a finite field
        !          2327: cannot be used as inputs of operations with polynomials
        !          2328: with rational number coefficients. @code{dp_rat()} is used for such cases.
        !          2329: @item
        !          2330: The ground finite field must be set in advance by using @code{setmod()}.
        !          2331: @item
        !          2332: @var{subst} is such a list as @code{[[@var{var},@var{value}],...]}.
        !          2333: This is valid when the ground field of the input polynomial is a
        !          2334: rational function field. @var{var}'s are variables in the ground field and
        !          2335: the list means that @var{value} is substituted for @var{var} before
        !          2336: converting the coefficients into elements of a finite field.
        !          2337: \E
1.1       noro     2338: @end itemize
                   2339:
                   2340: @example
                   2341: @end example
                   2342:
                   2343: @table @t
1.2     ! noro     2344: \JP @item $B;2>H(B
        !          2345: \EG @item References
1.1       noro     2346: @fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod},
                   2347: @fref{subst psubst},
                   2348: @fref{setmod}.
                   2349: @end table
                   2350:
1.2     ! noro     2351: \JP @node dp_homo dp_dehomo,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2352: \EG @node dp_homo dp_dehomo,,, Functions for Groebner basis computation
1.1       noro     2353: @subsection @code{dp_homo}, @code{dp_dehomo}
                   2354: @findex dp_homo
                   2355: @findex dp_dehomo
                   2356:
                   2357: @table @t
                   2358: @item dp_homo(@var{dpoly})
1.2     ! noro     2359: \JP :: $BJ,;6I=8=B?9`<0$N@F<!2=(B
        !          2360: \EG :: Homogenize a distributed polynomial
1.1       noro     2361: @item dp_dehomo(@var{dpoly})
1.2     ! noro     2362: \JP :: $B@F<!J,;6I=8=B?9`<0$NHs@F<!2=(B
        !          2363: \EG :: Dehomogenize a homogenious distributed polynomial
1.1       noro     2364: @end table
                   2365:
                   2366: @table @var
                   2367: @item return
1.2     ! noro     2368: \JP $BJ,;6I=8=B?9`<0(B
        !          2369: \EG distributed polynomial
1.1       noro     2370: @item dpoly
1.2     ! noro     2371: \JP $BJ,;6I=8=B?9`<0(B
        !          2372: \EG distributed polynomial
1.1       noro     2373: @end table
                   2374:
                   2375: @itemize @bullet
1.2     ! noro     2376: \BJP
1.1       noro     2377: @item
                   2378: @code{dp_homo()} $B$O(B, @var{dpoly} $B$N(B $B3F9`(B @var{t} $B$K$D$$$F(B, $B;X?t%Y%/%H%k$ND9$5$r(B
                   2379: 1 $B?-$P$7(B, $B:G8e$N@.J,$NCM$r(B @var{d}-@code{deg(@var{t})}
                   2380: (@var{d} $B$O(B @var{dpoly} $B$NA4<!?t(B) $B$H$7$?J,;6I=8=B?9`<0$rJV$9(B.
                   2381: @item
                   2382: @code{dp_dehomo()} $B$O(B, @var{dpoly} $B$N3F9`$K$D$$$F(B, $B;X?t%Y%/%H%k$N:G8e$N@.J,(B
                   2383: $B$r<h$j=|$$$?J,;6B?9`<0$rJV$9(B.
                   2384: @item
                   2385: $B$$$:$l$b(B, $B@8@.$5$l$?B?9`<0$rMQ$$$?1i;;$r9T$&>l9g(B, $B$=$l$i$KE,9g$9$k9`=g=x$r(B
                   2386: $B@5$7$/@_Dj$9$kI,MW$,$"$k(B.
                   2387: @item
                   2388: @code{hgr()} $B$J$I$K$*$$$F(B, $BFbItE*$KMQ$$$i$l$F$$$k(B.
1.2     ! noro     2389: \E
        !          2390: \BEG
        !          2391: @item
        !          2392: @code{dp_homo()} makes a copy of @var{dpoly}, extends
        !          2393: the length of the exponent vector of each term @var{t} in the copy by 1,
        !          2394: and sets the value of the newly appended
        !          2395: component to @var{d}-@code{deg(@var{t})}, where @var{d} is the total
        !          2396: degree of @var{dpoly}.
        !          2397: @item
        !          2398: @code{dp_dehomo()} make a copy of @var{dpoly} and removes the last component
        !          2399: of each terms in the copy.
        !          2400: @item
        !          2401: Appropriate term orderings must be set when the results are used as inputs
        !          2402: of some operations.
        !          2403: @item
        !          2404: These are used internally in @code{hgr()} etc.
        !          2405: \E
1.1       noro     2406: @end itemize
                   2407:
                   2408: @example
                   2409: [202] X=<<1,2,3>>+3*<<1,2,1>>;
                   2410: (1)*<<1,2,3>>+(3)*<<1,2,1>>
                   2411: [203] dp_homo(X);
                   2412: (1)*<<1,2,3,0>>+(3)*<<1,2,1,2>>
                   2413: [204] dp_dehomo(@@);
                   2414: (1)*<<1,2,3>>+(3)*<<1,2,1>>
                   2415: @end example
                   2416:
                   2417: @table @t
1.2     ! noro     2418: \JP @item $B;2>H(B
        !          2419: \EG @item References
1.1       noro     2420: @fref{gr hgr gr_mod}.
                   2421: @end table
                   2422:
1.2     ! noro     2423: \JP @node dp_ptozp dp_prim,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2424: \EG @node dp_ptozp dp_prim,,, Functions for Groebner basis computation
1.1       noro     2425: @subsection @code{dp_ptozp}, @code{dp_prim}
                   2426: @findex dp_ptozp
                   2427: @findex dp_prim
                   2428:
                   2429: @table @t
                   2430: @item dp_ptozp(@var{dpoly})
1.2     ! noro     2431: \JP :: $BDj?tG\$7$F78?t$r@0?t78?t$+$D78?t$N@0?t(B GCD $B$r(B 1 $B$K$9$k(B.
        !          2432: \BEG
        !          2433: :: Converts a distributed polynomial @var{poly} with rational coefficients
        !          2434: into an integral distributed polynomial such that GCD of all its coefficients
        !          2435: is 1.
        !          2436: \E
1.1       noro     2437: @itemx dp_prim(@var{dpoly})
1.2     ! noro     2438: \JP :: $BM-M}<0G\$7$F78?t$r@0?t78?tB?9`<078?t$+$D78?t$NB?9`<0(B GCD $B$r(B 1 $B$K$9$k(B.
        !          2439: \BEG
        !          2440: :: Converts a distributed polynomial @var{poly} with rational function
        !          2441: coefficients into an integral distributed polynomial such that polynomial
        !          2442: GCD of all its coefficients is 1.
        !          2443: \E
1.1       noro     2444: @end table
                   2445:
                   2446: @table @var
                   2447: @item return
1.2     ! noro     2448: \JP $BJ,;6I=8=B?9`<0(B
        !          2449: \EG distributed polynomial
1.1       noro     2450: @item dpoly
1.2     ! noro     2451: \JP $BJ,;6I=8=B?9`<0(B
        !          2452: \EG distributed polynomial
1.1       noro     2453: @end table
                   2454:
                   2455: @itemize @bullet
1.2     ! noro     2456: \BJP
1.1       noro     2457: @item
                   2458: @code{dp_ptozp()} $B$O(B,  @code{ptozp()} $B$KAjEv$9$kA`:n$rJ,;6I=8=B?9`<0$K(B
                   2459: $BBP$7$F9T$&(B. $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R$O(B
                   2460: $B<h$j=|$+$J$$(B.
                   2461: @item
                   2462: @code{dp_prim()} $B$O(B, $B78?t$,B?9`<0$r4^$`>l9g(B, $B78?t$K4^$^$l$kB?9`<06&DL0x;R(B
                   2463: $B$r<h$j=|$/(B.
1.2     ! noro     2464: \E
        !          2465: \BEG
        !          2466: @item
        !          2467: @code{dp_ptozp()} executes the same operation as @code{ptozp()} for
        !          2468: a distributed polynomial. If the coefficients include polynomials,
        !          2469: polynomial contents included in the coefficients are not removed.
