[BACK]Return to next2.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / cfep / Doc / Intro

Annotation of OpenXM/src/cfep/Doc/Intro/next2.tex, Revision 1.5

1.1       takayama    1: % makeindex next2.idx
1.2       takayama    2: % License: GNU Free Documentation License 1.2.
1.1       takayama    3: \documentclass{jbook}
                      4: \usepackage{html}
                      5: \usepackage{makeidx}
                      6: \usepackage{ascmac}
                      7: \usepackage[dvips]{graphicx}
                      8: \textwidth = 15cm
                      9: \textheight = 23cm
                     10:
                     11: \topmargin = 0.7cm
                     12: \evensidemargin = 0cm
                     13: \oddsidemargin = 1cm
                     14:
                     15: \def\comment#1{ #1 }
                     16: %\def\comment#1{  }
                     17: \input{asirbookmacro}
                     18:
                     19: \title{ {\bf $BD6F~Lg(B Cfep/asir (MacOS X)} }
                     20: \author{  $B9b;3?.5#(B }
1.5     ! takayama   21: \date{ 2006$BG/(B($BJ?@.(B18$BG/(B), 3$B7n(B12$BF|HG(B(cfep 1.1). 2008-09-26, 2009-09-19 $B=$@5(B \\ $B%3%a%s%H$O(B takayama@math.kobe-u.ac.jp $B$^$G(B}
1.1       takayama   22: \makeindex
                     23:
                     24: \begin{document}
                     25: \maketitle
                     26: \tableofcontents
                     27:
                     28: \chapter{ $BEEBn$H$7$F$NMxMQ(B }  \label{chapter:next}
                     29: %en \chapter{A Tour of Asir} \label{chapter:next}
                     30:
                     31: $B?@8MBg3X$N650iMQ7W;;5!4D6-$,(B MacOS X $B$KJQ99$5$l$k$N$KH<$$(B,
                     32: $BI.<T$,65:`$H$7$FMxMQ$7$F$$$?(B Windows $B$GF0:n$9$k(B10$B?J(BBasic$B$,MxMQ$G$-$J$/$J$C$?(B.
                     33: Cfep/asir $B$O$=$NBeMQ$H$7$F(B,
                     34: 2006$BG/=iF,$+$i3+H/$r?J$a$F$$$k%7%9%F%`$G$"$k(B.
                     35: 10$B?J(BBasic$B$NM%$l$F$$$kE@$N0l$D$O(B, $BCzG+$JF~Lg2r@b$,IUB0$7$F$$$k$3$H$G$"$k(B.
                     36: ``Cfep/asir$BD6F~Lg(B'' $B$O$3$N2r@b$K$9$3$7$G$b6aIU$3$&$HEXNO$7$F$_$?(B.
                     37: Asir$B$NF~Lg%F%-%9%H$K(B ``Asir$B%I%j%k(B'' $B$,$"$k$,(B, $B$3$ND6F~Lg$G$O(B ``Asir$B%I%j%k(B''
                     38: $B$N0l>O$*$h$S$=$N@h$NF~LgE*FbMF$rCzG+$K(B($B>/!9$/$I$/(B)$B@bL@$7$?(B.
                     39:
                     40: \bigbreak
                     41:
                     42: $B$3$N@a$G$O(B MacOS X $B$G$N(B cfep/asir $B$N5/F0K!(B, $BEEBnIw(B, Basic$BIw$N;H$$J}$r@bL@$9$k(B.
                     43: $B%U%!%$%k$NJ]B8Ey(B MacOS X $B$N6&DL$NA`:nJ}K!$K$O$[$H$s$I$U$l$F$$$J$$$,(B,
                     44: cfep/asir $B$O(B MacOS X $BI8=`$N%U%!%$%k$NJ]B8Ey$rMQ$$$F$$$k$N$G(B,
                     45: $B$3$N$h$&$JItJ,$G$OB>$N%=%U%H%&%(%"$HMxMQJ}K!$OF10l$G$"$k(B.
                     46: $B=i?4<T$N?M$OE,Ev$JK\$d%,%$%I$r;2>H$5$l$?$$(B.
                     47:
                     48:
                     49: \section{$B%-!<A`:n$HMQ8l$NI|=,(B}
                     50:
                     51: \noindent
                     52: $B%-!<%\!<%I(B, $B%^%&%9$NA`:n$NMQ8l(B.
                     53: \begin{enumerate}
                     54: %
                     55: \item
                     56:  \fbox{\tt Command} $B%-!<$d(B
                     57:  \fbox{\tt ALT } $B%-!<$d(B \fbox{\tt SHIFT} $B%-!<$d(B
                     58:  \fbox{\tt CTRL } $B%-!<$OB>$N%-!<$H0l=o$K2!$9$3$H$G;O$a$F5!G=$9$k(B
                     59:  $B%-!<$G$"$k(B.$B$3$l$i$@$1$rC1FH$K2!$7$F$b$J$K$b$*$-$J$$(B.
                     60:  $B0J8e(B \fbox{\tt SHIFT} $B%-!<$r$*$7$J$,$iB>$N%-!<$r2!$9A`:n$r(B
                     61:  \shift{$B$-!<(B} $B$H=q$/$3$H$K$9$k(B. command $B%-!<(B, alt $B%-!<(B,  ctrl $B%-!<$K$D$$$F$b(B
                     62:  $BF1MM$G$"$k(B.
                     63: %
                     64: \item
                     65:  \shift{a} $B$H$9$k$HBgJ8;z$N(B A $B$rF~NO$G$-$k(B.
                     66: %
                     67: \item
                     68:  \fbox{\tt BS} $B$H$+(B \fbox{\tt DEL} $B$H=q$$$F$"$k%-!<2!$9$H0lJ8;zA0$r>C5n$G$-$k(B.
                     69: %
                     70: \item $BF|K\8l%-!<%\!<%I$N>l9g(B \fbox{{\tt $\backslash$}}
                     71: ($B%P%C%/%9%i%C%7%e(B) $B$O(B \alt{\yen} $B$GF~NO$G$-$k(B.
                     72: %
                     73: \item
                     74:  \fbox{\tt SPACE} $B%-!<$O6uGr$rF~NO$9$k%-!<$G$"$k(B.
                     75:   $B7W;;5!$NFbIt$G$OJ8;z$O?t;z$KJQ49$5$l$F3JG<$*$h$S=hM}$5$l$k(B.
                     76:   $BJ8;z$KBP1~$9$k?t;z$rJ8;z%3!<%I$H8F$V(B. $BJ8;z%3!<%I$K$O$$$m$$$m$J<oN`$N$b$N$,$"$k$,(B,
                     77:   $B0lHV4pACE*$J$N$O%"%9%-!<%3!<%I7O$G$"$j(B, $B%"%k%U%!%Y%C%H$d?t;z(B, $B%-!<%\!<%I$K8=$l$k(B
                     78:   $B5-9f$J$I$r%+%P!<$7$F$$$k(B. $B4A;z$O%"%9%-!<%3!<%I7O$G$OI=8=$G$-$J$$(B.
                     79:   \fbox{A} $B$N%"%9%-!<%3!<%I$O(B 65$BHV$G$"$k(B. $B0J2<(B \fbox{B} $B$,(B 66, \fbox{C} $B$,(B 67,
                     80:   $B$HB3$/(B.
                     81:   $B6uGr$N%"%9%-!<%3!<%I$O(B32$BHV$G$"$k(B.
                     82:  $BF|K\8lF~NO$N>uBV$GF~NO$5$l$k6uGr$O(B ``$BA43Q6uGr(B'' $B$H8F$P$l$F$*$j(B,
                     83:  $B%"%9%-!<%3!<%I(B32$BHV$N6uGr(B ($BH>3Q6uGr(B) $B$H$OJL$NJ8;z$G$"$k(B.
                     84:  $BA43Q6uGr$,%W%m%0%i%`$K:.$8$C$F$$$k$H%(%i!<$r5/$3$9(B.
                     85:  asir $B$G$O%a%C%;!<%8$d%3%a%s%HEy$KF|K\8l$,MxMQ2DG=$G$"$k$,(B,
                     86:  $B47$l$k$^$G$O1Q;z%b!<%I$N$_$rMxMQ$9$k$3$H$r$*4+$a$9$k(B.
                     87:  $B1&>e$N8@8lI=<($,(B
                     88: \begin{center}
                     89:   \scalebox{0.1}{\includegraphics{Figs/language.ps}}
                     90: \end{center}
                     91:  $B$H$J$C$F$$$k>uBV$G(B cfep/asir $B$KF~NO$7$h$&(B.
                     92: %
                     93: \item
                     94:  \fbox{  ' } ($B%7%s%0%k%/%*!<%H(B) $B$H(B \fbox{ `  }  ($B%P%C%/%/%*!<%H(B)
                     95: $B$OJL$NJ8;z$G$"$k(B.
                     96:  $B%W%m%0%i%`$rFI$`;~$KCm0U(B.
                     97:  $B$^$?(B, $B%W%m%0%i%`$rFI$`;~$O(B {\tt 0} ($B%<%m!K$H(B {\tt o} $B!J$*!<!K(B
                     98:  $B$N0c$$$K$bCm0U(B.
                     99: %
                    100: %
                    101: \item
                    102:  $B%^%&%9$NA`:n$K$O<!$N;0<oN`$,$"$k(B.
                    103: %
                    104: %
                    105: \begin{enumerate}
                    106: \item $B%/%j%C%/(B: $BA*Br$9$k$H$-(B,
                    107:        $BJ8;z$rF~NO$9$k0LCV!J%-%c%l%C%H$N0LCV!K$N0\F0$KMQ$$$k(B.
                    108:       $B%^%&%9$N%\%?%s$r$A$g$s$H$*$9(B.  \index{$B$/$j$C$/(B@$B%/%j%C%/(B}
                    109: \item $B%I%i%C%0(B: $B0\F0(B, $B%5%$%:$NJQ99(B, $BHO0O$N;XDj(B, $B%3%T!<$N(B
                    110:       $B$H$-$J$I$KMQ$$$k(B.
                    111:       $B%^%&%9$N%\%?%s$r2!$7$J$,$iF0$+$9(B.
                    112: \item $B%@%V%k%/%j%C%/!'%W%m%0%i%`$N<B9T(B, open($B%U%!%$%k$r3+$/(B)$B$r$9$k$?$a$K(B
                    113:       $BMQ$$$k(B.  \index{$B$@$V$k$/$j$C$/(B@$B%@%V%k%/%j%C%/(B}
                    114:        $B%^%&%9$N%\%?%s$r#22s$D$:$1$F$A$g$s$A$g$s$H$*$9(B.
                    115:       $B%@%V%k%/%j%C%/$r$7$?%"%$%3%s$OGr$/$J$C$?$j7A>u$,$+$o$k$3$H$,(B
                    116:       $B$*$*$$(B.
                    117:       $B%@%V%k%/%j%C%/$7$?$i$7$P$i$/BT$D(B.
                    118:       $B7W;;5!$,K;$7$$$H$-$O5/F0$K;~4V$,$+$+$k$3$H$b$"$j(B.
                    119:       $B$`$d$_$K%@%V%k%/%j%C%/$r7+$jJV$9$H$=$N2s?t$@$15/F0$5$l$F$J$*CY$/$J$k(B.
                    120: \end{enumerate}
                    121: %
                    122: \end{enumerate}
                    123:
                    124:
                    125: \section{ Cfep/Asir $B$N5/F0K!$HEEBnE*$J;H$$J}(B }
                    126: %en \section{Using Risa/Asir as a Calculator}
                    127: %C
                    128:
                    129: cfep $B$N%"%$%3%s(B($B$$$N$V$?7/(B)
                    130: %en
                    131: %en In case of Windows, open the folder (directory) in which Risa/Asir is
                    132: %en installed and double click the icon of {\tt asirgui}
                    133: %<C
                    134: \begin{center}
                    135: \scalebox{0.1}{\includegraphics{Figs/inobuta.ps}}
                    136: \end{center}
                    137: %>C
                    138: $B$r%@%V%k%/%j%C%/$9$k$H?^(B\ref{fig:cfepStart}$B$N$h$&$K(B cfep/asir $B$,5/F0$9$k(B.
                    139: $B0J2<(B cfep/asir $B$rC1$K(B asir $B$H$h$V(B.
                    140:
                    141: %<C
                    142: \begin{figure}[tb]
                    143: \scalebox{0.5}{\includegraphics{Figs/cfepStart.ps}}
                    144: \caption{ cfep/asir $B$N5/F02hLL(B} \label{fig:cfepStart}
                    145: \end{figure}
                    146: %>C
                    147:
                    148: $B?^(B\ref{fig:cfepStart} $B$NF~NOAk$K7W;;$7$?$$<0$d%W%m%0%i%`$rF~NO$7$F(B
                    149: ``$B;O$a(B''$B%\%?%s(B
                    150: %<C
                    151: \begin{center}
                    152: \scalebox{0.1}{\includegraphics{Figs/buttonStart.ps}}
                    153: \end{center}
                    154: %>C
                    155: $B$r$*$9$H<B9T$r3+;O$9$k(B.
                    156: $B<0$N7W;;$d%W%m%0%i%`$N<B9T$,=*N;$9$k$H(B,
                    157: $B?7$7$$%&%$%s%I%&(B OutputView $B$,3+$-7k2L$,$=$N%&%$%s%I%&$KI=<($5$l$k(B.
                    158: \index{$B$K$e$&$j$g$/$^$I(B@$BF~NOAk(B}
                    159: \index{OutputView}
                    160: ``$B;O$a(B''$B%\%?%s$r$*$7$F<B9T$r3+;O$9$k$3$H$r7W;;5!MQ8l$G$O(B
                    161: ``$BF~NO$NI>2A$r;O$a$k(B'' $B$H$$$&(B.
                    162: \index{;}  \index{$B$R$g$&$+(B@$BI>2A(B}
                    163:
                    164: $B=PNO>.Ak$K$O%7%9%F%`$+$i$N$$$m$$$m$J>pJs$,=PNO$5$l$k$,(B,
                    165: $BFbMF$OCf>e5i<T8~$1$N$b$N$,B?$$(B.
