=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/type.texi,v retrieving revision 1.10 retrieving revision 1.11 diff -u -p -r1.10 -r1.11 --- OpenXM/src/asir-doc/parts/type.texi 2003/04/19 10:36:30 1.10 +++ OpenXM/src/asir-doc/parts/type.texi 2003/04/19 15:44:57 1.11 @@ -1,4 +1,4 @@ -@comment $OpenXM: OpenXM/src/asir-doc/parts/type.texi,v 1.9 2002/09/03 01:50:58 noro Exp $ +@comment $OpenXM: OpenXM/src/asir-doc/parts/type.texi,v 1.10 2003/04/19 10:36:30 noro Exp $ \BJP @node $B7?(B,,, Top @chapter $B7?(B @@ -355,7 +355,7 @@ This is used for basis conversion in finite fields of \JP quantifier elimination $B$GMQ$$$i$l$k0l3,=R8lO@M}<0(B. \EG This expresses a first order formula used in quantifier elimination. -@item 15 @b{matrix over GF(p)} +@item 15 @b{matrix over GF(@var{p})} @* \JP $B>.I8?tM-8BBN>e$N9TNs(B. \EG A matrix over a small finite field. @@ -563,11 +563,11 @@ g mod f $B$O(B, g, f $B$r$"$i$o$9(B 2 $B$D$N%S%C \E \BEG This type expresses an element of a finite field of characteristic 2. -Let @var{F} be a finite field of characteristic 2. If @var{[F:GF(2)]} -is equal to @var{n}, then @var{F} is expressed as @var{F=GF(2)[t]/(f(t))}, -where @var{f(t)} is an irreducible polynomial over @var{GF(2)} +Let @var{F} be a finite field of characteristic 2. If [F:GF(2)] +is equal to @var{n}, then @var{F} is expressed as F=GF(2)[t]/(f(t)), +where f(t) is an irreducible polynomial over GF(2) of degree @var{n}. -As an element @var{g} of @var{GF(2)[t]} can be expressed by a bit string, +As an element @var{g} of GF(2)[t] can be expressed by a bit string, An element @var{g mod f} in @var{F} can be expressed by two bit strings representing @var{g} and @var{f} respectively. \E @@ -585,7 +585,7 @@ representing @var{g} and @var{f} respectively. $B$h$C$F(B, @@ $B$NB?9`<0$H$7$F(B F $B$N85$rF~NO$G$-$k(B. (@@^10+@@+1 $B$J$I(B) \E \BEG -@code{@@} represents @var{t mod f} in @var{F=GF(2)[t](f(t))}. +@code{@@} represents @var{t mod f} in F=GF(2)[t](f(t)). By using @code{@@} one can input an element of @var{F}. For example @code{@@^10+@@+1} represents an element of @var{F}. \E @@ -633,17 +633,17 @@ coefficients of a polynomial. \BJP $B0L?t$,(B @var{p^n} (@var{p} $B$OG$0U$NAG?t(B, @var{n} $B$O@5@0?t(B) $B$O(B, -$BI8?t(B @var{p} $B$*$h$S(B @var{GF(p)} $B>e4{Ls$J(B @var{n} $Be4{Ls$J(B @var{n} $Be$NB?9`<0$H$7$F(B +$B$3$NBN$N85$O(B m(x) $B$rK!$H$9$k(B GF(@var{p}) $B>e$NB?9`<0$H$7$F(B $BI=8=$5$l$k(B. \E \BEG A finite field of order @var{p^n}, where @var{p} is an arbitrary prime and @var{n} is a positive integer, is set by @code{setmod_ff} by specifying its characteristic @var{p} and an irreducible polynomial -of degree @var{n} over @var{GF(p)}. An element of this field -is represented by a polynomial over @var{GF(p)} modulo @var{m(x)}. +of degree @var{n} over GF(@var{p}). An element of this field +is represented by a polynomial over GF(@var{p}) modulo m(x). \E @item 9 @@ -656,7 +656,7 @@ is represented by a polynomial over @var{GF(p)} modulo $BI8?t(B @var{p} $B$*$h$S3HBgl9g(B, -@var{GF(p^n)} $B$N>hK!72$N@8@.85$r8GDj$9$k$3$H(B +GF(@var{p^n}) $B$N>hK!72$N@8@.85$r8GDj$9$k$3$H(B $B$K$h$j(B, $B$3$N85$N$Y$-$H$7$FI=$5$l$k(B. $B$3$l$K$h$j(B, $B$3$NBN$N(B 0 $B$G$J$$85(B $B$O(B, $B$3$N$Y$-;X?t$H$7$FI=8=$5$l$k(B. @var{p} $B$,(B @var{2^14} $B0J>e(B $B$N>l9g$ODL>o$N>jM>$K$h$kI=8=$H$J$k$,(B, $B6&DL$N%W%m%0%i%`$G(B @@ -808,13 +808,13 @@ sin(x) \EG @b{functor} @* \BJP -$BH!?t8F$S=P$7$O(B, @var{fname(args)} $B$H$$$&7A$G9T$J$o$l$k$,(B, @var{fname} $B$N(B +$BH!?t8F$S=P$7$O(B, @var{fname}(@var{args}) $B$H$$$&7A$G9T$J$o$l$k$,(B, @var{fname} $B$N(B $BItJ,$rH!?t;R$H8F$V(B. $BH!?t;R$K$O(B, $BH!?t$N