        !          2470: @item
        !          2471: @code{dp_prim()} removes polynomial contents.
        !          2472: \E
1.1       noro     2473: @end itemize
                   2474:
                   2475: @example
                   2476: [208] X=dp_ptod(3*(x-y)*(y-z)*(z-x),[x]);
                   2477: (-3*y+3*z)*<<2>>+(3*y^2-3*z^2)*<<1>>+(-3*z*y^2+3*z^2*y)*<<0>>
                   2478: [209] dp_ptozp(X);
                   2479: (-y+z)*<<2>>+(y^2-z^2)*<<1>>+(-z*y^2+z^2*y)*<<0>>
                   2480: [210] dp_prim(X);
                   2481: (1)*<<2>>+(-y-z)*<<1>>+(z*y)*<<0>>
                   2482: @end example
                   2483:
                   2484: @table @t
1.2     ! noro     2485: \JP @item $B;2>H(B
        !          2486: \EG @item References
1.1       noro     2487: @fref{ptozp}.
                   2488: @end table
                   2489:
1.2     ! noro     2490: \JP @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2491: \EG @node dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod,,, Functions for Groebner basis computation
1.1       noro     2492: @subsection @code{dp_nf}, @code{dp_nf_mod}, @code{dp_true_nf}, @code{dp_true_nf_mod}
                   2493: @findex dp_nf
                   2494: @findex  dp_true_nf
                   2495: @findex dp_nf_mod
                   2496: @findex  dp_true_nf_mod
                   2497:
                   2498: @table @t
                   2499: @item dp_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce})
                   2500: @item dp_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod})
1.2     ! noro     2501: \JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B)
1.1       noro     2502:
1.2     ! noro     2503: \BEG
        !          2504: :: Computes the normal form of a distributed polynomial.
        !          2505: (The result may be multiplied by a constant in the ground field.)
        !          2506: \E
1.1       noro     2507: @item dp_true_nf(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce})
                   2508: @item dp_true_nf_mod(@var{indexlist},@var{dpoly},@var{dpolyarray},@var{fullreduce},@var{mod})
1.2     ! noro     2509: \JP :: $BJ,;6I=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B)
        !          2510: \BEG
        !          2511: :: Computes the normal form of a distributed polynomial. (The true result
        !          2512: is returned in such a list as @code{[numerator, denominator]})
        !          2513: \E
1.1       noro     2514: @end table
                   2515:
                   2516: @table @var
                   2517: @item return
1.2     ! noro     2518: \JP @code{dp_nf()} : $BJ,;6I=8=B?9`<0(B, @code{dp_true_nf()} : $B%j%9%H(B
        !          2519: \EG @code{dp_nf()} : distributed polynomial, @code{dp_true_nf()} : list
1.1       noro     2520: @item indexlist
1.2     ! noro     2521: \JP $B%j%9%H(B
        !          2522: \EG list
1.1       noro     2523: @item dpoly
1.2     ! noro     2524: \JP $BJ,;6I=8=B?9`<0(B
        !          2525: \EG distributed polynomial
1.1       noro     2526: @item dpolyarray
1.2     ! noro     2527: \JP $BG[Ns(B
        !          2528: \EG array of distributed polynomial
1.1       noro     2529: @item fullreduce
1.2     ! noro     2530: \JP $B%U%i%0(B
        !          2531: \EG flag
1.1       noro     2532: @item mod
1.2     ! noro     2533: \JP $BAG?t(B
        !          2534: \EG prime
1.1       noro     2535: @end table
                   2536:
                   2537: @itemize @bullet
1.2     ! noro     2538: \BJP
1.1       noro     2539: @item
                   2540: $BJ,;6I=8=B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B.
                   2541: @item
                   2542: @code{dp_nf_mod()}, @code{dp_true_nf_mod()} $B$NF~NO$O(B, @code{dp_mod()} $B$J$I(B
                   2543: $B$K$h$j(B, $BM-8BBN>e$NJ,;6I=8=B?9`<0$K$J$C$F$$$J$1$l$P$J$i$J$$(B.
                   2544: @item
                   2545: $B7k2L$KM-M}?t(B, $BM-M}<0$,4^$^$l$k$N$rHr$1$k$?$a(B, @code{dp_nf()} $B$O(B
                   2546: $B??$NCM$NDj?tG\$NCM$rJV$9(B. $BM-M}<078?t$N>l9g$N(B @code{dp_nf_mod()} $B$bF1MM(B
                   2547: $B$G$"$k$,(B, $B78?tBN$,M-8BBN$N>l9g(B @code{dp_nf_mod()} $B$O??$NCM$rJV$9(B.
                   2548: @item
                   2549: @code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$O(B,
                   2550: @code{[@var{nm},@var{dn}]} $B$J$k7A$N%j%9%H$rJV$9(B.
                   2551: $B$?$@$7(B, @var{nm} $B$O78?t$KJ,?t(B, $BM-M}<0$r4^$^$J$$J,;6I=8=B?9`<0(B, @var{dn} $B$O(B
                   2552: $B?t$^$?$OB?9`<0$G(B @var{nm}/@var{dn} $B$,??$NCM$H$J$k(B.
                   2553: @item
                   2554: @var{dpolyarray} $B$OJ,;6I=8=B?9`<0$rMWAG$H$9$k%Y%/%H%k(B,
                   2555: @var{indexlist} $B$O@55,2=7W;;$KMQ$$$k(B @var{dpolyarray} $B$NMWAG$N%$%s%G%C%/%9(B
                   2556: $B$N%j%9%H(B.
                   2557: @item
                   2558: @var{fullreduce} $B$,(B 0 $B$G$J$$$H$-A4$F$N9`$KBP$7$F4JLs$r9T$&(B. @var{fullreduce}
                   2559: $B$,(B 0 $B$N$H$-F,9`$N$_$KBP$7$F4JLs$r9T$&(B.
                   2560: @item
                   2561: @var{indexlist} $B$G;XDj$5$l$?B?9`<0$O(B, $BA0$NJ}$N$b$N$,M%@hE*$K;H$o$l$k(B.
                   2562: @item
                   2563: $B0lHL$K$O(B @var{indexlist} $B$NM?$(J}$K$h$jH!?t$NCM$O0[$J$k2DG=@-$,$"$k$,(B,
                   2564: $B%0%l%V%J4pDl$KBP$7$F$O0l0UE*$KDj$^$k(B.
                   2565: @item
                   2566: $BJ,;6I=8=$G$J$$8GDj$5$l$?B?9`<0=89g$K$h$k@55,7A$rB??t5a$a$kI,MW$,$"$k>l9g(B
                   2567: $B$KJXMx$G$"$k(B. $BC10l$N1i;;$K4X$7$F$O(B, @code{p_nf}, @code{p_true_nf} $B$r(B
                   2568: $BMQ$$$k$H$h$$(B.
1.2     ! noro     2569: \E
        !          2570: \BEG
        !          2571: @item
        !          2572: Computes the normal form of a distributed polynomial.
        !          2573: @item
        !          2574: @code{dp_nf_mod()} and @code{dp_true_nf_mod()} require
        !          2575: distributed polynomials with coefficients in a finite field as arguments.
        !          2576: @item
        !          2577: The result of @code{dp_nf()} may be multiplied by a constant in the
        !          2578: ground field in order to make the result integral. The same is true
        !          2579: for @code{dp_nf_mod()}, but it returns the true normal form if
        !          2580: the ground field is a finite field.
        !          2581: @item
        !          2582: @code{dp_true_nf()} and @code{dp_true_nf_mod()} return
        !          2583: such a list as @code{[@var{nm},@var{dn}]}.
        !          2584: Here @var{nm} is a distributed polynomial whose coefficients are integral
        !          2585: in the ground field, @var{dn} is an integral element in the ground
        !          2586: field and @var{nm}/@var{dn} is the true normal form.
        !          2587: @item
        !          2588: @var{dpolyarray} is a vector whose components are distributed polynomials
        !          2589: and @var{indexlist} is a list of indices which is used for the normal form
        !          2590: computation.