                    166: \index{$B$7$e$D$j$g$/$3$^$I(B@$B=PNO>.Ak(B}
                    167:
                    168: $B%U%!%$%k%a%K%e!<(B
                    169: %<C
                    170: \begin{center}
                    171: \scalebox{0.3}{\includegraphics{Figs/menuFile.eps}}
                    172: \end{center}
                    173: %>C
                    174: $B$+$i(B''$BJ]B8(B''$B$d(B''$BJLL>$GJ]B8(B''$B$r<B9T$9$k$HF~NOAk$NFbMF$r%U%!%$%k$H$7$FJ]B8$G$-$k(B.
                    175: $B=PNO>.Ak$NFbMF$d(B OutputView $B$NFbMF$OJ]B8$5$l$J$$$N$GCm0U$7$F$[$7$$(B.
                    176:
                    177: cfep/asir $B$r40A4$K=*N;$9$k$K$O(B cfep $B%a%K%e!<(B
                    178: %<C
                    179: \begin{center}
                    180: \scalebox{0.3}{\includegraphics{Figs/menuCfep.eps}}
                    181: \end{center}
                    182: %>C
                    183: $B$N(B ``cfep $B$r=*N;(B'' $B$r<B9T$9$k(B.
                    184: %en Input \verb@ quit; @ to terminate the Risa/Asir.
                    185: %
                    186: %
                    187:
                    188: %<C
                    189: \bigbreak
                    190: \bigbreak
                    191:
                    192: %>C
                    193:
                    194:
                    195: $B$5$F?^(B\ref{fig:cfepStart}$B$G$O(B
                    196: $ 3 \times 4 + 1 $ $B$N7W;;$r$7$F$$$k(B.
                    197: \begin{screen}
                    198: Asir $B$K$*$1$k7W;;<0$OIaDL$N?t<0$H;w$F$$$F(B,
                    199: $BB-$7;;$O(B {\tt $+$},
                    200: $B0z$-;;$O(B {\tt $-$}
                    201: $B$H=q$/(B.
                    202: $B$+$1;;$H3d;;$O(B $\times$ $B$d(B $B!`(B $B$,%-!<%\!<%I$K$J$$$H$$$&Nr;KE*M}M3$b$"$j(B,
                    203: $B$=$l$>$l(B {\tt *} $B$H(B {\tt /} $B$GI=8=$9$k(B.
                    204: $BN_>h(B $P^N$ $B$O(B \verb@P^N@ $B$N$h$&$K(B \verb@^@ $B5-9f$rMQ$$$FI=$9(B.
                    205: \end{screen}
                    206:
                    207: \begin{screen}
                    208: $B<0$N=*$j$r=hM}7O(B(asir)$B$K65$($k(B($B<($9(B)$B$N$K(B {\tt ;} ($B%;%_%3%m%s(B)
                    209: $B$r=q$+$J$$$H$$$1$J$$(B.
                    210: $BJ8Kv$N(B ``$B!#(B'' $B$N$h$&$JLr3d$r2L$?$9(B.
                    211: $B$^$?$+$1;;$N5-9f(B {\tt *} $B$N>JN,$O$G$-$J$$(B.
                    212: \end{screen}
                    213:
                    214: \begin{example} \rm
                    215: $B0J2<$N:8$N7W;;<0$r(B asir $B$G$O1&$N$h$&$K$"$i$o$9(B.
                    216: \begin{center}
                    217: \begin{tabular}{|l|l|} \hline
                    218: $2 \times (3+5^4)$  &    \verb@2*(3+5^4);@  \\ \hline
                    219: $\left\{\left(2+\frac{2}{3}\right)\times 4+\frac{1}{3}\right\}\times 2 +5  $
                    220:                          & \verb@ ((2+2/3)*4+1/3)*2+5; @ \\ \hline
                    221: $AX+B$  & \verb@A*X+B;@ \\ \hline
                    222: $AX^2+BX+C$ & \verb@A*X^2+B*X+C;@ \\ \hline
                    223: $\frac{1}{X-1}$ & \verb@1/(X-1);@ \\ \hline
                    224: \end{tabular}
                    225: \end{center}
                    226: \end{example}
                    227:
                    228: $B7W;;$N=g=x$O3g8L$b4^$a$FIaDL$N?t<0$N7W;;$HF1$8$G$"$k(B.
                    229: $B$?$@$7(B
                    230: $B?t3X$G$O$+$C$3$H$7$F(B, {\tt [,]},{\tt \{,\}}$B$J$I$,$D$+$($k$,(B
                    231: asir $B$G$O(B {\tt (,)} $B$N$_(B.
                    232: {\tt [,]} $B$d(B {\tt \{,\}}$B$OJL$N0UL#$r$b$D(B.
                    233: $B>e$NNc$N$h$&$K(B {\tt (,)} $B$r2?=E$K$b$D$+$C$F$h$$(B.
                    234: %en In mathematics, {\tt (,)}, {\tt [,]} ,{\tt \{,\}} are used
                    235: %en as brackets in expressions,
                    236: %en but in Risa/Asir,  only {\tt (,)} can be used as brackets in expressions,
                    237: %en and {\tt [,]} and {\tt \{,\}} are used for different purposes (list and
                    238: %en grouping in programs).
                    239: $B$3$N>l9g3g8L$NBP1~4X78$,$o$+$j$K$/$$(B.
                    240: $B3g8L$NBP1~$rD4$Y$?$$HO0O$r%^%&%9$G%I%i%C%0$7$FA*Br$7(B,
                    241: \begin{center}
                    242:   \scalebox{0.1}{\includegraphics{Figs/buttonBracket.eps}}
                    243: \end{center}
                    244: $B%\%?%s$r$*$9$3$H$K$h$j3g8L$NBP1~$rD4$Y$k$3$H$,$G$-$k(B.
                    245: \begin{figure}[tb]
                    246: \begin{center}
                    247:   \scalebox{0.5}{\includegraphics{Figs/menuCheckBracket.eps}}
                    248: \end{center}
                    249: \caption{$B3g8L$NBP1~(B} \label{fig:menuCheckBracket}
                    250: \end{figure}
                    251: $B?^(B\ref{fig:menuCheckBracket}$B$NNc$G$O(B \verb@(1+2*(3+4))@ $B$H=q$/$Y$-$H$3$m$r(B
                    252: \verb@(1+2*(3+4)@ $B$H=q$$$F$*$j%(%i!<$,I=<($5$l$F$$$k(B.
                    253:
                    254: \bigbreak
                    255:
                    256: \noindent \QQQ
                    257: ``Basic$BIw$N;H$$J}$r@bL@$9$k(B'' $B$H=q$$$F$"$j$^$7$?$,(B, Basic $B$C$F2?$G$9$+(B? \\
                    258: \noindent \AAA
                    259: $B%3%s%T%e!<%?$K;E;v$r$5$;$k$K$O:G=*E*$K$O%W%m%0%i%`8@8l(B
                    260: ($B7W;;5!$X$N;E;v$N<j=g$r;X<($9$k$?$a$N?M9)8@8l(B)$B$rMQ$$$k(B.
                    261: $B%o!<%W%mEy$b%W%m%0%i%`8@8l$G5-=R$5$l$F$$$k(B.
                    262: Basic $B$O:G$b8E$$%W%m%0%i%`8@8l$N0l$D$G$"$j(B, $B=i?4<T$K$d$5$7$/(B, $B$+$D(B
                    263: $B7W;;5!$N;EAH$_$d%W%m%0%i%`8@8l$NM}2r$K$bM-MQ$G$"$k(B.
                    264: Basic $B$O9b9;$N?t3X$N652J=qEy$K$bEP>l$9$k(B.
                    265: $BCx<T$O$$$^$^$G(B ``10$B?J(BBASIC'' $B$r=i?4<T8~$165:`$H$7$F3hMQ$7$F$$$?$,(B,
                    266: ``10$B?J(BBASIC''$B$,(B MacOS X $B$GF0:n$7$J$$$?$a(B cfep $B$r3+H/$7$?(B.
                    267: Asir $B8@8l$b%W%m%0%i%`8@8l$G$"$j(B Basic $B$H$h$/;w$F$$$k$,(B, C $B8@8l$K$b$C$H6a$$(B.
                    268:
                    269:
                    270: \noindent \QQQ
                    271: MacOS X $B$C$F2?$G$9$+(B? \\
                    272: \noindent \AAA
                    273: -----$B$^$@=q$$$F$J$$(B.
                    274:
                    275:
                    276:
                    277: %<C
                    278: \bigbreak
                    279: \noindent
                    280: %>C
                    281: Asir $B$O?t$N=hM}$N$_$J$i$:(B, $\sqrt{x}$$B$d;03Q4X?t$N6a;w7W;;(B, $BB?9`<0$N7W;;$b$G$-$k(B.
                    282: %en Asir can do calculations not only for numbers, but also for polynomials.
                    283: %en Let us see some examples.
                    284: %en
                    285: $B:8$N?t3XE*$J<0$O(B asir $B$G$O1&$N$h$&$KI=$9(B.
                    286: \begin{center}
                    287: \begin{tabular}{|l|l|} \hline
                    288:  $\pi$ ($B1_<~N((B) &  {\tt @pi} \\ \hline
                    289:  $\cos x$ & {\tt cos(x)} \\ \hline
                    290:  $\sin x$ & {\tt sin(x)} \\ \hline
                    291:  $\tan x$ & {\tt tan(x)} \\ \hline
                    292:  $\sqrt{x}$ & \verb@x^(1/2)@ \\ \hline
                    293: \end{tabular}
                    294: \end{center}
                    295: %en {\tt sin(x), cos(x)} are the trigonometric functions sine and cosine.
                    296: %en The symbol {\tt @pi} is the constant $\pi$.
                    297: $B;03Q4X?t$N3QEY$K$"$?$kItJ,$N(B $x$ $B$O%i%8%"%s$H$$$&C10L$rMQ$$$FI=$9(B.
                    298: $B9b9;Dc3XG/$N?t3X$G$O3QEY$rEY(B(degree)$B$H$$$&C10L$rMQ$$$FI=$9$,(B,
                    299: $B?t3X(B3$B0J>e$G$O3QEY$O%i%8%"%s$H$$$&C10L$GI=$9(B.
                    300: \begin{screen}
                    301: 90$BEY(B($BD>3Q(B)$B$,(B $\pi/2$ $B%i%8%"%s(B, 180$BEY$,(B $\pi$ $B%i%8%"%s(B.
                    302: $B0lHL$K(B $d$$BEY$O(B $\frac{d}{180} \pi$ $B%i%8%"%s$G$"$k(B.
                    303: \end{screen}
                    304: $BC10L%i%8%"%s$r$b$A$$$k$HHyJ,K!$N8x<0$,4J7i$K$J$k(B.
                    305: $B$?$H$($P(B $x$ $B$,%i%8%"%s$G$"$k$H(B $\sin x$ $B$NHyJ,$O(B $\cos x$ $B$G$"$k(B.
                    306: \index{$B$i$8$"$s(B@$B%i%8%"%s(B}
                    307:
                    308: $\sin(x)$ $B$d(B $\cos(x)$ $B$N6a;wCM$r5a$a$k$K$O$?$H$($P(B
                    309: %en \item  In order to get approximate values of $\sin(x)$  $\cos(x)$, input as
                    310: %<C
                    311: \begin{center}
                    312: \verb@  deval(sin(3.14));  @
                    313: \end{center}
                    314: %>C
                    315: $B$HF~NO$9$k(B.
                    316: $B$3$l$O(B $\sin (3.14)$ $B$N6a;wCM$r7W;;$9$k(B.
                    317: $\sin \pi = 0 $ $B$J$N$G(B $0$ $B$K6a$$CM$,=PNO$5$l$k$O$:$G$"$k(B.
                    318: $B<B:](B {\tt 0.00159265} $B$r=PNO$9$k(B.  \index{deval}
                    319: {\tt deval}
                    320: (\underline{eval}uate and get a result in {\underline d}ouble number precision $B$NN,(B)
                    321: $B$O(B 64 bit$B$NIbF0>.?tE@?t$K$h$j6a;wCM7W;;$9$k(B.
                    322: 64 bit$B$NIbF0>.?tE@?t$H$O2?$+$N@bL@$OD6F~Lg$NHO0O30$G$"$k$,(B,
                    323: $B7W;;5!$OM-8B$N5-21NN0h(B($B%a%b%j(B)$B$7$+;}$?$J$$$N$G(B, $B>.?t$bM-8B7e$7$+07$($J$$(B
                    324: $B$H3P$($F$*$3$&(B. 64bit $B$O07$($k7e?t$rI=$7$F$$$k(B.
                    325: $B>\$7$/$O(B ``asir $B%I%j%k(B'' $B$r;2>H$7$FM_$7$$(B.
                    326:
                    327: %en The function {\tt deval} numerically evaluates the argument in 64 bit floating point arithmetic.
                    328: %en As to details, see Chapter \ref{chapter:naibu}.
                    329: %en
                    330:
                    331: \begin{figure}[thb]
                    332: \begin{center}
                    333:   \scalebox{0.5}{\includegraphics{Figs/sqrt2.eps}}
                    334: \end{center}
                    335: \caption{$BJ?J}:,$N7W;;(B}
                    336: \label{fig:sqrt2}
                    337: \end{figure}
                    338:
                    339: \begin{example} \rm
                    340: $\sqrt{2}$, $\sqrt{3}$ $B$N6a;wCM$r7W;;$7$J$5$$(B. \\
                    341: $BF~NO(B
                    342: \begin{screen}
                    343: \begin{verbatim}
                    344:   print(deval(2^(1/2)));
                    345:   print(deval(3^(1/2)));
                    346: \end{verbatim}
                    347: \end{screen}
                    348: $B=PNO$O(B
                    349: $B?^(B\ref{fig:sqrt2}$B$r$_$h(B.
                    350: \end{example}
                    351:
                    352:
                    353: $B>e$NNc$N$h$&$K(B,
                    354: $B%;%_%3%m%s(B {\tt ;} $B$G6h@Z$i$l$?0lO"$NL?Na$N$"$D$^$j$O$b$C$H$b(B
                    355: $BC1=c$J(B asir $B%W%m%0%i%`$NNc$G$"$k(B.  \index{$B$W$m$0$i$`(B@$B%W%m%0%i%`(B}
                    356: $B0lO"$NL?Na$O;O$a$+$i=gHV$K<B9T$5$l$k(B.
                    357: {\tt print($B<0Ey(B);} $B$O(B ``$B<0Ey(B'' $B$NCM$r7W;;$7$FCM$r2hLL$KI=<($9$k(B.
                    358:
                    359: $B$5$F=PNO$N(B {\tt 1.41421} ($B$R$H$h(B $B$R$H$h$K(B $B$R$H$_$4$m(B) $B$O(B $\sqrt{2}$ $B$N6a;wCM$J$N$G(B,
                    360: \verb@print(deval(2^(1/2)));@
                    361: $B$N<B9T7k2L$G$"$k(B.
                    362: $B$5$F=PNO$N(B {\tt 1.73205} ($B$R$H$J$_$K(B $B$*$4$l$d(B) $B$O(B $\sqrt{3}$ $B$N6a;wCM$J$N$G(B,
                    363: \verb@print(deval(3^(1/2)));@
                    364: $B$N<B9T7k2L$G$"$k(B.
                    365: $B:G8e$N(B {\tt 0} $B$O$J$s$J$N$G$"$m$&$+(B?
                    366: $B<B$O$3$l$O:G8e$N(B {\tt print} $BJ8$NLa$7$F$$$kCM$G$"$k(B.
                    367: $B$`$D$+$7$$(B? $BJL$NNc$G@bL@$7$h$&(B.
                    368:
                    369: \noindent
                    370: \fbox{$BF~NO(B}
                    371: \begin{screen}
                    372: \begin{verbatim}
                    373: 1+2;
                    374: 2+3;
                    375: 3+4;
                    376: \end{verbatim}
                    377: \end{screen}
                    378: $B$3$N;~=PNO$O(B(OutputView$B$X$NI=<($O(B)
                    379: \begin{screen}
                    380: {\tt 7}
                    381: \end{screen}
                    382: $B$H$J$k(B.
                    383: cfep/asir $B$G$O$H$/$K(B {\tt print} $BJ8$r$+$+$J$$8B$j(B
                    384: $B:G8e$NJ8$N7W;;7k2L(B($BI>2A7k2L(B)$B$7$+=PNO$7$J$$(B.
                    385: $B$$$^$N>l9g$O(B $3+4$  $B$N7k2L(B $7$ $B$r=PNO$7$F$$$k(B.
                    386: \index{$B$7$e$D$j$g$/$1$C$+(B@$B=PNO7k2L(B}
                    387:
                    388: \begin{problem} \rm
                    389: \begin{enumerate}  \index{2$B$N$k$$$8$g$&(B@$2$$B$NN_>h(B}
                    390: \item $2^8$, $2^9$, $2^{10}$,
                    391: $B$NCM$r7W;;$7$FEz$($rI=<($9$k%W%m%0%i%`$r=q$-$J$5$$(B.
                    392: \item $2$ $B$NN_>h$O%Q%=%3%s$N@-G=@bL@$K$h$/EP>l$9$k(B.
                    393: $B$?$H$($P8!:w%7%9%F%`(B google $B$K%-!<%o!<%I(B ``512 $B%a%b%j(B $BEk:\(B'' $B$rF~NO$7$?$H$3$m(B
                    394: ``$B%S%G%*%a%b%j$r(B 256M $B$+$i(B 512M $B$KG\A}$5$;(B'' $B$J$I(B, $B?tB?$/$N5-;v$,%R%C%H$9$k(B.
                    395: $B$3$N$h$&$J5-;v$r(B($B0UL#$,$o$+$i$J$/$F$b(B)10$B7o$"$D$a$F$_$h$&(B.
                    396: $512$ $B0J30$N(B $2$ $B$NN_>h$G$bF1$8$3$H$r;n$7$F$_$h$&(B.
                    397: \item ($BCf5i(B) $2$ $B$NN_>h$,%Q%=%3%s$N@-G=@bL@$K$h$/EP>l$9$kM}M3$rO@$8$J$5$$(B.
                    398: \end{enumerate}
                    399: \end{problem}
                    400:
                    401: \bigbreak
                    402:
                    403: \begin{figure}[thb]
                    404: \begin{center}
                    405:   \scalebox{0.4}{\includegraphics{Figs/plot1.eps}}
                    406: \end{center}
                    407: \caption{$B4X?t$N%0%i%U(B}
                    408: \end{figure}
                    409:
                    410: \noindent
                    411: \HHH
                    412: \index{plot}  \index{X11}
                    413: %en \begin{example} \rm
                    414: %en \index{plot}
                    415: \underline{X11 $B4D6-$,F0$$$F$$$l$P(B},
                    416: {\tt plot(f);}   $BL?Na$G(B
                    417: $x$$B$N4X?t(B $f$ $B$N%0%i%U$rIA$1$k(B.
                    418: %en The command {\tt plot(f);}
                    419: %en draws the graph of the function $f$ in the variable $x$.
                    420: {\tt x} $B$NHO0O$r;XDj$7$?$$$H$-$O$?$H$($P(B  \\
                    421: {\tt plot(f,[x,0,10])}
                    422: $B$HF~NO$9$k$H(B, {\tt x} $B$O(B 0 $B$+$i(B 10 $B$^$GJQ2=$9$k(B.
                    423: %en When you need to specify the range of variables {\tt x},
                    424: %en input, for example  \\
                    425: %en {\tt plot(f,[x,0,10])}
                    426: %en Then, the variable {\tt x} runs over $[0, 10]$.
                    427:
                    428: \noindent \fbox{$BF~NONc(B}
                    429: %<C
                    430: \begin{screen}
                    431: \begin{verbatim}
                    432:     plot(sin(x));
                    433:     plot(sin(2*x)+0.5*sin(3*x),[x,-10,10]);
                    434: \end{verbatim}
                    435: \end{screen}
                    436: %>C
                    437: \begin{problem} \rm
                    438: $B$$$m$$$m$J4X?t$N%0%i%U$rIA$$$F$"$=$s$G$_$h$&(B.
                    439: $B?t3X$NCN<1$rAmF00w$7$F7W;;5!$NIA$/7A$,$I$&$7$F$=$&$J$N$+(B
                    440: $B@bL@$r;n$_$F$_$h$&(B.
                    441: \end{problem}
                    442:
                    443:
                    444: \section{$B%(%i!<%a%C%;!<%8(B}
                    445:
                    446: $BF~NO$K%(%i!<$,$"$k$H(B, $B%(%i!<%a%C%;!<%8$,I=<($5$l$k(B.
                    447: \index{$B$($i!<(B@$B%(%i!<(B}
                    448: \index{$B$($i!<$a$C$;!<$8(B@$B%(%i!<%a%C%;!<%8(B}
                    449:
                    450: \begin{figure}[htb]
                    451: \begin{center}
                    452:   \scalebox{0.5}{\includegraphics{Figs/errorParseEq}}
                    453: \end{center}
                    454: \caption{$BJ8K!%(%i!<(B} \label{fig:errorParseEq}
                    455: \end{figure}
                    456: $B?^(B\ref{fig:errorParseEq} $B$G$O(B
                    457: \verb@ 2+4= @
                    458: $B$HF~NO$7$F$$$k(B. $B:G8e$K(B \verb@=@ $B$r=q$/I=8=$O(B asir $B$NJ8K!$G$O(B
                    459: $B5v$5$l$F$$$J$$$N$G(B,  ``$BJ8K!%(%i!<(B'' $B$H;XE&$5$l$F$$$k(B.  \index{$B$V$s$]$&$($i!<(B@$BJ8K!%(%i!<(B}
                    460: \begin{screen}
                    461: $BBgBN$3$l$G$o$+$C$F$/$l$F$$$$$8$c$J$$(B,
                    462: $B$H$3$A$i$,$*$b$C$F$$$F$b%W%m%0%i%`8@8l$O0l@ZM;DL$,$-$+$J$$(B.
                    463: \end{screen}
                    464: $B$J$*(B
                    465: \begin{verbatim}
                    466: error([41,4294967295,parse error,[asir_where,[[toplevel,1]]]])
                    467: \end{verbatim}
                    468: $B$NItJ,$O>e5i<T8~$1$N>pJs$J$N$G$H$j$"$($:L5;k$7$F$b$i$$$?$$(B.
                    469:
                    470:
                    471: \begin{figure}[htb]
                    472: \begin{center}
                    473:   \scalebox{0.5}{\includegraphics{Figs/errorMultiLine}}
                    474: \end{center}
                    475: \caption{$B%(%i!<9T(B} \label{fig:errorMultiLine}
                    476: \end{figure}
                    477: $B?^(B\ref{fig:errorMultiLine} $B$G$O(B
                    478: \begin{screen}
                    479: \begin{verbatim}
                    480:   print( 2^7 );
                    481:   print( 2^8 );
                    482:   print( deval(2^(1/2));
                    483:   print( deval(3^(1/2)));
                    484: \end{verbatim}
                    485: \end{screen}
                    486: $B$HF~NO$7$F$$$k(B.
                    487: 3$B9TL\$O1&3g8L$,$R$H$DB-$j$J$/$F(B
                    488: \verb@print( deval(2^(1/2)));@
                    489: $B$,@5$7$$F~NO$G$"$k(B.
                    490: $B%(%i!<9T$N(B3$B9TL\$K%-%c%l%C%H$,<+F0E*$K0\F0$7$F$$$k$O$:$G$"$k(B.
1.4       takayama  491: $B$J$*%W%m%0%i%`$NF~NO%&%$%s%I!<Fb$G%^%&%9$r%/%j%C%/$9$k$H(B, $B$;$C$+$/<+F00\F0$7$?(B
                    492: $B%-%c%l%C%H$N0LCV$,JQ$C$F$7$^$&(B.
                    493: $B%W%m%0%i%`$NF~NO%&%$%s%I!<$N%?%$%H%k%P!<$G%/%j%C%/$9$k$H$h$$(B.
1.1       takayama  494: $B$J$*$3$NNc$G$O(B
                    495: \begin{center}
                    496: \scalebox{0.05}{\includegraphics{Figs/buttonBracket.eps}}
                    497: \end{center}
                    498: $B%\%?%s$r$b$A$$$F$b$9$0%(%i!<$N>l=j$,$o$+$k(B.
                    499: \index{$B$+$C$3(B@$B3g8L(B}
                    500:
                    501: \noindent {\bf $BCm0U(B}:
                    502: $BI=<($5$l$?9T$O%(%i!<$NH/@80LCV$G$"$k$,(B,
                    503: $B%(%i!<$N860x$O$=$NA0$NJ}$N9T$K$"$k$3$H$bB?$$(B.
                    504: $B$?$H$($P(B
                    505: \begin{screen}
                    506: \begin{verbatim}
                    507: 1+2
                    508: 2+3;
                    509: \end{verbatim}
                    510: \end{screen}
                    511: $B$HF~NO$9$k$H%(%i!<9T$O(B 2 $B9TL\$G$"$k$,(B, $B860x$O(B1$B9TL\$G(B {\tt ; } $B$r(B
                    512: $B=q$-K:$l$?$3$H$G$"$k(B.
                    513:
                    514: \bigbreak
                    515: $B%(%i!<9T$,J#?tI=<($5$l$?>l9g$O$=$l$i$NCf$N$I$3$+$K%(%i!<$,$"$k(B.
                    516: $BJ#?t$"$k%(%i!<9T$K=gHV$K%8%c%s%W$7$F$$$/$K$O(B,
                    517: \fbox{$B<B9T(B} $B%a%K%e!<$+$i(B \fbox{$B<!$N%(%i!<9T$X(B} $B$rA*Br$9$k(B.
                    518: \begin{center}
                    519:   \scalebox{0.3}{\includegraphics{Figs/menuNextError.eps}}
                    520: \end{center}
                    521: \index{$B$D$.$N$($i!<$.$g$&$X(B@$B<!$N%(%i!<9T$X(B}
                    522:
                    523: \begin{problem} \rm
                    524: $B%(%i!<$r@8$8$k<0$^$?$O%W%m%0%i%`$r(B5$B$D:n$l(B.
                    525: \end{problem}
                    526:
                    527:
                    528: \chapter{ $BJQ?t$H%W%m%0%i%`(B }
                    529:
                    530: \section{$BJQ?t(B}
                    531:
                    532: \noindent  \index{$B$X$s$9$&(B@$BJQ?t(B}
                    533: $BJQ?t$K?tCMEy$r5-21$7$F$*$1$k(B.
                    534: \underline{$BJQ?tL>$OBgJ8;z$G;O$^$k(B}.  \index{$B$X$s$9$&$a$$(B@$BJQ?tL>(B}
                    535: %$B1Q;z$NBgJ8;z(B, $B;RJ8;z$r6hJL$7$F$$$k$N$GCm0U(B.
                    536: $B$J$*8e=R$9$k$h$&$K(B asir $B$G$OB?9`<07W;;$,$G$-$k$,>.J8;z$G;O$^$kJ8;zNs$O(B
                    537: $BB?9`<0$NJQ?tL>$H$7$FMxMQ$5$l$k(B.
                    538: \index{$B$?$3$&$7$-$N$X$s$9$&$a$$(B@$BB?9`<0$NJQ?tL>(B}
                    539: %en \noindent
                    540: %en Symbols starting with capital alphabetical characters are
                    541: %en {\it program variables}, which are used to store values.
                    542: %en \index{program variable}
                    543: %en Names of functions defined in programs start with small alphabetical
                    544: %en characters.
                    545: %en Note that variable symbols starting with small alphabetical characters are
                    546: %en variables in polynomials in Risa/Asir and they cannot be used to store
                    547: %en values.
                    548: %en
                    549:
                    550: \index{2$B$N$k$$$8$g$&(B@$2$$B$NN_>h(B}
                    551: $2$$B$NN_>h$rI=<($9$k<!$N%W%m%0%i%`$r9M$($h$&(B.
                    552: \begin{screen}
                    553: \begin{verbatim}
                    554:  print( 2^1 );
                    555:  print( 2^2 );
                    556:  print( 2^3 );
                    557:  print( 2^4 );
                    558:  print( 2^5 );
                    559:  print( 2^6 );
                    560:  print( 2^7 );
                    561:  print( 2^8 );
                    562: \end{verbatim}
                    563: \end{screen}
                    564: $B$3$N%W%m%0%i%`$OJQ?t(B {\tt X} $B$rMQ$$$F(B
                    565: $B<!$N$h$&$K=q$$$F$*$1$P(B $2$ $B$NN_>h$@$1$J$/(B $3$ $B$NN_>h$rI=<($9$k(B
                    566: $B$N$K:FMxMQ$G$-$k(B($B?^(B\ref{fig:powerOf2}).