        !          2591: @item
        !          2592: When argument @var{fullreduce} has non-zero value,
        !          2593: all terms are reduced. When it has value 0,
        !          2594: only the head term is reduced.
        !          2595: @item
        !          2596: As for the polynomials specified by @var{indexlist}, one specified by
        !          2597: an index placed at the preceding position has priority to be selected.
        !          2598: @item
        !          2599: In general, the result of the function may be different depending on
        !          2600: @var{indexlist}.  However, the result is unique for Groebner bases.
        !          2601: @item
        !          2602: These functions are useful when a fixed non-distributed polynomial set
        !          2603: is used as a set of reducers to compute normal forms of many polynomials.
        !          2604: For single computation @code{p_nf} and @code{p_true_nf} are sufficient.
        !          2605: \E
1.1       noro     2606: @end itemize
                   2607:
                   2608: @example
                   2609: [0] load("gr")$
                   2610: [64] load("katsura")$
                   2611: [69] K=katsura(4)$
                   2612: [70] dp_ord(2)$
                   2613: [71] V=[u0,u1,u2,u3,u4]$
                   2614: [72] DP1=newvect(length(K),map(dp_ptod,K,V))$
                   2615: [73] G=gr(K,V,2)$
                   2616: [74] DP2=newvect(length(G),map(dp_ptod,G,V))$
                   2617: [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$
                   2618: [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);
                   2619: u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2+(6*u1-2)*u2+9*u1^2-6*u1+1
                   2620: [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);
                   2621: -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
                   2622: [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
                   2623: -1138087976845165778088612297273078520347097001020471455633353049221045677593
                   2624: 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...
                   2625: [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
                   2626: -1138087976845165778088612297273078520347097001020471455633353049221045677593
                   2627: 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...
                   2628: [80] @@78==@@79;
                   2629: 1
                   2630: @end example
                   2631:
                   2632: @table @t
1.2     ! noro     2633: \JP @item $B;2>H(B
        !          2634: \EG @item References
1.1       noro     2635: @fref{dp_dtop},
                   2636: @fref{dp_ord},
                   2637: @fref{dp_mod dp_rat},
                   2638: @fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}.
                   2639: @end table
                   2640:
1.2     ! noro     2641: \JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2642: \EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation
1.1       noro     2643: @subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest}
                   2644: @findex dp_hm
                   2645: @findex dp_ht
                   2646: @findex dp_hc
                   2647: @findex dp_rest
                   2648:
                   2649: @table @t
                   2650: @item dp_hm(@var{dpoly})
1.2     ! noro     2651: \JP :: $BF,C19`<0$r<h$j=P$9(B.
        !          2652: \EG :: Gets the head monomial.
1.1       noro     2653: @item dp_ht(@var{dpoly})
1.2     ! noro     2654: \JP :: $BF,9`$r<h$j=P$9(B.
        !          2655: \EG :: Gets the head term.
1.1       noro     2656: @item dp_hc(@var{dpoly})
1.2     ! noro     2657: \JP :: $BF,78?t$r<h$j=P$9(B.
        !          2658: \EG :: Gets the head coefficient.
1.1       noro     2659: @item dp_rest(@var{dpoly})
1.2     ! noro     2660: \JP :: $BF,C19`<0$r<h$j=|$$$?;D$j$rJV$9(B.
        !          2661: \EG :: Gets the remainder of the polynomial where the head monomial is removed.
1.1       noro     2662: @end table
                   2663:
                   2664: @table @var
1.2     ! noro     2665: \BJP
1.1       noro     2666: @item return
                   2667: @code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : $BJ,;6I=8=B?9`<0(B,
                   2668: @code{dp_hc()} : $B?t$^$?$OB?9`<0(B
                   2669: @item dpoly
                   2670: $BJ,;6I=8=B?9`<0(B
1.2     ! noro     2671: \E
        !          2672: \BEG
        !          2673: @item return
        !          2674: @code{dp_hm()}, @code{dp_ht()}, @code{dp_rest()} : distributed polynomial
        !          2675: @code{dp_hc()} : number or polynomial
        !          2676: @item dpoly
        !          2677: distributed polynomial
        !          2678: \E
1.1       noro     2679: @end table
                   2680:
                   2681: @itemize @bullet
1.2     ! noro     2682: \BJP
1.1       noro     2683: @item
                   2684: $B$3$l$i$O(B, $BJ,;6I=8=B?9`<0$N3FItJ,$r<h$j=P$9$?$a$NH!?t$G$"$k(B.
                   2685: @item
                   2686: $BJ,;6I=8=B?9`<0(B @var{p} $B$KBP$7<!$,@.$jN)$D(B.
1.2     ! noro     2687: \E
        !          2688: \BEG
        !          2689: @item
        !          2690: These are used to get various parts of a distributed polynomial.
        !          2691: @item
        !          2692: The next equations hold for a distributed polynomial @var{p}.
        !          2693: \E
1.1       noro     2694: @table @code
                   2695: @item @var{p} = dp_hm(@var{p}) + dp_rest(@var{p})
                   2696: @item dp_hm(@var{p}) = dp_hc(@var{p}) dp_ht(@var{p})
                   2697: @end table
                   2698: @end itemize
                   2699:
                   2700: @example
                   2701: [87] dp_ord(0)$
                   2702: [88] X=ptozp((a46^2+7/10*a46+7/48)*u3^4-50/27*a46^2-35/27*a46-49/216)$
                   2703: [89] T=dp_ptod(X,[u3,u4,a46])$
                   2704: [90] dp_hm(T);
                   2705: (2160)*<<4,0,2>>
                   2706: [91] dp_ht(T);
                   2707: (1)*<<4,0,2>>
                   2708: [92] dp_hc(T);
                   2709: 2160
                   2710: [93] dp_rest(T);
                   2711: (1512)*<<4,0,1>>+(315)*<<4,0,0>>+(-4000)*<<0,0,2>>+(-2800)*<<0,0,1>>
                   2712: +(-490)*<<0,0,0>>
                   2713: @end example
                   2714:
1.2     ! noro     2715: \JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2716: \EG @node dp_td dp_sugar,,, Functions for Groebner basis computation
1.1       noro     2717: @subsection @code{dp_td}, @code{dp_sugar}
                   2718: @findex dp_td
                   2719: @findex dp_sugar
                   2720:
                   2721: @table @t
                   2722: @item dp_td(@var{dpoly})
1.2     ! noro     2723: \JP :: $BF,9`$NA4<!?t$rJV$9(B.
        !          2724: \EG :: Gets the total degree of the head term.
1.1       noro     2725: @item dp_sugar(@var{dpoly})
1.2     ! noro     2726: \JP :: $BB?9`<0$N(B @code{sugar} $B$rJV$9(B.
        !          2727: \EG :: Gets the @code{sugar} of a polynomial.
1.1       noro     2728: @end table
                   2729:
                   2730: @table @var
                   2731: @item return
1.2     ! noro     2732: \JP $B<+A3?t(B
        !          2733: \EG non-negative integer
1.1       noro     2734: @item dpoly
1.2     ! noro     2735: \JP $BJ,;6I=8=B?9`<0(B
        !          2736: \EG distributed polynomial
1.1       noro     2737: @item onoff
1.2     ! noro     2738: \JP $B%U%i%0(B
        !          2739: \EG flag
1.1       noro     2740: @end table
                   2741:
                   2742: @itemize @bullet
1.2     ! noro     2743: \BJP
1.1       noro     2744: @item
                   2745: @code{dp_td()} $B$O(B, $BF,9`$NA4<!?t(B, $B$9$J$o$A3FJQ?t$N;X?t$NOB$rJV$9(B.
                   2746: @item
                   2747: $BJ,;6I=8=B?9`<0$,@8@.$5$l$k$H(B, @code{sugar} $B$H8F$P$l$k$"$k@0?t$,IUM?(B
                   2748: $B$5$l$k(B. $B$3$NCM$O(B $B2>A[E*$K@F<!2=$7$F7W;;$7$?>l9g$K7k2L$,;}$DA4<!?t$NCM$H$J$k(B.