                    567: \begin{screen}
                    568: \begin{verbatim}
                    569:   X = 2;
                    570:   print( X^1 );
                    571:   print( X^2 );
                    572:   print( X^3 );
                    573:   print( X^4 );
                    574:   print( X^5 );
                    575:   print( X^6 );
                    576:   print( X^7 );
                    577:   print( X^8 );
                    578: \end{verbatim}
                    579: \end{screen}
                    580: \begin{figure}[thb]
                    581: \begin{center}
                    582: \scalebox{0.3}{\includegraphics{Figs/powerOf2.eps}}
                    583: \end{center}
                    584: \caption{$BJQ?t$NMxMQ(B} \label{fig:powerOf2}
                    585: \end{figure}
                    586: $3$ $B$NN_>h$rI=<($9$k$K$O(B
                    587: \verb@X=2@ $B$N9T$r(B \verb@X=3@ $B$KJQ99$9$l$P$$$$$@$1$G$"$k(B.
                    588:
                    589: $B%"%k%U%!%Y%C%H$N(B\underline{$BBgJ8;z(B}$B$G$O$8$^$k1Q?t;z$NNs$,(B asir $B$N(B
                    590: $BJQ?t$G$"$k(B.
                    591: $B$D$^$j(B, {\tt X}, {\tt Y}, {\tt Z} $B$O$b$A$m$s$N$3$H(B,
                    592: {\tt Sum} $B$H$+(B {\tt Kazu} $B$H$+(B {\tt X1} $B$J$I(B2$BJ8;z0J>e$N1Q?t;z$NNs(B
                    593: $B$NAH$_9g$o$;$,JQ?tL>$H$7$F5v$5$l$k(B.
                    594:
                    595:
                    596: $BJQ?t$r4^$s$@<0$r%W%m%0%i%`Cf$G<+M3$K$D$+$&$3$H$b$G$-$k(B.
                    597: $B$?$H$($P(B
                    598: \begin{verbatim}
                    599:   X = 2;
                    600:   A = 1;
                    601:   print( 2*X^2 -A );
                    602: \end{verbatim}
                    603: $B$r<B9T$9$k$H(B {\tt 7} $B$,I=<($5$l$k(B.
                    604:
                    605: $B$3$N$h$&$JNc$r$_$k$H(B, $BJQ?t$N5!G=$O(B
                    606: $BCf3X?t3X$G$J$i$&J8;z<0$H;w$F$$$k$H;W$&$@$m$&(B.
                    607: $BD6F~Lg$H$7$F$O$3$l$G$[$\@5$7$$M}2r$G$"$k$,(B, $B$h$j%9%F%C%W%"%C%W$7$F$$$/$K$O(B,
                    608: $B<!$N$3$H$r6/$/5-21$7$F$*$3$&(B.
                    609: \begin{screen}
                    610: $BJQ?t$H$O7W;;5!$K?tCMEy$rJ]B8$7$F$*$/%a%b%j>e$N>l=j$NL>A0$G$"$k(B.
                    611: \end{screen}
                    612:
                    613: $B$5$F(B, $BD6F~Lg(B, $BBh0l$N4XLg$G$"$k(B.
                    614: \begin{screen}
                    615: {\tt =} $B5-9f$O<!$N$h$&$J7A<0$G$D$+$&(B:
                    616: $$  \mbox{{\bf $BJQ?tL>(B}} {\tt = }  \mbox{{\bf $B<0(B}} {\tt  ;} $$
                    617: $B$3$l$O$^$:1&JU$N<0$r7W;;$7$=$N$"$H$=$N7W;;7k2L$r:8JU$NJQ?t$KBeF~$;$h$H$$$&0UL#(B.
                    618: \verb@=@ $B5-9f$O1&JU$r7W;;$7$F$=$N7k2L$r:8JU$XBeF~$;$h$H$$$&(B\underline{$BL?Na(B}
                    619: $B$@$H;W$C$FM_$7$$(B. \\
                    620: $B$?$H$($P(B,
                    621: \verb@X=1@ $B$O(B \verb@X@ $B$,(B \verb@1@ $B$KEy$7$$$H$$$&0UL#$G$O$J$/(B,
                    622: \verb@1@ $B$r(B $BJQ?t(B \verb@X@ $B$KBeF~$;$h$H$$$&0UL#$G$"$k(B.
                    623: \end{screen}
                    624: $B$3$3$G$$$$$?$$$3$H$O(B,  \index{$B$@$$$K$e$&(B@$BBeF~(B} \index{=} \index{$B$@$$$K$e$&$-$4$&(B=@$BBeF~5-9f(B=}
                    625: \begin{screen}
                    626: \verb@=@ $B5-9f$N0UL#$,?t3X$G$N0UL#$H0c$&$h(B!
                    627: \end{screen}
                    628: $B$H$$$&$3$H$G$"$k(B.
                    629: $B$3$l$G:.Mp$9$kF~Lg<T$bB?$$$N$G%W%m%0%i%`8@8l$K$h$C$F$O(B
                    630: ``$2$ $B$rJQ?t(B {\tt X} $B$KBeF~$;$h(B'' $B$r(B
                    631: \verb@X:=2@
                    632: $B$H=q$/>l9g$b$"$k(B ($B$?$H$($P%W%m%0%i%`8@8l(B Pascal).
                    633:
                    634: $B<!$N%W%m%0%i%`$O(B $2$, $2^2$, $2^4$, $2^8$ $B$r7W;;$7$FI=<($9$k(B.
                    635: \begin{screen}
                    636: \begin{verbatim}
                    637:   X=2;
                    638:   print(X);
                    639:   X = X*X;
                    640:   print(X);
                    641:   X = X*X;
                    642:   print(X);
                    643:   X = X*X;
                    644:   print(X);
                    645: \end{verbatim}
                    646: \end{screen}
                    647: \begin{figure}[thb]
                    648: \begin{center}
                    649: \scalebox{0.3}{\includegraphics{Figs/powerOf2b.eps}}
                    650: \end{center}
                    651: \caption{$BJQ?t$NMxMQ(B} \label{fig:powerOf2b}
                    652: \end{figure}
                    653: $B=PNO$,?^(B\ref{fig:powerOf2b}$B$N$h$&$K$J$kM}M3$r@bL@$7$h$&(B.
                    654: $B$^$:(B1$B9TL\$GJQ?t(B{\tt X}$B$K(B2$B$,BeF~$5$l$k(B.
                    655: $B<!$K(B3$B9TL\$G$O$^$:1&JU$N<0$r7W;;$9$k(B. $B$3$N>l9g(B {\tt X} $B$NCM$O(B $2$ $B$G$"$k$N$G(B,
                    656: $2\times2$ $B$G7k2L$O(B $4$ $B$G$"$k(B.
                    657: \underline{$B$3$N7W;;$,=*$C$?8e(B}$B7k2L$N(B $4$ $B$,JQ?t(B {\tt X} $B$KBeF~$5$l$k(B.
                    658: 5$B9TL\$G$O1&JU$N<0$O(B $4 \times 4$ $B$J$N$G(B, $B$=$N7W;;7k2L$N(B $16$ $B$,(B $B:8JU$NJQ?t(B $X$
                    659: $B$KBeF~$5$l$k(B.
                    660: \index{$B$X$s$9$&(B@$BJQ?t(B}
                    661:
                    662: \bigbreak
                    663: %
                    664: %
                    665: \noindent
                    666: \HHH   \index{$B$?$3$&$7$-(B@$BB?9`<0(B} \index{$B$9$&$7$-$7$g$j(B@$B?t<0=hM}(B}
                    667: Asir $B$OB?9`<07W;;$b$G$-$k(B. $B<B$O(B Asir $B$O7W;;5!$G5-9fE*$K?t<0$r=hM}$9$k$?$a$N(B
                    668: $B?t<0=hM}%7%9%F%`$G$b$"$k(B.
                    669: %en Asir can do calculations for polynomials.
                    670: \begin{enumerate}
                    671: %en \begin{enumerate}
                    672: \item $B>.J8;z$G$O$8$^$k5-9f$OB?9`<0$NJQ?t$G$"$k(B.
                    673: $B?t3X$H$A$,$C$FJQ?t$NL>A0$O0lJ8;z$H$O$+$.$i$J$$(B.
                    674: $B$?$H$($P(B {\tt rate} $B$H=q$/$H(B,  $rate$ $B$H$$$&L>A0$NB?9`<0$NJQ?t$H$J$k(B.
                    675: $B$?$H$($P(B {\tt x2} $B$H=q$/$H(B,  $x2$ $B$H$$$&L>A0$NB?9`<0$NJQ?t$H$J$k(B.
                    676: $x$ $B$+$1$k(B $2$ $B$O(B {\tt x*2} $B$H=q$/(B.  \index{$B$?$3$&$7$-$X$s$9$&(B@$BB?9`<0JQ?t(B}
                    677: %en \item Symbols starting small alphabetical character are variables of polynomials. For example, {\tt x2} is the variable of the name x2.
                    678: %en The expression {\tt x*2} stands for $x$ times $2$.
                    679: %
                    680: %
                    681: \item   \index{$B$$$s$9$&$V$s$+$$(B@$B0x?tJ,2r(B}  \index{fctr}
                    682: {\tt fctr(\poly)} $B$O(B \poly $B$rM-M}?t78?t$NHO0O$G0x?tJ,2r$9$k(B.
                    683: {\tt fctr} $B$O(B factor $B$NC;=LI=8=$G$"$k(B.
                    684: %en \item   \index{factorization}  \index{fctr}
                    685: %en The input {\tt fctr(\poly)} factors \poly in the ring of polynomials
                    686: %en with rational number coefficients.
                    687: %
                    688: %
                    689: \end{enumerate}
                    690: %en \end{enumerate}
                    691:
                    692: \begin{figure}[tbh]
                    693: \begin{center}
                    694: \scalebox{0.3}{\includegraphics{Figs/fctr1.eps}}
                    695: \end{center}
                    696: \caption{$B0x?tJ,2r(B} \label{fig:fctr1}
                    697: \end{figure}
                    698:
                    699: $B?^(B\ref{fig:fctr1} $B$N(B{\tt fctr} $B$N=PNO$N:G=i$O(B $x^2+2xy+y^2$ $B$,(B
                    700: $ 1^1 \times (x+y)^2 $
                    701: $B$H0x?tJ,2r$5$l$k$3$H$r0UL#$7$F$$$k(B.
                    702: $B?^(B\ref{fig:fctr1} $B$N(B{\tt fctr} $B$N=PNO$N(B2$BHVL\$O(B $x^2-1$ $B$,(B
                    703: $$ 1^1 \times (x-1)^1 \times (x+1)^1
                    704: $$
                    705: $B$H0x?tJ,2r$5$l$k$3$H$r0UL#$7$F$$$k(B.
                    706:
                    707:
                    708: \section{$B$/$j$+$($7(B}
                    709:
                    710: $B$/$j$+$($7$dH=CG$r$*$3$J$&$?$a$NJ8$,(B asir $B$K$OMQ0U$5$l$F$$$k(B.
                    711: $B$3$NJ8$r$b$A$$$k$HJ#;($J$3$H$r<B9T$G$-$k(B.
                    712: $B$^$:0lHV$N4pAC$G$"$k$/$j$+$($7$N5!G=$r$?$a$7$F$_$h$&(B.
                    713: \index{$B$/$j$+$($7(B} \index{for$B$V$s(B@for$BJ8(B}
                    714: %en A programming language is installed in Asir.
                    715: %en Let us try the most basic programming; repeating and printing.
                    716: \begin{example} \rm
                    717: $B?^(B\ref{fig:powerOf2}$B$N%W%m%0%i%`$O<!$N$h$&$K7+$jJV$75!G=(B --- {\tt for}$BJ8(B ---
                    718: $B$rMQ$$$F4J7i$K=q$1$k(B.
                    719: \begin{screen}
                    720: \begin{verbatim}
                    721:   X = 2;
                    722:   for (I=1; I<=8; I++) {
                    723:      print( X^I );
                    724:   }
                    725: \end{verbatim}
                    726: \end{screen}
                    727: $B<B9T7k2L$O?^(B\ref{fig:powerOf2For}$B$r$_$h(B.
                    728: \end{example}
                    729:
                    730: \begin{figure}[tbh]
                    731: \begin{center}
                    732: \scalebox{0.3}{\includegraphics{Figs/powerOf2For.eps}}
                    733: \end{center}
                    734: \caption{for$BJ8(B} \label{fig:powerOf2For}
                    735: \end{figure}
                    736:
                    737:
                    738: $B7+$jJV$74XO"$NI=8=$N0UL#$r2U>r=q$K$7$F$^$H$a$F$*$3$&(B.
                    739: \begin{enumerate}
                    740: %en \begin{enumerate}
                    741: \item   \index{for} \index{$B$/$j$+$($7(B@$B7+$jJV$7(B} \index{\<@\verb&<=&}
                    742: %en \item   \index{for} \index{repeat} \index{\<@\verb&<=&}
                    743: \verb@ for (K=$B=i4|CM(B; K<=$B=*$j$NCM(B; K++) {$B%k!<%W$NCf$G<B9T$9$k%3%^%s%I(B}; @
                    744: $B$O$"$k$3$H$r2?EY$b7+$jJV$7$?$$;~$KMQ$$$k(B.
                    745: for $B%k!<%W$H8F$P$l$k(B.
                    746: ``{\tt K<=N}'' $B$O(B, ``${\tt K} \leq {\tt N}$$B$+(B'' $B$H$$$&0UL#$G$"$k(B.
                    747: $B;w$?I=8=$K(B,
                    748: ``{\tt K>=N}''$B$,$"$k$,(B, $B$3$l$O(B ``${\tt K} \geq {\tt N}$$B$+(B'' $B$H$$$&0UL#$G$"$k(B.
                    749: {\tt =} $B$N$J$$(B
                    750: ``{\tt K<N}'' $B$O(B, ``${\tt K} < {\tt N}$$B$+(B'' $B$H$$$&0UL#$G$"$k(B.
                    751: \item \verb@ ++K @ $B$d(B \verb@ K++ @ $B$O(B {\tt K} $B$r(B 1 $BA}$d$;$H$$$&0UL#$G$"$k(B.
                    752: \verb@ K = K+1 @ $B$H=q$$$F$b$h$$(B.
                    753: $BF1$8$/(B, \verb@ --K @ $B$d(B \verb@ K-- @ $B$O(B {\tt K} $B$r(B 1 $B8:$i$;$H$$$&0UL#$G$"$k(B.
                    754: %en The sentence
                    755: %en {\tt for (K={\it initial value}; K<={\it limit}; K++) \{{\it commands}\}; }
                    756: %en is used to repeat commands.
                    757: %en It is called the ``for'' loop.
                    758: %en ``{\tt K<=N}'' means that ``${\tt K} \leq {\tt N}$ holds''.
                    759: %en A similar expression
                    760: %en ``{\tt K>=N}'' implies that ``${\tt K} \geq {\tt N}$ holds''
                    761: %en The expression ``{\tt K<N}'' means that ``${\tt K} < {\tt N}$''.
                    762: %en \item The expressions \verb@ ++K @ and \verb@ K++ @ mean increasing
                    763: %en {\tt K} by $1$.
                    764: %en In this example, it has the same meaning with \verb@ K = K+1 @.
                    765: %en Similarly \verb@ --K @ and \verb@ K-- @ mean decreasing {\tt K} by 1.
                    766: %
                    767: %
                    768: \end{enumerate}
                    769: %en \end{enumerate}
                    770: %en
                    771:
                    772: \begin{figure}[tbh]
                    773: \begin{center}
                    774: \scalebox{0.3}{\includegraphics{Figs/powerOf2For2.eps}}
                    775: \end{center}
                    776: \caption{for$BJ8(B} \label{fig:powerOf2For2}
                    777: \end{figure}
                    778: for $B$N$"$H$N(B {\tt \{}, {\tt \}} $B$NCf$K$OJ#?t$NJ8(B($BL?Na(B)$B$r=q$1$k(B.
                    779: \begin{screen}
                    780: \begin{verbatim}
                    781:   X = 2;
                    782:   for (I=1; I<=8; I++) {
                    783:      print("2$B$N(B"+rtostr(I)+"$B>h$O(B ",0);
                    784:      print( X^I );
                    785:   }
                    786: \end{verbatim}
                    787: \end{screen}
                    788: $B$3$NNc$G$O(B
                    789: $BF|K\8l$r4^$`$N$GA0$N@a$G=R$Y$?$h$&$KF|K\8l6uGr$r%W%m%0%i%`K\BN$K$$$l$J$$$h$&$K$7$F(B,
                    790: $BCm0U?<$/%W%m%0%i%`$rF~NO$7$F$b$i$$$?$$(B.
                    791: $B<B9T7k2L$O?^(B\ref{fig:powerOf2For2}$B$r$_$h(B. \index{2$B$N$k$$$8$g$&(B@$2$$B$NN_>h(B}
                    792: \verb@print("2$B$N(B"+rtostr(I)+"$B>h$O(B ",0);@ $B$NItJ,$r4JC1$K@bL@$7$F$*$3$&(B.
                    793: $B$^$::G8e$N(B {\tt 0} $B$O=PNO$N$"$H2~9T$7$J$$(B, $B$D$^$j<!$N(B {\tt print} $BJ8$N=PNO$r(B
                    794: $B$=$N$^$^B3$1$h$H$$$&0UL#(B.   \index{print} \index{rtostr}
                    795: \verb@"@ $B$G$+$3$^$l$?ItJ,$OJ8;zNs$H8F$P$l$F$$$k(B.$B$3$l$O$3$N$^$^I=<($5$l$k(B.
                    796: \verb@rtostr(I)@ $B$O?t;z(B {\tt I} $B$rJ8;zNsI=8=$KJQ49$7$J$5$$(B, $B$H$$$&0UL#(B
                    797: ($BD6F~Lg$H$7$F$OFq$7$$(B?).
                    798: $B$"$HJ8;zNs$KBP$7$F(B {\tt +} $B$rE,MQ$9$k$HJ8;zNs$,7k9g$5$l$k(B.
                    799: \index{$B$b$8$l$D$N$1$D$4$&(B@$BJ8;zNs$N7k9g(B}
                    800: \index{$B$b$8$l$D$R$g$&$2$s(B@$BJ8;zNsI=8=(B}
                    801:
                    802:
                    803: \noindent
                    804: \fbox{$B;(CL(B}
                    805: ($B9>8M;~Be$N?t3X$NK\$K$"$C$?LdBj$N2~Bj(B) \\
                    806: $BEBMM(B: $B$3$N$?$S$NF/$-$O$"$C$Q$l$G$"$C$?(B. $BK+H~$O$J$K$,$h$$$+(B? \\
                    807: $B2HMh(B: $B:#F|$O0l1_(B, $BL@F|$O(B2$B1_(B, $BL@8eF|$O(B4$B1_$H(B, $BA0F|$N(B2$BG\$E$D(B, $B$3$l$r(B4$B=54VB3$1$F(B
                    808: $B$/$@$5$k$@$1$G7k9=$G$4$6$$$^$9(B. \\
                    809: $BEBMM(B: $B$J$s$H$b$5$5$d$+$JK+H~$8$c$N$&(B. $B$h$7$h$7(B. \\
                    810: $B$5$F(B, $B2HMh$O$$$/$iK+>^6b$r$b$i$($k$@$m$&(B?
                    811: $B$3$l$b$^$?(B$2$$B$NN_>h$N7W;;$G$"$k(B. \index{2$B$N$k$$$8$g$&(B@$2$$B$NN_>h(B}
                    812: Cfep/asir $B$G7W;;$7$F$_$h$&(B.
                    813:
                    814:
                    815:
                    816: \begin{example}\Begin \quad
                    817: {\tt for} $B$K$h$k7+$jJV$7$rMQ$$$F(B $\sqrt{x}$ $B$N?tI=$r$D$/$m$&(B.
                    818: %en \begin{example}\Begin [02] \quad
                    819: %en By using {\tt for} loop, generate a table of  $\sqrt{x}$.
                    820: %en \end{example}
                    821: %en
                    822: \begin{screen}
                    823: \begin{center}
                    824: \begin{verbatim}
                    825:   for (I=0; I<2; I = I+0.2) {
                    826:      print(I,0); print(" : ",0);
                    827:      print(deval(I^(1/2)));
                    828:   }
                    829: \end{verbatim}
                    830: \end{center}
                    831: \end{screen}
                    832: %>C
                    833: $B=PNO7k2L(B
                    834: %en Output.
                    835: %<C
                    836: \begin{center}
                    837: \begin{tabular}{|l|} \hline \sl
                    838: 0 : 0 \\
                    839: 0.2 : 0.447214 \\
                    840: 0.4 : 0.632456 \\
                    841: 0.6 : 0.774597 \\
                    842: 0.8 : 0.894427 \\
                    843: 1 : 1 \\
                    844: 1.2 : 1.09545 \\
                    845: 1.4 : 1.18322 \\
                    846: 1.6 : 1.26491 \\
                    847: 1.8 : 1.34164 \\
                    848: 2 : 1.41421 \\
                    849: \hline
                    850: \end{tabular}
                    851: \end{center}
                    852: %>C
                    853: \rm
                    854: \index{print}
                    855: {\tt print(A)} $B$OJQ?t(B {\tt A} $B$NCM$r2hLL$KI=<($9$k(B.
                    856: {\tt print($BJ8;zNs(B)} $B$OJ8;zNs$r2hLL$KI=<($9$k(B.
                    857: {\tt print(A,0)} $B$OJQ?t(B {\tt A} $B$NCM$r2hLL$KI=<($9$k$,(B, $BI=<($7$?(B
                    858: $B$"$H$N2~9T$r$7$J$$(B.
                    859: $B6uGr$bJ8;z$G$"$k(B.$B$7$?$,$C$F(B, $B$?$H$($P(B
                    860: {\tt A=10; print(A,0); print(A+1);}
                    861: $B$r<B9T$9$k$H(B,   \index{print}
                    862: {\tt 1011} $B$HI=<($5$l$F$7$^$&(B.
                    863: {\tt A=10; print(A,0); print(" ",0);print(A+1);}
                    864: $B$r<B9T$9$k$H(B,
                    865: {\tt 10 11} $B$HI=<($5$l$k(B.
                    866: %en \rm
                    867: %en \index{print}
                    868: %en The command {\tt print(A)} displays the value of the variable {\tt A}
                    869: %en on the screen.
                    870: %en The command {\tt print({\it string})} outpus the {\it string} on the screen.
                    871: %en The command {\tt print(A,0)} displays the value of the variable {\tt A},
                    872: %en but it does not make the newline.
                    873: %en Note that the blank is a character. For example, if you input
                    874: %en {\tt A=10; print(A,0); print(A+1);}
                    875: %en {\tt 1011} will be displayed.   So, input as
                    876: %en {\tt A=10; print(A,0); print(" ",0);print(A+1);}
                    877: %en Then,
                    878: %en {\tt 10 11} will be displayed.
                    879: %en
                    880: \end{example}
                    881:
                    882: $B$H$3$m$G(B, $B$3$NNc$G$O>r7o$,(B ${\tt I}<2$ $B$J$N$K(B ${\tt I}=2$
                    883: $B$N>l9g$,I=<($5$l$F$$$k(B.
                    884: $B<B:]$K(B asir $B>e$G<B9T$7$F$_$k$H$3$&$J$k$,(B, $BM}M3$rCN$k$K$O!"(B
                    885: $BIbF0>.?t$N7W;;5!>e$G$NI=8=$K$D$$$F$NCN<1$,I,MW$G$"$k(B
                    886: (``asir$B%I%j%k(B''$B$r;2>H(B).
                    887: $B$H$j$"$($:(B,
                    888: %en In this example, the termination condition is ${\tt I}<2$, but
                    889: %en the case of ${\tt I}=2$ is executed. In order to understand the reason,
                    890: %en we need to study the format of floating point numbers.
                    891: %en (See \ref{chapter:naibu} for details).
                    892: %en For now, please keep the following in our mind.
                    893: \begin{FRAME}
                    894: $B@0?t$dJ,?t$N7W;;$O(B Asir $B>e$G@53N$K<B9T$5$l$k$,(B,
                    895: $B>.?t$K$D$$$F$O$=$&$G$J$$(B.
                    896: \end{FRAME}
                    897: $B$H3P$($F$*$3$&(B.
                    898: %en \begin{FRAME}
                    899: %en Arithmetics for integers and rational numbers are exact in Risa/Asir,
                    900: %en but arithmetics for dicimal numbers are not.
                    901: %en \end{FRAME}
                    902: %en
                    903:
                    904: \begin{problem}
                    905:   $B$"$?$($i$l$?(B 10 $B?J?t$r(B 2$B?J?t$XJQ49$9$k%W%m%0%i%`$r:n$l(B.
                    906:  $B%R%s%H(B: {\tt A}$B!`(B{\tt B} $B$NM>$j$O(B \verb@A%B@ $B$G7W;;$G$-$k(B.
                    907:   \index{$B$"$^$j(B@$BM>$j(B}
                    908: \end{problem}
                    909:
                    910: \section{$B<B9T$NCf;_(B}
                    911: %
                    912: %
                    913: \index{$B$A$e$&$7(B@$BCf;_(B}  \index{interrupt}
                    914: $B<B9TCf$N7W;;$d%W%m%0%i%`$N<B9T$rCf;_$7$?$$;~$OCf;_%\%?%s(B
                    915: \begin{center}
                    916: \scalebox{0.1}{\includegraphics{Figs/buttonStop.eps}}
                    917: \end{center}
                    918: $B$r%/%j%C%/$9$k(B.
                    919:
                    920: \begin{figure}[tbh]
                    921: \begin{center}
                    922: \scalebox{0.5}{\includegraphics{Figs/interrupt.eps}}
                    923: \end{center}
                    924: \caption{$B<B9T$NCf;_(B} \label{fig:interrupt}
                    925: \end{figure}
                    926:
                    927: $B?^(B\ref{fig:interrupt}$B$G$O(B
                    928: $10^{100}$ $B2s$N(B {\tt Hello } $B$N=PNO$N7+$jJV$7$rCf;_$7$F$$$k(B.
                    929:
                    930: cfep $B$O3+H/ES>e$N%7%9%F%`$N$?$a(B
                    931: \begin{verbatim}
                    932: [control] control function_id is 1030
                    933: [control] control_reset_connection.
                    934: Sending the SIGUSR1 signal to 1226:  Result = 0
                    935: In ox103_reset: Done.
                    936: 515
                    937: Done
                    938: \end{verbatim}
                    939: $B$3$N$h$&$J3+H/<T@lMQ$N%a%C%;!<%8$b=PNO$5$l$k$,(B,
                    940: $B$H$j$"$($:$3$N$h$&$J%a%C%;!<%8$,$G$?$iCf;_$,@.8y$7$?$H$$$&$3$H$G$"$k(B.
                    941:
                    942:
                    943: \section{$B%(%s%8%s:F5/F0(B}
                    944:
                    945: \index{$B$5$$$-$I$&(B@$B:F5/F0(B}  \index{$B$1$$$5$s$($s$8$s(B@$B7W;;%(%s%8%s(B}
                    946: \index{$B$1$$$5$s$5!<$P(B@$B7W;;%5!<%P(B}
                    947: Cfep/asir $B$G$O<!$N$h$&$K(B3$B$D$N%W%m%;%9$,8_$$$KDL?.$7$J$,$iF0:n$7$F$$$k(B.
                    948: \begin{center}
                    949: \fbox{cfep} $\Leftrightarrow$ \fbox{$B%3%s%H%m!<%i(B(ox\_texmacs)}
                    950: $\Leftrightarrow$ \fbox{$B7W;;%(%s%8%s(B(ox\_asir)}
                    951: \end{center}
                    952: $B7W;;%(%s%8%s(B($B7W;;%5!<%P(B)$B$r:F5/F0$7$?$jJL$N$b$N$K$H$j$+$($?$j$G$-$k(B.
                    953: \index{$B$1$$$5$s$($s$8$s(B@$B7W;;%(%s%8%s(B}
                    954: \index{$B$1$$$5$s$5!<$P(B@$B7W;;%5!<%P(B}
                    955: \index{$B$($s$8$s(B@$B%(%s%8%s(B}
                    956:
                    957: \index{$B$5$$$-$I$&(B@$B:F5/F0(B}  \index{restart}
                    958: $B%(%s%8%s:F5/F0%\%?%s(B
                    959: \begin{center}
                    960: \scalebox{0.05}{\includegraphics{Figs/buttonRestart}}
                    961: \end{center}
                    962: $B$r%/%j%C%/$9$k$H(B,
                    963: $B8=:_MxMQ$7$F$$$k7W;;%(%s%8%s$rDd;_$7(B,
                    964: $B?7$7$$7W;;%(%s%8%s$r%9%?!<%H$9$k(B.