                   2749: @item
                   2750: @code{sugar} $B$O(B, $B%0%l%V%J4pDl7W;;$K$*$1$k@55,2=BP$NA*Br$N%9%H%i%F%8$r(B
                   2751: $B7hDj$9$k$?$a$N=EMW$J;X?K$H$J$k(B.
1.2     ! noro     2752: \E
        !          2753: \BEG
        !          2754: @item
        !          2755: Function @code{dp_td()} returns the total degree of the head term,
        !          2756: i.e., the sum of all exponent of variables in that term.
        !          2757: @item
        !          2758: Upon creation of a distributed polynomial, an integer called @code{sugar}
        !          2759: is associated.  This value is
        !          2760: the total degree of the virtually homogenized one of the original
        !          2761: polynomial.
        !          2762: @item
        !          2763: The quantity @code{sugar} is an important guide to determine the
        !          2764: selection strategy of critical pairs in Groebner basis computation.
        !          2765: \E
1.1       noro     2766: @end itemize
                   2767:
                   2768: @example
                   2769: [74] dp_ord(0)$
                   2770: [75] X=<<1,2>>+<<0,1>>$
                   2771: [76] Y=<<1,2>>+<<1,0>>$
                   2772: [77] Z=X-Y;
                   2773: (-1)*<<1,0>>+(1)*<<0,1>>
                   2774: [78] dp_sugar(T);
                   2775: 3
                   2776: @end example
                   2777:
1.2     ! noro     2778: \JP @node dp_lcm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2779: \EG @node dp_lcm,,, Functions for Groebner basis computation
1.1       noro     2780: @subsection @code{dp_lcm}
                   2781: @findex dp_lcm
                   2782:
                   2783: @table @t
                   2784: @item dp_lcm(@var{dpoly1},@var{dpoly2})
1.2     ! noro     2785: \JP :: $B:G>.8xG\9`$rJV$9(B.
        !          2786: \EG :: Returns the least common multiple of the head terms of the given two polynomials.
1.1       noro     2787: @end table
                   2788:
                   2789: @table @var
                   2790: @item return
1.2     ! noro     2791: \JP $BJ,;6I=8=B?9`<0(B
        !          2792: \EG distributed polynomial
1.1       noro     2793: @item dpoly1, dpoly2
1.2     ! noro     2794: \JP $BJ,;6I=8=B?9`<0(B
        !          2795: \EG distributed polynomial
1.1       noro     2796: @end table
                   2797:
                   2798: @itemize @bullet
1.2     ! noro     2799: \BJP
1.1       noro     2800: @item
                   2801: $B$=$l$>$l$N0z?t$NF,9`$N:G>.8xG\9`$rJV$9(B. $B78?t$O(B 1 $B$G$"$k(B.
1.2     ! noro     2802: \E
        !          2803: \BEG
        !          2804: @item
        !          2805: Returns the least common multiple of the head terms of the given
        !          2806: two polynomials, where coefficient is always set to 1.
        !          2807: \E
1.1       noro     2808: @end itemize
                   2809:
                   2810: @example
                   2811: [100] dp_lcm(<<1,2,3,4,5>>,<<5,4,3,2,1>>);
                   2812: (1)*<<5,4,3,4,5>>
                   2813: @end example
                   2814:
                   2815: @table @t
1.2     ! noro     2816: \JP @item $B;2>H(B
        !          2817: \EG @item References
1.1       noro     2818: @fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}.
                   2819: @end table
                   2820:
1.2     ! noro     2821: \JP @node dp_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2822: \EG @node dp_redble,,, Functions for Groebner basis computation
1.1       noro     2823: @subsection @code{dp_redble}
                   2824: @findex dp_redble
                   2825:
                   2826: @table @t
                   2827: @item dp_redble(@var{dpoly1},@var{dpoly2})
1.2     ! noro     2828: \JP :: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B.
        !          2829: \EG :: Checks whether one head term is divisible by the other head term.
1.1       noro     2830: @end table
                   2831:
                   2832: @table @var
                   2833: @item return
1.2     ! noro     2834: \JP $B@0?t(B
        !          2835: \EG integer
1.1       noro     2836: @item dpoly1, dpoly2
1.2     ! noro     2837: \JP $BJ,;6I=8=B?9`<0(B
        !          2838: \EG distributed polynomial
1.1       noro     2839: @end table
                   2840:
                   2841: @itemize @bullet
1.2     ! noro     2842: \BJP
1.1       noro     2843: @item
                   2844: @var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B
                   2845: 0 $B$rJV$9(B.
                   2846: @item
                   2847: $BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B.
1.2     ! noro     2848: \E
        !          2849: \BEG
        !          2850: @item
        !          2851: Returns 1 if the head term of @var{dpoly2} divides the head term of
        !          2852: @var{dpoly1}; otherwise 0.
        !          2853: @item
        !          2854: Used for finding candidate terms at reduction of polynomials.
        !          2855: \E
1.1       noro     2856: @end itemize
                   2857:
                   2858: @example
                   2859: [148] C;
                   2860: (1)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>+(1)*<<1,0,0,1,1>>
                   2861: [149] T;
                   2862: (3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>+(6)*<<1,1,1,0,0>>
                   2863: [150] for ( ; T; T = dp_rest(T)) print(dp_redble(T,C));
                   2864: 0
                   2865: 0
                   2866: 0
                   2867: 1
                   2868: @end example
                   2869:
                   2870: @table @t
1.2     ! noro     2871: \JP @item $B;2>H(B
        !          2872: \EG @item References
1.1       noro     2873: @fref{dp_red dp_red_mod}.
                   2874: @end table
                   2875:
1.2     ! noro     2876: \JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2877: \EG @node dp_subd,,, Functions for Groebner basis computation
1.1       noro     2878: @subsection @code{dp_subd}
                   2879: @findex dp_subd
                   2880:
                   2881: @table @t
                   2882: @item dp_subd(@var{dpoly1},@var{dpoly2})
1.2     ! noro     2883: \JP :: $BF,9`$N>&C19`<0$rJV$9(B.
        !          2884: \EG :: Returns the quotient monomial of the head terms.
1.1       noro     2885: @end table
                   2886:
                   2887: @table @var
                   2888: @item return
1.2     ! noro     2889: \JP $BJ,;6I=8=B?9`<0(B
        !          2890: \EG distributed polynomial
1.1       noro     2891: @item dpoly1, dpoly2
1.2     ! noro     2892: \JP $BJ,;6I=8=B?9`<0(B
        !          2893: \EG distributed polynomial
1.1       noro     2894: @end table
                   2895:
                   2896: @itemize @bullet
1.2     ! noro     2897: \BJP
1.1       noro     2898: @item
                   2899: @code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})} $B$r5a$a$k(B. $B7k2L$N78?t$O(B 1
                   2900: $B$G$"$k(B.
                   2901: @item
                   2902: $B3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$kI,MW$,$"$k(B.
1.2     ! noro     2903: \E
        !          2904: \BEG
        !          2905: @item
        !          2906: Gets @code{dp_ht(@var{dpoly1})/dp_ht(@var{dpoly2})}.
        !          2907: The coefficient of the result is always set to 1.
        !          2908: @item
        !          2909: Divisibility assumed.
        !          2910: \E
1.1       noro     2911: @end itemize
                   2912:
                   2913: @example
                   2914: [162] dp_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);
                   2915: (1)*<<0,1,1,1,1>>
                   2916: @end example
                   2917:
                   2918: @table @t
1.2     ! noro     2919: \JP @item $B;2>H(B
        !          2920: \EG @item References
1.1       noro     2921: @fref{dp_red dp_red_mod}.
                   2922: @end table
                   2923:
1.2     ! noro     2924: \JP @node dp_vtoe dp_etov,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2925: \EG @node dp_vtoe dp_etov,,, Functions for Groebner basis computation
1.1       noro     2926: @subsection @code{dp_vtoe}, @code{dp_etov}
                   2927: @findex dp_vtoe
                   2928: @findex dp_etov
                   2929:
                   2930: @table @t
                   2931: @item dp_vtoe(@var{vect})
1.2     ! noro     2932: \JP :: $B;X?t%Y%/%H%k$r9`$KJQ49(B
        !          2933: \EG :: Converts an exponent vector into a term.