                    965: $BA*BrHO0O$N$_$r<B9T$9$k%b!<%I$G$J$$$+$.$jMxMQ>e$GCf;_$H$N0c$$$O(B
                    966: $B$"$^$j$J$$$,(B, $B:F5/F0$N$H$-$N%a%C%;!<%8(B
                    967: \begin{center}
                    968: \scalebox{0.4}{\includegraphics{Figs/restartDialog}}
                    969: \end{center}
                    970: $B$K$b$"$k$h$&$K(B, $BJL$N7W;;%(%s%8%s$r5/F0$9$k$3$H$b2DG=$G$"$k(B.
                    971: $B$3$NNc$G$O(B unix shell $B$b5/F0$G$-$k(B.
                    972:
                    973: $B$^$?(B, ``$B<B9T(B'' $B%a%K%e!<$+$i(B ``$B%(%s%8%s$r<+F0%9%?!<%H$7$J$$(B'' $B%b!<%I$rA*$s$G$k(B
                    974: $B>l9g$K7W;;%(%s%8%s$r<jF0$G%9%?!<%H$9$k$K$O(B, $B$3$N%\%?%s$rMQ$$$k(B.
                    975:
                    976: \bigbreak
                    977:
                    978: \noindent
                    979: \HHH
                    980: cfep $B$O(B  \index{cfep}
                    981: Cocoa FrontEnd view Process
                    982: $B$NN,$G$"$k(B.
                    983: cfep $B$O(B Objective C $B$H$$$&8@8l$*$h$S(B xcode 2 $B$H$$$&3+H/4D6-$rMQ$$$F(B
                    984: Cocoa $B$H$$$&%U%l!<%`%o!<%/$N$b$H$G3+H/$5$l$F$$$k(B.
                    985: cfep $B$N(B Objective C $B$N%W%m%0%i%`$N0lIt$r$_$F$_$h$&(B.
                    986: \begin{screen}
                    987: \begin{verbatim}
                    988:   for (i=0; i<oglCommSize; i++) {
                    989:     gc = [oglComm objectAtIndex: i];
                    990:     [self execute: gc];
                    991:   }
                    992: \end{verbatim}
                    993: \end{screen}
                    994: asir $B$HF1$8$h$&$J(B {\tt for} $BJ8$,$"$k$M(B.
                    995:
                    996: \section{$B%X%k%W$NMxMQ(B}
                    997:
                    998: \index{$B$+$s$9$&(B@$B4X?t(B}
                    999: Cfep/asir $B$G$N(B ``$B4X?t(B'' $B$H$O?t3X$N4X?t$N$h$&$K0z?t$rM?$($k$H7W;;$7$FCM$r$b$I$7(B,
                   1000: $B$+$D$"$k;E;v(B($BI=<(Ey(B)$B$r$9$k<jB3$-$N=8$^$j$G$"$k(B.
                   1001: $BNc$($P(B {\tt print}, {\tt deval}, {\tt sin}, {\tt fctr} $BEy$O4X?t$G$"$k(B.
                   1002: $B4X?t$r<+J,$GDj5A$9$k$3$H$b2DG=$G$"$k(B. $B$3$l$K$D$$$F$O8e$N@bL@$*$h$S(B
                   1003: ``asir$B%I%j%k(B''$B$r;2>H(B.
                   1004:
                   1005: $B$"$i$+$8$aDj5A$:$_$N4X?t$r(B ``$BAH$_9~$_4X?t(B'' $B$H$h$V(B.
                   1006: \index{help}
                   1007: \index{$B$X$k$W(B@$B%X%k%W(B}  \index{$B$/$_$3$_$+$s$9$&(B@$BAH$_9~$_4X?t(B}
                   1008: $BAH$_9~$_4X?t$N>\$7$$@bL@$rD4$Y$k$K$O(B
                   1009: ``cfep $B$N%X%k%W(B'' $B$+$i(B
                   1010: \begin{center}
                   1011: \scalebox{0.3}{\includegraphics{Figs/helpTop}}
                   1012: \end{center}
                   1013: $B$N(B ``$B:w0z(B'' $B$rA*$S(B, $B:w0z(B
                   1014: \begin{center}
                   1015: \scalebox{0.45}{\includegraphics{Figs/helpIndex}}
                   1016: \end{center}
                   1017: $B$N(B ``Risa/Asir $B%^%K%e%"%k(B'' $B$rA*$S(B,
                   1018: ``Risa/Asir $B%^%K%e%"%k(B'' $B$N:G=i$N%Z!<%8$N4X?t0lMw$+$i(B
                   1019: $BD4$Y$?$$4X?t$rC5$9(B.
                   1020: $B$?$H$($P(B {\tt fctr} ($B0x?tJ,2rMQ$N4X?t(B) $B$O$3$N0lMw$NCf$K$"$k(B.
                   1021: \begin{center}
                   1022: \scalebox{0.35}{\includegraphics{Figs/helpFctr}}
                   1023: \end{center}
                   1024: \index{fctr}
                   1025:
                   1026:
                   1027: \index{spotlight}
                   1028: $B8!:w$K$O(B spotlight $B$N3hMQ$bM-1W$G$"$m$&(B. $B:w0z(B
                   1029: \begin{center}
                   1030: \scalebox{0.45}{\includegraphics{Figs/helpIndex}}
                   1031: \end{center}
                   1032: $B$N(B ``$B;HMQ@bL@=q$N%U%)%k%@$r(Bfinder$B$G3+$/(B''
                   1033: $B$rA*$V$H;HMQ@bL@=q$N%U%)%k%@$,3+$/$N$G(B, $B$3$3$r(B spotlight $B$G8!:w$9$k$H(B
                   1034: $B$$$m$$$m$JH/8+$,$"$k$G$"$m$&(B.
                   1035: $B$A$J$_$K(B, $B$3$ND6F~Lg$d(B asir$B%I%j%k$O$3$N%U%)%k%@$N(B pdf $B%U%)%k%@$NCf$K$"$k(B.
                   1036: ($B$J$*$3$3$+$i$N(B spotlight $B8!:w$O2?8N$+CY$$$N$G(B, $B%a%K%e!<%P!<$N(B
                   1037:  splotlight $B$+$i$N8!:w$NJ}$,$$$$$+$b$7$l$J$$(B.
                   1038: )
                   1039: %% mdfind, mdimport?
                   1040:
                   1041:
                   1042: \chapter{$B%0%i%U%#%C%/(B}
                   1043:
                   1044: \section{$B%i%$%V%i%j$NFI$_9~$_(B}  \index{$B$i$$$V$i$j(B@$B%i%$%V%i%j(B}
                   1045:
                   1046: \begin{figure}
                   1047: \begin{center}
                   1048: \scalebox{0.5}{\includegraphics{Figs/glib_lineImport.eps}}
                   1049: \end{center}
                   1050: \caption{$B%i%$%V%i%j$N%m!<%I(B} \label{fig:glib_lineImport}
                   1051: \end{figure}
                   1052:
                   1053: Asir $B8@8l$G=q$+$l$F$$$k4X?tDj5A$N=89g$,%i%$%V%i%j$G$"$k(B.
                   1054: $B%i%$%V%i%j$rFI$_9~$`$K$O(B {\tt import} $B%3%^%s%I$^$?$O(B
                   1055: {\tt load} $B%3%^%s%I$rMQ$$$k(B.   \index{import}  \index{load}
                   1056: $B%^%K%e%"%k$K5-=R$5$l$F$$$k4X?t$G%i%$%V%i%j$NFI$_9~$_$,A0Ds$H$J$C$F$k$b$N$b(B
                   1057: $BB?$$(B.
                   1058: $B$?$H$($P(B, $B@~$r0z$/%3%^%s%I(B {\tt glib\_line(0,0,100,100);}
                   1059: $B$r<B9T$7$F$b(B, ``glib\_line $B$,Dj5A$5$l$F$$$^$;$s(B''
                   1060: $B$H$$$&%(%i!<$,I=<($5$l$k(B.
                   1061: $B%0%i%U%#%C%/%3%^%s%I$N%i%$%V%i%jFI$_9~$`%3%^%s%I(B
                   1062: \begin{verbatim}
                   1063:   import("glib3.rr");
                   1064: \end{verbatim}
                   1065: $B$r<B9T$7$F$*$/$H?^(B\ref{fig:glib_lineImport}$B$N$h$&$K(B
                   1066: $B@~$rIA2h$9$k(B.
                   1067:
                   1068:
                   1069: Asir-contrib $B%W%m%8%'%/%H$K$h$j=8@Q$5$l$?%i%$%V%i%j$N=89gBN$,(B
                   1070: asir-contrib $B$G$"$k(B.  \index{asir-contrib}
                   1071: Asir-contrib $B$rFI$_9~$s$G$7$^$&$H(B,
                   1072: $B$[$H$s$I$N4X?t$K$D$$$F(B import $B$,I,MW$+$I$&$+5$$K$9$kI,MW$O$J$/$J$k$,(B,
                   1073: $BBgNL$N%i%$%V%i%j$rFI$_9~$`$?$a$K;~4V$,$+$+$k$N$,7gE@$G$"$k(B.
                   1074: asir-contrib $B$O(B \fbox{$B<B9T(B} $B%a%K%e!<$+$iFI$_9~$a$k(B.
                   1075: \begin{center}
                   1076: \scalebox{0.3}{\includegraphics{Figs/importContrib}}
                   1077: \end{center}
                   1078:
                   1079: \section{$B@~$r0z$/4X?t(B}
                   1080:
                   1081: \begin{example} \rm
                   1082: \begin{screen}
                   1083: \begin{verbatim}
                   1084:    import("glib3.rr");
                   1085:    glib_line(0,0, 100,100);
                   1086:    glib_flush();
                   1087: \end{verbatim}
                   1088: \end{screen}
                   1089: $B?^(B\ref{fig:glib_lineImport} $B$,IA2h7k2L$G$"$k(B.
                   1090: $y$$B:BI8$O2hLL$,2<$X$$$/$[$IBg$-$/$J$k(B.
                   1091: $B?^(B\ref{figure:cond:coord} $B$r;2>H(B.
                   1092: $B:8>e$N:BI8$O(B $(0,0)$, $B1&2<$N:BI8$,(B $(400,400)$.
                   1093: \verb@glib_line@ $B$G(B $(0,0)$ $B$+$i(B $(100,100)$ $B$X@~$rIA2h(B.
                   1094: \verb@glib_flush@ $B$O2hLL$r99?7$9$k$O$?$i$-$,$"$k(B. flush $B$7$J$$$H(B,
                   1095: $BIA2h7k2L$,2hLL$G$NI=<($KH?1G$7$J$$>l9g$,$"$k(B.
                   1096: \end{example}
                   1097:
                   1098: \index{glib}
                   1099: {\tt glib3.rr} $B$r%m!<%I$9$k$3$H$K$h$j(B, $B<!$N4X?t$,;H$($k$h$&$K$J$k(B. \\
                   1100: \begin{tabular}{|l|l|}
                   1101: \hline
                   1102: {\tt glib\_window(X0,Y0,X1,Y1)} &
                   1103:                             $B?^$r=q$/(B window $B$N%5%$%:$r7h$a$k(B. \\
                   1104:  & $B2hLL:8>e$N:BI8$,(B {\tt (X0,Y0)},
                   1105:    $B2hLL1&2<$N:BI8$,(B {\tt (X1,Y1)} \\
                   1106:  & $B$G$"$k$h$&$J:BI87O$G0J2<IA2h$;$h(B. \\
                   1107: & $B$?$@$7(B x $B:BI8$O(B, $B1&$K$$$/$K=>$$$*$*$-$/$J$j(B, \\
                   1108: &
                   1109:   y $B:BI8$O(B \underline{$B2<$K(B} $B$$$/$K=>$$Bg$-$/$J$k(B ($B?^(B \ref{figure:cond:coord}).  \\ \hline
                   1110: {\tt glib\_clear()} &  $BA4$F$N(BOpenGL$B%*%V%8%'%/%H$r>C5n$7(B,
                   1111:                           $BIA2h2hLL$r%/%j%"$9$k(B. \\ \hline
                   1112: {\tt glib\_putpixel(X,Y)} &  $B:BI8(B {\tt (X,Y)} $B$KE@$rBG$D(B. \\ \hline
                   1113: {\tt glib\_set\_pixel\_size(S)} &
                   1114:    $BE@$NBg$-$5$N;XDj(B.  1.0 $B$,(B1$B%T%/%;%kJ,$NBg$-$5(B. \\ \hline
                   1115: {\tt glib\_line(X,Y,P,Q)} &  $B:BI8(B {\tt (X,Y)} $B$+$i(B $B:BI8(B {\tt (P,Q)} $B$XD>@~$r0z$/(B \\ \hline
                   1116: {\tt glib\_remove\_last()} & $B0l$DA0$N(B OpenGL $B%*%V%8%'%/%H$r>C$9(B.  \\ \hline
                   1117: \end{tabular}
                   1118:
                   1119: \begin{figure}[htb]
                   1120: \setlength{\unitlength}{1mm}
                   1121: \begin{picture}(100,40)(0,0)
                   1122: \put(20,35){\vector(1,0){80}}
                   1123: \put(98,32){x}
                   1124: \put(20,35){\vector(0,-1){35}}
                   1125: \put(23,1){y}
                   1126: \end{picture}
                   1127: \caption{$B:BI87O(B}  \label{figure:cond:coord}
                   1128: \end{figure}
                   1129:
                   1130: $B?'$rJQ99$7$?$$$H$-$O(B,  \verb@ | @ $B5-9f$G6h@Z$C$?%*%W%7%g%J%k0z?t(B
                   1131: {\tt color} $B$r;H$&(B.  \index{$B$*$W$7$g$J$k$R$-$9$&(B@$B%*%W%7%g%J%k0z?t(B}
                   1132: $B$?$H$($P(B,
                   1133: \begin{center}
                   1134: \verb@ glib_line(0,0,100,100|color=0xff0000); @
                   1135: \end{center}
                   1136: $B$HF~NO$9$k$H(B, $B?'(B {\tt 0xff0000} $B$G@~J,$r$R$/(B.