1.1       noro     2934: @item dp_etov(@var{dpoly})
1.2     ! noro     2935: \JP :: $BF,9`$r;X?t%Y%/%H%k$KJQ49(B
        !          2936: \EG :: Convert the head term of a distributed polynomial into an exponent vector.
1.1       noro     2937: @end table
                   2938:
                   2939: @table @var
                   2940: @item return
1.2     ! noro     2941: \JP @code{dp_vtoe} : $BJ,;6I=8=B?9`<0(B, @code{dp_etov} : $B%Y%/%H%k(B
        !          2942: \EG @code{dp_vtoe} : distributed polynomial, @code{dp_etov} : vector
1.1       noro     2943: @item vect
1.2     ! noro     2944: \JP $B%Y%/%H%k(B
        !          2945: \EG vector
1.1       noro     2946: @item dpoly
1.2     ! noro     2947: \JP $BJ,;6I=8=B?9`<0(B
        !          2948: \EG distributed polynomial
1.1       noro     2949: @end table
                   2950:
                   2951: @itemize @bullet
1.2     ! noro     2952: \BJP
1.1       noro     2953: @item
                   2954: @code{dp_vtoe()} $B$O(B, $B%Y%/%H%k(B @var{vect} $B$r;X?t%Y%/%H%k$H$9$k9`$r@8@.$9$k(B.
                   2955: @item
                   2956: @code{dp_etov()} $B$O(B, $BJ,;6I=8=B?9`<0(B @code{dpoly} $B$NF,9`$N;X?t%Y%/%H%k$r(B
                   2957: $B%Y%/%H%k$KJQ49$9$k(B.
1.2     ! noro     2958: \E
        !          2959: \BEG
        !          2960: @item
        !          2961: @code{dp_vtoe()} generates a term whose exponent vector is @var{vect}.
        !          2962: @item
        !          2963: @code{dp_etov()} generates a vector which is the exponent vector of the
        !          2964: head term of @code{dpoly}.
        !          2965: \E
1.1       noro     2966: @end itemize
                   2967:
                   2968: @example
                   2969: [211] X=<<1,2,3>>;
                   2970: (1)*<<1,2,3>>
                   2971: [212] V=dp_etov(X);
                   2972: [ 1 2 3 ]
                   2973: [213] V[2]++$
                   2974: [214] Y=dp_vtoe(V);
                   2975: (1)*<<1,2,4>>
                   2976: @end example
                   2977:
1.2     ! noro     2978: \JP @node dp_mbase,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          2979: \EG @node dp_mbase,,, Functions for Groebner basis computation
1.1       noro     2980: @subsection @code{dp_mbase}
                   2981: @findex dp_mbase
                   2982:
                   2983: @table @t
                   2984: @item dp_mbase(@var{dplist})
1.2     ! noro     2985: \JP :: monomial $B4pDl$N7W;;(B
        !          2986: \EG :: Computes the monomial basis
1.1       noro     2987: @end table
                   2988:
                   2989: @table @var
                   2990: @item return
1.2     ! noro     2991: \JP $BJ,;6I=8=B?9`<0$N%j%9%H(B
        !          2992: \EG list of distributed polynomial
1.1       noro     2993: @item dplist
1.2     ! noro     2994: \JP $BJ,;6I=8=B?9`<0$N%j%9%H(B
        !          2995: \EG list of distributed polynomial
1.1       noro     2996: @end table
                   2997:
                   2998: @itemize @bullet
1.2     ! noro     2999: \BJP
1.1       noro     3000: @item
                   3001: $B$"$k=g=x$G%0%l%V%J4pDl$H$J$C$F$$$kB?9`<0=89g$N(B, $B$=$N=g=x$K4X$9$kJ,;6I=8=(B
                   3002: $B$G$"$k(B @var{dplist} $B$K$D$$$F(B,
                   3003: @var{dplist} $B$,(B K[X] $BCf$G@8@.$9$k%$%G%"%k(B I $B$,(B 0 $B<!85$N;~(B,
                   3004: K $B>eM-8B<!85@~7A6u4V$G$"$k(B K[X]/I $B$N(B monomial $B$K$h$k4pDl$r5a$a$k(B.
                   3005: @item
                   3006: $BF@$i$l$?4pDl$N8D?t$,(B, K[X]/I $B$N(B K-$B@~7A6u4V$H$7$F$N<!85$KEy$7$$(B.
1.2     ! noro     3007: \E
        !          3008: \BEG
        !          3009: @item
        !          3010: Assuming that @var{dplist} is a list of distributed polynomials which
        !          3011: is a Groebner basis with respect to the current ordering type and
        !          3012: that the ideal @var{I} generated by @var{dplist} in K[X] is zero-dimensional,
        !          3013: this function computes the monomial basis of a finite dimenstional K-vector
        !          3014: space K[X]/I.
        !          3015: @item
        !          3016: The number of elements in the monomial basis is equal to the
        !          3017: K-dimenstion of K[X]/I.
        !          3018: \E
1.1       noro     3019: @end itemize
                   3020:
                   3021: @example
                   3022: [215] K=katsura(5)$
                   3023: [216] V=[u5,u4,u3,u2,u1,u0]$
                   3024: [217] G0=gr(K,V,0)$
                   3025: [218] H=map(dp_ptod,G0,V)$
                   3026: [219] map(dp_ptod,dp_mbase(H),V)$
                   3027: [u0^5,u4*u0^3,u3*u0^3,u2*u0^3,u1*u0^3,u0^4,u3^2*u0,u2*u3*u0,u1*u3*u0,
                   3028: u1*u2*u0,u1^2*u0,u4*u0^2,u3*u0^2,u2*u0^2,u1*u0^2,u0^3,u3^2,u2*u3,u1*u3,
                   3029: u1*u2,u1^2,u4*u0,u3*u0,u2*u0,u1*u0,u0^2,u4,u3,u2,u1,u0,1]
                   3030: @end example
                   3031:
                   3032: @table @t
1.2     ! noro     3033: \JP @item $B;2>H(B
        !          3034: \EG @item References
1.1       noro     3035: @fref{gr hgr gr_mod}.
                   3036: @end table
                   3037:
1.2     ! noro     3038: \JP @node dp_mag,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3039: \EG @node dp_mag,,, Functions for Groebner basis computation
1.1       noro     3040: @subsection @code{dp_mag}
                   3041: @findex dp_mag
                   3042:
                   3043: @table @t
                   3044: @item dp_mag(@var{p})
1.2     ! noro     3045: \JP :: $B78?t$N%S%C%HD9$NOB$rJV$9(B
        !          3046: \EG :: Computes the sum of bit lengths of coefficients of a distributed polynomial.
1.1       noro     3047: @end table
                   3048:
                   3049: @table @var
                   3050: @item return
1.2     ! noro     3051: \JP $B?t(B
        !          3052: \EG integer
1.1       noro     3053: @item p
1.2     ! noro     3054: \JP $BJ,;6I=8=B?9`<0(B
        !          3055: \EG distributed polynomial
1.1       noro     3056: @end table
                   3057:
                   3058: @itemize @bullet
1.2     ! noro     3059: \BJP
1.1       noro     3060: @item
                   3061: $BJ,;6I=8=B?9`<0$N78?t$K8=$l$kM-M}?t$K$D$-(B, $B$=$NJ,JlJ,;R(B ($B@0?t$N>l9g$OJ,;R(B)
                   3062: $B$N%S%C%HD9$NAmOB$rJV$9(B.
                   3063: @item
                   3064: $BBP>]$H$J$kB?9`<0$NBg$-$5$NL\0B$H$7$FM-8z$G$"$k(B. $BFC$K(B, 0 $B<!85%7%9%F%`$K$*$$$F$O(B
                   3065: $B78?tKDD%$,LdBj$H$J$j(B, $BESCf@8@.$5$l$kB?9`<0$,78?tKDD%$r5/$3$7$F$$$k$+$I$&$+(B
                   3066: $B$NH=Dj$KLrN)$D(B.
                   3067: @item
                   3068: @code{dp_gr_flags()} $B$G(B, @code{ShowMag}, @code{Print} $B$r(B on $B$K$9$k$3$H$K$h$j(B
                   3069: $BESCf@8@.$5$l$kB?9`<0$K$?$$$9$k(B @code{dp_mag()} $B$NCM$r8+$k$3$H$,$G$-$k(B.
1.2     ! noro     3070: \E
        !          3071: \BEG
        !          3072: @item
        !          3073: This function computes the sum of bit lengths of coefficients of a
        !          3074: distributed polynomial @var{p}. If a coefficient is non integral,
        !          3075: the sum of bit lengths of the numerator and the denominator is taken.
        !          3076: @item
        !          3077: This is a measure of the size of a polynomial. Especially for
        !          3078: zero-dimensional system coefficient swells are often serious and
        !          3079: the returned value is useful to detect such swells.
        !          3080: @item
        !          3081: If @code{ShowMag} and @code{Print} for @code{dp_gr_flags()} are on,
        !          3082: values of @code{dp_mag()} for intermediate basis elements are shown.
        !          3083: \E
1.1       noro     3084: @end itemize
                   3085:
                   3086: @example
                   3087: [221] X=dp_ptod((x+2*y)^10,[x,y])$
                   3088: [222] dp_mag(X);
                   3089: 115
                   3090: @end example
                   3091:
                   3092: @table @t
1.2     ! noro     3093: \JP @item $B;2>H(B
        !          3094: \EG @item References
1.1       noro     3095: @fref{dp_gr_flags dp_gr_print}.
                   3096: @end table
                   3097:
1.2     ! noro     3098: \JP @node dp_red dp_red_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3099: \EG @node dp_red dp_red_mod,,, Functions for Groebner basis computation
1.1       noro     3100: @subsection @code{dp_red}, @code{dp_red_mod}
                   3101: @findex dp_red
                   3102: @findex dp_red_mod
                   3103:
                   3104: @table @t
                   3105: @item dp_red(@var{dpoly1},@var{dpoly2},@var{dpoly3})
                   3106: @item dp_red_mod(@var{dpoly1},@var{dpoly2},@var{dpoly3},@var{mod})
1.2     ! noro     3107: \JP :: $B0l2s$N4JLsA`:n(B
        !          3108: \EG :: Single reduction operation
1.1       noro     3109: @end table
                   3110:
                   3111: @table @var
                   3112: @item return
1.2     ! noro     3113: \JP $B%j%9%H(B
        !          3114: \EG list
1.1       noro     3115: @item dpoly1, dpoly2, dpoly3
1.2     ! noro     3116: \JP $BJ,;6I=8=B?9`<0(B
        !          3117: \EG distributed polynomial
1.1       noro     3118: @item vlist
1.2     ! noro     3119: \JP $B%j%9%H(B
        !          3120: \EG list
1.1       noro     3121: @item mod
1.2     ! noro     3122: \JP $BAG?t(B
        !          3123: \EG prime
1.1       noro     3124: @end table
                   3125:
                   3126: @itemize @bullet
1.2     ! noro     3127: \BJP
1.1       noro     3128: @item
                   3129: @var{dpoly1} + @var{dpoly2} $B$J$kJ,;6I=8=B?9`<0$r(B @var{dpoly3} $B$G(B
                   3130: 1 $B2s4JLs$9$k(B.
                   3131: @item
                   3132: @code{dp_red_mod()} $B$NF~NO$O(B, $BA4$FM-8BBN78?t$KJQ49$5$l$F$$$kI,MW$,$"$k(B.
                   3133: @item
                   3134: $B4JLs$5$l$k9`$O(B @var{dpoly2} $B$NF,9`$G$"$k(B. $B=>$C$F(B, @var{dpoly2} $B$N(B
                   3135: $BF,9`$,(B @var{dpoly3} $B$NF,9`$G3d$j@Z$l$k$3$H$,$"$i$+$8$a$o$+$C$F$$$J$1$l$P(B
                   3136: $B$J$i$J$$(B.
                   3137: @item
                   3138: $B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b},
                   3139: $B9`(B @var{t} $B$K$h$j(B @var{a(dpoly1 + dpoly2)-bt dpoly3} $B$H$7$F7W;;$5$l$k(B.
                   3140: @item
                   3141: $B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B.
1.2     ! noro     3142: \E
        !          3143: \BEG
        !          3144: @item
        !          3145: Reduces a distributed polynomial, @var{dpoly1} + @var{dpoly2},
        !          3146: by @var{dpoly3} for single time.
        !          3147: @item
        !          3148: An input for @code{dp_red_mod()} must be converted into a distributed
        !          3149: polynomial with coefficients in a finite field.
        !          3150: @item
        !          3151: This implies that
        !          3152: the divisibility of the head term of @var{dpoly2} by the head term of
        !          3153: @var{dpoly3} is assumed.
        !          3154: @item
        !          3155: When integral coefficients, computation is so carefully performed that
        !          3156: no rational operations appear in the reduction procedure.
        !          3157: It is computed for integers @var{a} and @var{b}, and a term @var{t} as:
        !          3158: @var{a(dpoly1 + dpoly2)-bt dpoly3}.
        !          3159: @item
        !          3160: The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}.
        !          3161: \E
1.1       noro     3162: @end itemize
                   3163:
                   3164: @example
                   3165: [157] D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
                   3166: (3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>
                   3167: [158] R=(6)*<<1,1,1,0,0>>;
                   3168: (6)*<<1,1,1,0,0>>
                   3169: [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
                   3170: (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
                   3171: [160] dp_red(D,R,C);
                   3172: [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>>
                   3173: +(-1)*<<1,1,0,0,1>>]
                   3174: @end example
                   3175:
                   3176: @table @t
1.2     ! noro     3177: \JP @item $B;2>H(B
        !          3178: \EG @item References
1.1       noro     3179: @fref{dp_mod dp_rat}.
                   3180: @end table
                   3181:
1.2     ! noro     3182: \JP @node dp_sp dp_sp_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3183: \EG @node dp_sp dp_sp_mod,,, Functions for Groebner basis computation
1.1       noro     3184: @subsection @code{dp_sp}, @code{dp_sp_mod}
                   3185: @findex dp_sp
                   3186: @findex dp_sp_mod
                   3187:
                   3188: @table @t
                   3189: @item dp_sp(@var{dpoly1},@var{dpoly2})
                   3190: @item dp_sp_mod(@var{dpoly1},@var{dpoly2},@var{mod})
1.2     ! noro     3191: \JP :: S-$BB?9`<0$N7W;;(B
        !          3192: \EG :: Computation of an S-polynomial
1.1       noro     3193: @end table
                   3194:
                   3195: @table @var
                   3196: @item return
1.2     ! noro     3197: \JP $BJ,;6I=8=B?9`<0(B
        !          3198: \EG distributed polynomial
1.1       noro     3199: @item dpoly1, dpoly2
1.2     ! noro     3200: \JP $BJ,;6I=8=B?9`<0(B
        !          3201: \EG distributed polynomial
1.1       noro     3202: @item mod
1.2     ! noro     3203: \JP $BAG?t(B
        !          3204: \EG prime
1.1       noro     3205: @end table
                   3206:
                   3207: @itemize @bullet
1.2     ! noro     3208: \BJP
1.1       noro     3209: @item
                   3210: @var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B.
                   3211: @item
                   3212: @code{dp_sp_mod()} $B$NF~NO$O(B, $BA4$FM-8BBN78?t$KJQ49$5$l$F$$$kI,MW$,$"$k(B.
                   3213: @item
                   3214: $B7k2L$KM-M}?t(B, $BM-M}<0$,F~$k$N$rHr$1$k$?$a(B, $B7k2L$,Dj?tG\(B, $B$"$k$$$OB?9`<0(B
                   3215: $BG\$5$l$F$$$k2DG=@-$,$"$k(B.
1.2     ! noro     3216: \E
        !          3217: \BEG
        !          3218: @item
        !          3219: This function computes the S-polynomial of @var{dpoly1} and @var{dpoly2}.
        !          3220: @item
        !          3221: Inputs of @code{dp_sp_mod()} must be polynomials with coefficients in a
        !          3222: finite field.