                   1137: $B$3$3$G(B, $B?'$O(B RGB $B$N3F@.J,$N6/$5$r(B 2 $B7e$N(B 16 $B?J?t$G;XDj$9$k(B.
                   1138: 16$B?J?t$K$D$$$F$O(B ``asir $B%I%j%k(B'' $B$r;2>H(B.
                   1139: $B$3$NNc$G$O(B, R $B@.J,$,(B ff $B$J$N$G(B, $B@V$N@~$r$R$/$3$H$H$J$k(B.
                   1140: $B$J$*(B, $B4X?t(B {\tt glib\_putpixel} $B$bF1$8$h$&$K$7$F(B, $B?'$r;XDj$G$-$k(B.
1.5     ! takayama 1141: 16$B?J?t$rCN$i$J$$?MMQ$K(B, $B?'$H$=$N(B16$B?J?t$K$h$kI=8=$NBP1~I=$r$"$2$F$*$/(B.
        !          1142:
        !          1143: \begin{tabular}{|l|l|}
        !          1144: \hline
        !          1145: 0xffffff  & $BGr(B \\ \hline
        !          1146: 0xffff00  & $B2+(B \\ \hline
        !          1147: 0xff0000  & $B@V(B \\ \hline
        !          1148: 0x00ff00  & $BNP(B \\ \hline
        !          1149: 0x0000ff  & $B@D(B \\ \hline
        !          1150: 0x000000  & $B9u(B \\ \hline
        !          1151: \end{tabular}
        !          1152:
        !          1153: \noindent
        !          1154: ($B$"$H$O;n$7$F2<$5$$(B)
1.1       takayama 1155:
                   1156: $B$5$F(B, $B?^(B \ref{figure:cond:coord} $B$G8+$?$h$&$K%3%s%T%e!<%?%W%m%0%i%`$N(B
                   1157: $B@$3&$G$O(B, $B2hLL$N:8>e$r86E@$K$7$F(B, $B2<$X$$$/$K=>$$(B, $y$ $B:BI8$,A}$($k$h$&$J(B
                   1158: $B:BI87O$r$H$k$3$H$,B?$$(B.
                   1159: $B?t3X$N%0%i%U$r=q$$$?$j$9$k$K$O$3$l$G$OITJX$J$3$H$bB?$$$N$G(B,
                   1160: {\tt glib3.rr} $B$G$O(B,
                   1161: \begin{center}
                   1162:   \verb@ Glib_math_coordinate=1; @
                   1163: \end{center}
                   1164: $B$r<B9T$7$F$*$/$H(B
                   1165: $B2hLL$N:82<$,86E@$G(B, $B>e$K$$$/$K=>$$(B $y$ $B:BI8$,A}$($k$h$&$J(B
                   1166: $B?t3X$G$N:BI87O$G?^$rIA2h$9$k(B.
                   1167:
                   1168: \begin{example} \rm   \index{$B$0$i$U(B@$B%0%i%U(B}
                   1169: 2$B<!4X?t(B $y=x^2-1$ $B$N%0%i%U$r=q$$$F$_$h$&(B.
                   1170: %%Prog: cfep/tests/2006-03-11-graph2d.rr
                   1171: \begin{screen}
                   1172: \begin{verbatim}
                   1173: import("glib3.rr");
                   1174: Glib_math_coordinate=1;
                   1175: glib_window(-2,-2, 2,2);
                   1176:
                   1177: glib_line(-2,0,2,0 | color=0x0000ff);
                   1178: glib_line(0,-2,0,2 | color=0x0000ff);
                   1179: for (X=-2.0; X< 2.0; X = X+0.1) {
                   1180:    Y = X^2-1;
                   1181:    X1 = X+0.1;
                   1182:    Y1 = X1^2-1;
                   1183:    glib_line(X,Y, X1,Y1);
                   1184: }
                   1185: glib_flush();
                   1186: \end{verbatim}
                   1187: \end{screen}
                   1188: $B<B9T7k2L$O?^(B\ref{fig:graph2d}.
                   1189: -----$B%W%m%0%i%`$N2r@b$O$^$@=q$$$F$J$$(B.
                   1190: \end{example}
                   1191:
                   1192: %<C
                   1193: \begin{figure}[tb]
                   1194: \scalebox{0.6}{\includegraphics{Figs/graph2d.eps}}
                   1195: \caption{2$B<!4X?t$N%0%i%U(B} \label{fig:graph2d}
                   1196: \end{figure}
                   1197: %>C
                   1198:
                   1199:
                   1200: \section{$B1_$rIA$/4X?t$r:n$C$F$_$h$&(B}
                   1201:
                   1202: %%Prog: cfep/tests/2006-03-11-circle.rr
                   1203: \begin{screen}
                   1204: \begin{verbatim}
                   1205: import("glib3.rr");
                   1206: Glib_math_coordinate=1;
                   1207: glib_window(-1,-1,1,1);
                   1208: glib_clear();
                   1209: E = 0.2;  X = 0; Y = 0;  R = 0.5;
                   1210: for (T=0; T<=deval(2*@pi); T = T+E) {
                   1211:   Px = X+deval(R*cos(T));
                   1212:   Py = Y+deval(R*sin(T));
                   1213:   Qx = X+deval(R*cos(T+E));
                   1214:   Qy = Y+deval(R*sin(T+E));
                   1215:   glib_line(Px,Py,Qx,Qy);
                   1216:   glib_flush();
                   1217: }
                   1218: \end{verbatim}
                   1219: \end{screen}
                   1220: -----$B%W%m%0%i%`$N2r@b$O$^$@=q$$$F$J$$(B.
                   1221:
1.5     ! takayama 1222: $B>e$N%W%m%0%i%`$G$O(B $\cos$, $\sin$ $B$rMQ$$$F1_$rIA$$$F$$$k(B.
1.1       takayama 1223: $BCf?4(B, $BH>7B$rJQ99$7$?$j(B, $B?'$rJQ99$7$?$j$7$J$,$i$?$/$5$s$N1_$rIA$/$K$O(B,
                   1224: $B$I$N$h$&$K$9$l$P$h$$$G$"$m$&$+(B?
                   1225: ``$B4X?t(B'' $B$rMQ$$$k$H$=$l$,MF0W$K$G$-$k(B.
                   1226:
                   1227: $B$"$k$R$H$^$H$^$j$N%W%m%0%i%`$O4X?t(B (function) $B$H$7$F(B
                   1228: $B$^$H$a$F$*$/$H$h$$(B.   \index{$B$+$s$9$&(B@$B4X?t(B}
                   1229: $B7W;;5!8@8l$K$*$1$k4X?t$O?t3X$G$$$&4X?t$H;w$FHs$J$k$b$N$G$"$k(B.
                   1230: $B4X?t$r<jB3$-(B (procedure) $B$H$+(B $B%5%V%k!<%A%s(B (subroutine) $B$H$+(B
                   1231: $B$h$V8@8l$b$"$k(B.
                   1232: $B4X?t$rMQ$$$k:GBg$NMxE@$O(B, $B4X?t$r0lC6=q$$$F$7$^$($P(B,
                   1233: $BCf?H$r%V%i%C%/%\%C%/%9$H$7$F07$($k$3$H$G$"$k(B.
                   1234: $BBg5,LO$J%W%m%0%i%`$r=q$/$H$-$OJ#;($J=hM}$r$$$/$D$+$N4X?t$KJ,3d$7$F(B
                   1235: $B$^$:3F4X?t$r==J,%F%9%H$7;E>e$2$k(B.
                   1236: $B$=$l$+$i$=$l$i$N4X?t$rAH$_9g$o$;$F$$$/$3$H$K$h$j(B,
                   1237: $BJ#;($J5!G=$r<B8=$9$k(B.
                   1238: $B$3$N$h$&$J%"%W%m!<%A$r$H$k$3$H$K$h$j(B, ``$B:$Fq$,J,3d(B'' $B$5$l$k(B.
                   1239:
                   1240: %<C
                   1241: \begin{figure}[tbh]
                   1242: \scalebox{0.6}{\includegraphics{Figs/circleFunc.eps}}
                   1243: \caption{ $B4X?t$K$h$kF1?41_$NIA2h(B} \label{fig:circleFunc}
                   1244: \end{figure}
                   1245: %>C
                   1246:
                   1247: $B$5$F1_$rIA$/Nc$K$b$I$m$&(B.
                   1248: $B0J2<$N$h$&$K4X?t(B {\tt circle(X,Y,R,Color)}$B$rDj5A(B ({\tt def}) $B$9$k(B.
                   1249: $B$3$N4X?t$r(B $R$ $B$d(B $Color$ $B$rJQ2=$5$;$J$,$i8F$V$3$H$K$h$j(B,
                   1250: $B?^(B\ref{fig:circleFunc} $B$N$h$&$JF1?41_$N?^$rIA$/$3$H$,2DG=$H$J$k(B.
                   1251: $B4X?t$K$D$$$F>\$7$/$O(B ``asir $B%I%j%k(B'' $B$r;2>H$7$F$[$7$$(B.
                   1252:
                   1253: \begin{screen}
                   1254: \begin{verbatim}
                   1255: import("glib3.rr");
                   1256:
                   1257: def circle(X,Y,R,Color) {
                   1258:   E = 0.2;
                   1259:   for (T=0; T<deval(2*@pi); T = T+E) {
                   1260:    Px = X+deval(R*cos(T));
                   1261:    Py = Y+deval(R*sin(T));
                   1262:    Qx = X+deval(R*cos(T+E));
                   1263:    Qy = Y+deval(R*sin(T+E));
                   1264:    glib_line(Px,Py,Qx,Qy | color=Color);
                   1265:   }
                   1266:   glib_flush();
                   1267: }
                   1268:
                   1269: Glib_math_coordinate=1;
                   1270: glib_window(-1,-1,1,1);
                   1271: glib_clear();
                   1272: CC = 0xff0000;
                   1273: for (P = 0.4; P<0.5; P = P+0.01) {
                   1274:    circle(0,0,P,CC);
                   1275:    CC = random()%0x1000000;
                   1276: }
                   1277: \end{verbatim}
                   1278: \end{screen}
                   1279: -----$B%W%m%0%i%`$N>\$7$$2r@b$^$@(B.
                   1280:
                   1281: \begin{problem} \rm
                   1282: \begin{enumerate}
                   1283: \item $BJ,EY4o$rIA$/%W%m%0%i%`$r:n$l(B.
                   1284: \item ($BH/E82]Bj(B) $B$3$NJ,EY4o(B, $B;e(B, $B$*$b$j(B, $B$o$j$P$7(B, $BHD(B, cfep/asir $B$K$h$k%W%m%0%i%`Ey$rMQ$$$F(B,
                   1285: $BLZ$d%S%k$N9b$5$rB,Dj$9$k5!3#$H%=%U%H%&%(%"%7%9%F%`$r3+H/$;$h(B.
                   1286: \end{enumerate}
                   1287: \end{problem}
                   1288:
                   1289: \begin{problem} \rm
                   1290: ($B$3$l$OH/E82]Bj(B)  \index{OpenGL}  \index{3$B$8$2$s$0$i$U$#$C$/$9(B@3$B<!85%0%i%U%#%C%/%9(B}
                   1291: cfep $B$K$O(B OpenGL $B%$%s%?%W%j%?!<$,AH$_9~$s$G$"$k(B.
                   1292: OpenGL $B$O(B3$B<!85%0%i%U%#%C%/%9$rMQ$$$k%=%U%H%&%(%":n@.$N$?$a$K(B
                   1293: $BMQ$$$i$l$kLs(B 150$B<oN`$N%3%^%s%I$+$i9=@.$5$l$F$$$k%Q%C%1!<%8$G(B
                   1294: 3$B<!85%0%i%U%#%C%/%9$NI8=`5,3J$N$R$H$D$G$b$"$k(B.
                   1295: cfep 1.1$B$G$O$=$NCf$N(B 10 $B<e$N%3%^%s%I$rMxMQ$G$-$k(B.
                   1296:
                   1297: $B$3$N(B OpenGL $B%$%s%?%W%j%?!<$rMQ$$(B,
                   1298: $BB?LLBN(B(polygon)$B$r:`NA$K$7(B,
                   1299: cfep$B>e5iJT(B, OpenGL $B$N%W%m%0%i%`$r;29M$K(B
                   1300: ``$B2H(B'' $B$r=q$$$F$_$h$&(B.
                   1301: \end{problem}
                   1302:
                   1303:
                   1304:
                   1305: \chapter{For $BJ8$K$h$k?tNs$N7W;;(B}
                   1306:
                   1307: \section{$BD6F~Lg(B, $BBh(B2$B$N4XLg(B: $BA22=<0$G$-$^$k?tNs$N7W;;(B}
                   1308:
                   1309: \begin{example} \rm
                   1310: $a$ $B$r@5$N?t$H$9$k$H$-(B,
                   1311: \begin{eqnarray*}
                   1312:   x_{n+1} &=& \frac{x_n + \frac{a}{x_n}}{2}, \\
                   1313:   x_0 &=& a
                   1314: \end{eqnarray*}
                   1315: $B$G$-$^$k?tNs(B $x_0, x_1, x_2, \ldots $
                   1316: $B$O(B $\sqrt{a}$ $B$K$I$s$I$s6aIU$/$3$H(B($B<}B+$9$k$3$H(B)$B$,CN$i$l$F$$$k(B.
1.5     ! takayama 1317: $a=2$ $B$N;~(B, $x_1, x_2, \ldots, x_4, x_5$ $B$r7W;;$9$k%W%m%0%i%`$r=q$$$F$_$h$&(B.
1.1       takayama 1318: %%Prog: cfep/tests/2006-03-11-sqrt.rr
                   1319: \begin{screen}
                   1320: \begin{verbatim}
                   1321: A = 2.0;
                   1322: X = A;
                   1323: for (I=0; I<5; I++) {
                   1324:   Y = (X+A/X)/2;
                   1325:   print(Y);
                   1326:   X = Y;
                   1327: }
                   1328: \end{verbatim}
                   1329: \end{screen}
                   1330: \end{example}
                   1331:
                   1332: $B$3$N%W%m%0%i%`$N<B9T7k2L$O?^(B\ref{fig:sqrt}.