        !          3223: @item
        !          3224: The result may be multiplied by a constant in the ground field in order to
        !          3225: make the result integral.
        !          3226: \E
1.1       noro     3227: @end itemize
                   3228:
                   3229: @example
                   3230: [227] X=dp_ptod(x^2*y+x*y,[x,y]);
                   3231: (1)*<<2,1>>+(1)*<<1,1>>
                   3232: [228] Y=dp_ptod(x*y^2+x*y,[x,y]);
                   3233: (1)*<<1,2>>+(1)*<<1,1>>
                   3234: [229] dp_sp(X,Y);
                   3235: (-1)*<<2,1>>+(1)*<<1,2>>
                   3236: @end example
                   3237:
                   3238: @table @t
1.2     ! noro     3239: \JP @item $B;2>H(B
        !          3240: \EG @item References
1.1       noro     3241: @fref{dp_mod dp_rat}.
                   3242: @end table
1.2     ! noro     3243: \JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3244: \EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation
1.1       noro     3245: @subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod}
                   3246: @findex p_nf
                   3247: @findex p_nf_mod
                   3248: @findex p_true_nf
                   3249: @findex p_true_nf_mod
                   3250:
                   3251: @table @t
                   3252: @item p_nf(@var{poly},@var{plist},@var{vlist},@var{order})
                   3253: @itemx p_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod})
1.2     ! noro     3254: \JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B)
        !          3255: \BEG
        !          3256: :: Computes the normal form of the given polynomial.
        !          3257: (The result may be multiplied by a constant.)
        !          3258: \E
1.1       noro     3259: @item p_true_nf(@var{poly},@var{plist},@var{vlist},@var{order})
                   3260: @itemx p_true_nf_mod(@var{poly},@var{plist},@var{vlist},@var{order},@var{mod})
1.2     ! noro     3261: \JP :: $BI=8=B?9`<0$N@55,7A$r5a$a$k(B. ($B??$N7k2L$r(B @code{[$BJ,;R(B, $BJ,Jl(B]} $B$N7A$GJV$9(B)
        !          3262: \BEG
        !          3263: :: Computes the normal form of the given polynomial. (The result is returned
        !          3264: as a form of @code{[numerator, denominator]})
        !          3265: \E
1.1       noro     3266: @end table
                   3267:
                   3268: @table @var
                   3269: @item return
1.2     ! noro     3270: \JP @code{p_nf} : $BB?9`<0(B, @code{p_true_nf} : $B%j%9%H(B
        !          3271: \EG @code{p_nf} : polynomial, @code{p_true_nf} : list
1.1       noro     3272: @item poly
1.2     ! noro     3273: \JP $BB?9`<0(B
        !          3274: \EG polynomial
1.1       noro     3275: @item plist,vlist
1.2     ! noro     3276: \JP $B%j%9%H(B
        !          3277: \EG list
1.1       noro     3278: @item order
1.2     ! noro     3279: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          3280: \EG number, list or matrix
1.1       noro     3281: @item mod
1.2     ! noro     3282: \JP $BAG?t(B
        !          3283: \EG prime
1.1       noro     3284: @end table
                   3285:
                   3286: @itemize @bullet
1.2     ! noro     3287: \BJP
1.1       noro     3288: @item
                   3289: @samp{gr} $B$GDj5A$5$l$F$$$k(B.
                   3290: @item
                   3291: $BB?9`<0$N(B, $BB?9`<0%j%9%H$K$h$k@55,7A$r5a$a$k(B.
                   3292: @item
                   3293: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()}, @code{dp_true_nf_mod}
                   3294: $B$KBP$9$k%$%s%?%U%'!<%9$G$"$k(B.
                   3295: @item
                   3296: @var{poly} $B$*$h$S(B @var{plist} $B$O(B, $BJQ?t=g=x(B @var{vlist} $B$*$h$S(B
                   3297: $BJQ?t=g=x7?(B @var{otype} $B$K=>$C$FJ,;6I=8=B?9`<0$KJQ49$5$l(B,
                   3298: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
                   3299: @code{dp_true_nf_mod()} $B$KEO$5$l$k(B.
                   3300: @item
                   3301: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
                   3302: @code{dp_true_nf_mod()} $B$O(B @var{fullreduce} $B$,(B 1 $B$G8F$S=P$5$l$k(B.
                   3303: @item
                   3304: $B7k2L$OB?9`<0$KJQ49$5$l$F=PNO$5$l$k(B.
                   3305: @item
                   3306: @code{p_true_nf()}, @code{p_true_nf_mod()} $B$N=PNO$K4X$7$F$O(B,
                   3307: @code{dp_true_nf()}, @code{dp_true_nf_mod()} $B$N9`$r;2>H(B.
1.2     ! noro     3308: \E
        !          3309: \BEG
        !          3310: @item
        !          3311: Defined in the package @samp{gr}.
        !          3312: @item
        !          3313: Obtains the normal form of a polynomial by a polynomial list.
        !          3314: @item
        !          3315: These are interfaces to @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()},
        !          3316:  @code{dp_true_nf_mod}
        !          3317: @item
        !          3318: The polynomial @var{poly} and the polynomials in @var{plist} is
        !          3319: converted, according to the variable ordering @var{vlist} and
        !          3320: type of term ordering @var{otype}, into their distributed polynomial
        !          3321: counterparts and passed to @code{dp_nf()}.
        !          3322: @item
        !          3323: @code{dp_nf()}, @code{dp_true_nf()}, @code{dp_nf_mod()} and
        !          3324: @code{dp_true_nf_mod()}
        !          3325: is called with value 1 for @var{fullreduce}.
        !          3326: @item
        !          3327: The result is converted back into an ordinary polynomial.
        !          3328: @item
        !          3329: As for @code{p_true_nf()}, @code{p_true_nf_mod()}
        !          3330: refer to @code{dp_true_nf()} and @code{dp_true_nf_mod()}.
        !          3331: \E
1.1       noro     3332: @end itemize
                   3333:
                   3334: @example
                   3335: [79] K = katsura(5)$
                   3336: [80] V = [u5,u4,u3,u2,u1,u0]$
                   3337: [81] G = hgr(K,V,2)$
                   3338: [82] p_nf(K[1],G,V,2);
                   3339: 0
                   3340: [83] L = p_true_nf(K[1]+1,G,V,2);
                   3341: [-1503...,-1503...]
                   3342: [84] L[0]/L[1];
                   3343: 1
                   3344: @end example
                   3345:
                   3346: @table @t
1.2     ! noro     3347: \JP @item $B;2>H(B
        !          3348: \EG @item References
1.1       noro     3349: @fref{dp_ptod},
                   3350: @fref{dp_dtop},
                   3351: @fref{dp_ord},
                   3352: @fref{dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod}.
                   3353: @end table
                   3354:
1.2     ! noro     3355: \JP @node p_terms,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3356: \EG @node p_terms,,, Functions for Groebner basis computation
1.1       noro     3357: @subsection @code{p_terms}
                   3358: @findex p_terms
                   3359:
                   3360: @table @t
                   3361: @item p_terms(@var{poly},@var{vlist},@var{order})
1.2     ! noro     3362: \JP :: $BB?9`<0$K$"$i$o$l$kC19`$r%j%9%H$K$9$k(B.
        !          3363: \EG :: Monomials appearing in the given polynomial is collected into a list.
1.1       noro     3364: @end table
                   3365:
                   3366: @table @var
                   3367: @item return
1.2     ! noro     3368: \JP $B%j%9%H(B
        !          3369: \EG list
1.1       noro     3370: @item poly
1.2     ! noro     3371: \JP $BB?9`<0(B
        !          3372: \EG polynomial
1.1       noro     3373: @item vlist
1.2     ! noro     3374: \JP $B%j%9%H(B
        !          3375: \EG list
1.1       noro     3376: @item order
1.2     ! noro     3377: \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
        !          3378: \EG number, list or matrix
1.1       noro     3379: @end table
                   3380:
                   3381: @itemize @bullet
1.2     ! noro     3382: \BJP
1.1       noro     3383: @item
                   3384: @samp{gr} $B$GDj5A$5$l$F$$$k(B.
                   3385: @item
                   3386: $BB?9`<0$rC19`$KE83+$7$?;~$K8=$l$k9`$r%j%9%H$K$7$FJV$9(B.
                   3387: @var{vlist} $B$*$h$S(B @var{order} $B$K$h$jDj$^$k9`=g=x$K$h$j(B, $B=g=x$N9b$$$b$N(B
                   3388: $B$,%j%9%H$N@hF,$KMh$k$h$&$K%=!<%H$5$l$k(B.
                   3389: @item
                   3390: $B%0%l%V%J4pDl$O$7$P$7$P78?t$,5pBg$K$J$k$?$a(B, $B<B:]$K$I$N9`$,8=$l$F(B
                   3391: $B$$$k$N$+$r8+$k$?$a$J$I$KMQ$$$k(B.
1.2     ! noro     3392: \E
        !          3393: \BEG
        !          3394: @item
        !          3395: Defined in the package @samp{gr}.
        !          3396: @item
        !          3397: This returns a list which contains all non-zero monomials in the given
        !          3398: polynomial.  The monomials are ordered according to the current
        !          3399: type of term ordering and @var{vlist}.
        !          3400: @item
        !          3401: Since polynomials in a Groebner base often have very large coefficients,
        !          3402: examining a polynomial as it is may sometimes be difficult to perform.
        !          3403: For such a case, this function enables to examine which term is really
        !          3404: exists.
        !          3405: \E
1.1       noro     3406: @end itemize
                   3407:
                   3408: @example
                   3409: [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$
                   3410: [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);
                   3411: [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,u0^21,u0^20,
                   3412: u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,u0^10,u0^9,u0^8,u0^7,
                   3413: u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
                   3414: @end example
                   3415:
1.2     ! noro     3416: \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3417: \EG @node gb_comp,,, Functions for Groebner basis computation
1.1       noro     3418: @subsection @code{gb_comp}
                   3419: @findex gb_comp
                   3420:
                   3421: @table @t
                   3422: @item gb_comp(@var{plist1}, @var{plist2})
1.2     ! noro     3423: \JP :: $BB?9`<0%j%9%H$,(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+D4$Y$k(B.
        !          3424: \EG :: Checks whether two polynomial lists are equal or not as a set
1.1       noro     3425: @end table
                   3426:
                   3427: @table @var
1.2     ! noro     3428: \JP @item return 0 $B$^$?$O(B 1
        !          3429: \EG @item return 0 or 1
1.1       noro     3430: @item plist1, plist2
                   3431: @end table
                   3432:
                   3433: @itemize @bullet
1.2     ! noro     3434: \BJP
1.1       noro     3435: @item
                   3436: @var{plist1}, @var{plist2} $B$K$D$$$F(B, $BId9f$r=|$$$F=89g$H$7$FEy$7$$$+$I$&$+(B
                   3437: $BD4$Y$k(B.
                   3438: @item
                   3439: $B0[$J$kJ}K!$G5a$a$?%0%l%V%J4pDl$O(B, $B4pDl$N=g=x(B, $BId9f$,0[$J$k>l9g$,$"$j(B,
                   3440: $B$=$l$i$,Ey$7$$$+$I$&$+$rD4$Y$k$?$a$KMQ$$$k(B.
1.2     ! noro     3441: \E
        !          3442: \BEG
        !          3443: @item
        !          3444: This function checks whether @var{plist1} and @var{plist2} are equal or
        !          3445: not as a set .
        !          3446: @item
        !          3447: For the same input and the same term ordering different
        !          3448: functions for Groebner basis computations may produce different outputs
        !          3449: as lists. This function compares such lists whether they are equal
        !          3450: as a generating set of an ideal.
        !          3451: \E
1.1       noro     3452: @end itemize
                   3453:
                   3454: @example
                   3455: [243] C=cyclic(6)$
                   3456: [244] V=[c0,c1,c2,c3,c4,c5]$
                   3457: [245] G0=gr(C,V,0)$
                   3458: [246] G=tolex(G0,V,0,V)$
                   3459: [247] GG=lex_tl(C,V,0,V,0)$
                   3460: [248] gb_comp(G,GG);
                   3461: 1
                   3462: @end example
                   3463:
1.2     ! noro     3464: \JP @node katsura hkatsura cyclic hcyclic,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
        !          3465: \EG @node katsura hkatsura cyclic hcyclic,,, Functions for Groebner basis computation
1.1       noro     3466: @subsection @code{katsura}, @code{hkatsura}, @code{cyclic}, @code{hcyclic}
                   3467: @findex katsura
                   3468: @findex hkatsura
                   3469: @findex cyclic
                   3470: @findex hcyclic
                   3471:
                   3472: @table @t
                   3473: @item katsura(@var{n})
                   3474: @item hkatsura(@var{n})
                   3475: @item cyclic(@var{n})
                   3476: @item hcyclic(@var{n})
1.2     ! noro     3477: \JP :: $BB?9`<0%j%9%H$N@8@.(B
        !          3478: \EG :: Generates a polynomial list of standard benchmark.
1.1       noro     3479: @end table
                   3480:
                   3481: @table @var
                   3482: @item return
1.2     ! noro     3483: \JP $B%j%9%H(B
        !          3484: \EG list
1.1       noro     3485: @item n
1.2     ! noro     3486: \JP $B@0?t(B
        !          3487: \EG integer
1.1       noro     3488: @end table
                   3489:
                   3490: @itemize @bullet
1.2     ! noro     3491: \BJP
1.1       noro     3492: @item
                   3493: @code{katsura()} $B$O(B @samp{katsura}, @code{cyclic()} $B$O(B @samp{cyclic}
                   3494: $B$GDj5A$5$l$F$$$k(B.
                   3495: @item
                   3496: $B%0%l%V%J4pDl7W;;$G$7$P$7$P%F%9%H(B, $B%Y%s%A%^!<%/$KMQ$$$i$l$k(B @code{katsura},
                   3497: @code{cyclic} $B$*$h$S$=$N@F<!2=$r@8@.$9$k(B.
                   3498: @item
                   3499: @code{cyclic} $B$O(B @code{Arnborg}, @code{Lazard}, @code{Davenport} $B$J$I$N(B
                   3500: $BL>$G8F$P$l$k$3$H$b$"$k(B.
1.2     ! noro     3501: \E
        !          3502: \BEG
        !          3503: @item
        !          3504: Function @code{katsura()} is defined in @samp{katsura}, and
        !          3505: function @code{cyclic()} in  @samp{cyclic}.
        !          3506: @item
        !          3507: These functions generate a series of polynomial sets, respectively,
        !          3508: which are often used for testing and bench marking:
        !          3509: @code{katsura}, @code{cyclic} and their homogenized versions.
        !          3510: @item
        !          3511: Polynomial set @code{cyclic} is sometimes called by other name:
        !          3512: @code{Arnborg}, @code{Lazard}, and @code{Davenport}.
        !          3513: \E
1.1       noro     3514: @end itemize
                   3515:
                   3516: @example
                   3517: [74] load("katsura")$
                   3518: [79] load("cyclic")$
                   3519: [89] katsura(5);
                   3520: [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
                   3521: 2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2,
                   3522: 2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
                   3523: u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
                   3524: [90] hkatsura(5);
                   3525: [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
                   3526: -u4*t+2*u4*u0+2*u1*u3+u2^2+2*u5*u1,-u3*t+2*u3*u0+2*u1*u4+(2*u1+2*u5)*u2,
                   3527: -u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
                   3528: -u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
                   3529: -u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
                   3530: [91] cyclic(6);
                   3531: [c5*c4*c3*c2*c1*c0-1,
                   3532: ((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
                   3533: (((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
                   3534: ((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
                   3535: (c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
                   3536: [92] hcyclic(6);
                   3537: [-c^6+c5*c4*c3*c2*c1*c0,
                   3538: ((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
                   3539: (((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
                   3540: ((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
                   3541: (c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
                   3542: @end example
                   3543:
                   3544: @table @t
1.2     ! noro     3545: \JP @item $B;2>H(B
        !          3546: \EG @item References
1.1       noro     3547: @fref{dp_dtop}.
                   3548: @end table
                   3549:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>