                   1333: %<C
                   1334: \begin{figure}[tbh]
                   1335: \scalebox{0.5}{\includegraphics{Figs/sqrt.eps}}
                   1336: \caption{$\sqrt{2}$ $B$K<}B+$9$k?tNs(B} \label{fig:sqrt}
                   1337: \end{figure}
                   1338: %>C
                   1339:
                   1340: $BD6F~Lg$G$N4XLg$O(B
                   1341: \begin{screen}
                   1342: \begin{verbatim}
                   1343:   Y = (X+A/X)/2;
                   1344:   X = Y;
                   1345: \end{verbatim}
                   1346: $B$N0UL#$r40A4$KM}2r$9$k$3$H(B
                   1347: \end{screen}
                   1348: $B$G$"$k(B.
                   1349: $BJQ?t$N>O$G@bL@$7$?$h$&$K(B,
                   1350: $$  \mbox{{\bf $BJQ?tL>(B}} {\tt = }  \mbox{{\bf $B<0(B}} {\tt  ;} $$
                   1351: $B$O$^$:1&JU$N<0$r7W;;$7$=$N$"$H$=$N7W;;7k2L$r:8JU$NJQ?t$KBeF~$;$h$H$$$&0UL#(B
                   1352: $B$G$"$k(B. $B$7$?$,$C$F(B,
                   1353: \verb@  Y = (X+A/X)/2;  @ $B$O8=:_$N(B {\tt X} $B$H(B {\tt A} $B$K3JG<$5$l$?(B
                   1354: $B?t;z$r$b$H$K(B \verb@ (X+A/X)/2 @ $B$NCM$r7W;;$7(B, $B$=$N7k2L$rJQ?t(B {\tt Y} $B$XBeF~$;$h(B,
                   1355: $B$H$$$&0UL#$G$"$k(B. $B$^$?(B
                   1356: \begin{screen}
                   1357: \verb@X=Y@ $B$O(B \verb@X@ $B$,(B \verb@Y@ $B$KEy$7$$$H$$$&0UL#$G$O$J$/(B,
                   1358: $BJQ?t(B\verb@Y@ $B$K3JG<$5$l$??t;z$r(B $BJQ?t(B \verb@X@ $B$KBeF~$;$h$H$$$&0UL#$G$"$k(B.
                   1359: \end{screen}
                   1360: $B$3$N$h$&$K9M$($l$P(B, $B>e$N%W%m%0%i%`$,(B $x_1, x_2, x_3, x_4$ $B$NCM$r(B
                   1361: $B=gHV$K7W;;$7$F(B print $B$7$F$$$kM}M3$,M}2r$G$-$k$G$"$m$&(B.
                   1362: $B<+J,$,7W;;5!$K$J$C$?$D$b$j$G(B,
                   1363: $BJQ?t$NCf$N?tCM$,$I$N$h$&$KJQ2=$7$F$$$/$N$+(B,
                   1364: $B=q$-$J$,$iM}2r$7$FD:$-$?$$(B.
                   1365: $B$3$l$,$O$C$-$jM}2r$G$-(B, $B1~MQLdBj$,<+M3$K2r$1$k$h$&$K$J$C$?(B, $BD6F~LgB46H$G$"$k(B.
                   1366: \index{$B$@$$$K$e$&(B@$BBeF~(B}
                   1367:
1.5     ! takayama 1368: \begin{problem} \rm
        !          1369: $BJQ?t(B {\tt I}, {\tt X}, {\tt Y} $B$NCM$O(B {\tt for} $B%k!<%WFb$G$I$N$h$&$K(B
        !          1370: $BJQ2=$9$k$+(B?
        !          1371: {\tt Y= (X+A/X)/2} $B$N9T$,<B9T$5$l$kA0$N$3$l$i$NJQ?t$NCM$rI=$K$7$F(B
        !          1372: $B$^$H$a$h(B.  {\tt print([I,X,Y])} $B$r$O$5$`$3$H$K$h$j$3$NI=$,@5$7$$$3$H$r(B
        !          1373: $B$?$7$+$a$h(B.
        !          1374: \end{problem}
        !          1375:
        !          1376: \begin{problem} \rm
        !          1377: $B%W%m%0%i%`$N%P%0(B(bug)$B$H$O$J$K$+(B?
        !          1378: \end{problem}
        !          1379:
1.1       takayama 1380: \section{$B1_$rIA$/?tNs(B}
                   1381:
                   1382: $B?tNs$N7W;;$rMQ$$$k$H(B, $\cos$ $B$d(B $\sin$ $B$N7W;;$r$d$i$:$K1_$rIA$/$3$H$,(B
                   1383: $B$G$-$k(B.
                   1384: %%Prog: cfep/tests/2006-03-11-circle-dda.rr
                   1385: \begin{screen}
                   1386: \begin{verbatim}
                   1387: import("glib3.rr");
                   1388: Glib_math_coordinate=1;
                   1389: glib_window(-2,-2, 2,2);
                   1390: glib_clear();
                   1391: E = 0.1;
                   1392: C1 = 1.0; C2=1.0;
                   1393: S1 = 0.0; S2=E;
                   1394: for (T=0; T<=deval(2*@pi); T = T+E) {
                   1395:     C3 = 2*C2-C1-E*E*C2;
                   1396:     S3 = 2*S2-S1-E*E*S2;
                   1397:     glib_line(C1,S1, C2,S2);
                   1398:     C1=C2; S1=S2;
                   1399:     C2=C3; S2=S3;
                   1400:     glib_flush();
                   1401: }
                   1402: \end{verbatim}
                   1403: \end{screen}
                   1404:
                   1405: $B$3$N%W%m%0%i%`$N<B9T7k2L$O?^(B\ref{fig:circleDda}.
                   1406: %<C
                   1407: \begin{figure}[tbh]
                   1408: \scalebox{0.6}{\includegraphics{Figs/circleDda.eps}}
                   1409: \caption{$\cos$, $\sin$ $B$r;H$o$:$K1_$rIA$/(B} \label{fig:circleDda}
                   1410: \end{figure}
                   1411: %>C
                   1412:
                   1413: -----$B%W%m%0%i%`$N2r@b$^$@=q$$$F$J$$(B.
                   1414:
1.5     ! takayama 1415: $B%R%s%H(B:
        !          1416: $BHyJ,J}Dx<0(B $d^2 x/dt^2 = -x, d^2 y/dt^2 = -y$ $B$r(B $t$ $B$r%i%8%"%s$H$7$F(B
        !          1417: $B:9J,K!$G6a;wE*$K2r$$$F$$$k(B.
        !          1418:
1.1       takayama 1419: $B$3$NOCBj$O(B, $B?tNs$N7W;;$H:9J,J}Dx<0$K$h$k%7%_%e%l!<%7%g%s$KB3$/(B.
                   1420: $B$3$l$K$D$$$F$O$^$?9F$r$"$i$?$a$F=q$$$F$_$?$$(B.
                   1421:
                   1422: $B0J>e$GD6F~Lg$O=*N;$G$"$k(B.  $BB3$-$O(B ``Asir $B%I%j%k(B'' $B$rFI$s$G$M(B.
1.5     ! takayama 1423: $BFC$KG[Ns$H4X?t$r%^%9%?!<$9$k$H?t3X%W%m%0%i%`$K$O=EJu$9$k(B.
        !          1424:
        !          1425: \begin{problem} \rm
        !          1426: ($B%l%]!<%HLdBj$NNc(B) \\
        !          1427: $B$J$K$+?^$rIA$/%W%m%0%i%`$r=q$-$J$5$$(B. ($BDjHV%I%i%(%b%s$G$b$h$$(B)
        !          1428: \end{problem}
1.1       takayama 1429:
                   1430: \chapter{cfep $B>e5iJT(B}
                   1431:
                   1432: \section{\TeX $B$K$h$k%?%$%W%;%C%H(B($B<B83E*(B)}
                   1433: %%Doc: cfep/tests/2006-03-06
                   1434: $B=PNO$r(BTeX$B$G%?%$%W%;%C%H$9$k$K$O(B
                   1435: ``$B<B9T(B'' $B%a%K%e!<$+$i(B ``$B=PNO$r(BTeX$B$G%?%$%W%;%C%H(B'' $B$rA*Br$9$k(B.
1.3       takayama 1436: {\tt latex}, {\tt dvipng} $B$,%$%s%9%H!<%k$5$l$F$$(B
1.1       takayama 1437: $B$J$$$HF0:n$7$J$$(B.
1.3       takayama 1438: $B$3$l$i$O$?$H$($P(B {\tt fink}  $B$+$i(B \TeX $B$r%$%s%9%H!<%k$7$?$j(B,
                   1439: {\tt ptex\_package\_2005v2.1.dmg} $B$J$I$G(B Mac $BMQ$N(B pTeX $B$r%$%s%9%H!<%k$7$F$*$1$P$h$$(B.
1.1       takayama 1440: \TeX $B$rMQ$$$?;E>e$jNc$O?^(B\ref{fig:sl2}$B$r8+$h(B.
                   1441: $B$J$*(B, \TeX $B$G%?%$%W%;%C%H$9$k>l9g%[!<%`$N2<$K(B
                   1442: \verb@OpenXM_tmp@ $B$J$k:n6HMQ$N%U%)%k%@$,:n@.$5$l$k(B.
                   1443: $B%?%$%W%;%C%H$O<B835!G=$N$?$a(B, $B$3$N%U%)%k%@$NCf$N:n6HMQ%U%!%$%k$O<+F0$G$O>C5n$5$l$J$$(B.
                   1444: $B;~!9<jF0$G:n6H%U%!%$%k$r>C5n$5$l$?$$(B.
                   1445: \index{tex@\TeX}
                   1446:
                   1447: \section{$BA*BrHO0O$N$_$N<B9T(B}
                   1448:
                   1449: \index{$B$;$s$?$/$O$s$$$N$_$N$8$C$3$&(B@$BA*BrHO0O$N$_$N<B9T(B}
                   1450: $B2hLL>e$N(B ``$BA*BrHO0O$N$_$r<B9T(B'' $B$r%A%'%C%/$9$k$H(B,
                   1451: ``$B;O$a(B'' $B%\%?%s$r$*$7$?$H$-(B, $BA*BrHO0O$N$_$,I>2A$5$l$k(B.
                   1452: $BA*BrHO0O$,$J$$>l9g$O%-%c%l%C%H0LCV$N9T$,<+F0A*Br$5$l$F<B9T$5$l$k(B.
                   1453: \command{{\tt Enter}} $B$HAH$_9g$o$;$F$3$N5!G=$r;H$&$H(B, $B%?!<%_%J%k$+$i(B
                   1454: asir $B$rMxMQ$9$k$N$K$A$g$C$H;w$F$/$k(B.
                   1455: $B?^(B\ref{fig:sl2}$B$O$3$N$h$&$J<B9T$r$7$F$$$kNc$G$"$k(B.
                   1456:
                   1457: %<C
                   1458: \begin{figure}[tbh]
                   1459: \scalebox{0.5}{\includegraphics{Figs/sl2.eps}}
                   1460: \caption{$B%?!<%_%J%kIw(B} \label{fig:sl2}
                   1461: \end{figure}
                   1462: %>C
                   1463:
                   1464:
                   1465: \noindent
                   1466: %%Doc:  cfep/tests/2007-03-07-debug.rtfd
                   1467: \fbox{$B<ALd(B}
                   1468: cfep $B$N%$%s%?%U%'!<%9$G%G%P%C%0$r$7$J$,$i%W%m%0%i%`$r3+H/$9$k$K$O$I$N$h$&$K$d$k$H(B
                   1469: $B$h$$$+(B? \\
                   1470: \fbox{$BEz$((B}
                   1471: cfep $B$O=i?4<T8~$-$N%$%s%?%U%'!<%9$J$N$G(B,
                   1472: $BBg5,LO$J%W%m%0%i%`3+H/$rA[Dj$7$F$$$J$$$,(B,
                   1473: $B;d$O<!$N$h$&$K%i%$%V%i%j$N3+H/$r$7$F$$$k(B.
                   1474:
                   1475: \begin{enumerate}
                   1476: \item $BI,MW$J4X?t$r=q$/(B. $B2<$NNc$G$O(B {\tt sum1}.
                   1477: \item $B4X?t$r%F%9%H$9$kF~NO$r%3%a%s%H$N7A$G$=$N4X?t$N6a$/$K=q$$$F$*$/(B.
                   1478: $B2<$NNc$G$O%3%a%s%H$K$"$k(B {\tt sum1(10,1); } $BEy(B.
                   1479: \end{enumerate}
                   1480:
                   1481:
                   1482: \begin{screen}
                   1483: \begin{verbatim}
                   1484: /*
                   1485: testinput:  sum1(10,1);
                   1486: testinput:  sum1(10,2);
                   1487: */
                   1488: def sum1(N,M) {
                   1489:   S = 0; i=1;
                   1490:   for (I=1; I<N; I++) {S = S+I^M; }
                   1491:   return S;
                   1492: }
                   1493: \end{verbatim}
                   1494: \end{screen}
                   1495:
                   1496: \begin{enumerate}
                   1497: \item ``$B;O$a(B'' $B%\%?%s$G4X?tDj5A$r%m!<%I(B.
                   1498: $B$3$N;~E@$GJ8K!%(%i!<$J$I$,$"$l$P%a%C%;!<%8$K$7$?$,$C$F=$@5(B.
                   1499: \item $B$=$N$"$H(B ``$BA*BrHO0O$N$_$r<B9T(B'' $B$N%b!<%I$KJQ99$7$F%3%a%s%HFb$N(B testinput $B$r<B9T(B.
                   1500: \item $B<B9T;~$N%(%i!<$N9THV9f$X$N0\F0$O(B "$BA*BrHO0O$N$_$r<B9T(B" $B$N%b!<%I$r2r=|$7$F$+$i(B
                   1501: $B9T$&(B.   \index{$B$($i!<(B@$B%(%i!<(B}
                   1502: \end{enumerate}
                   1503:
                   1504: %<C
                   1505: \begin{figure}[tb]
                   1506: \scalebox{0.5}{\includegraphics{Figs/howtoDebug1.eps}}
                   1507: \caption{``$BA*BrHO0O$N$_$r<B9T(B''$B$N3hMQ(B} \label{fig:howtoDebug1}
                   1508: \end{figure}
                   1509: %>C
                   1510:
                   1511:
                   1512: \section{$B%(%s%8%s$r5/F0$7$J$$(B}
                   1513: %%cfep/tests/2006-03-08-noEngine
                   1514:
                   1515: \noindent
                   1516: \fbox{$B<ALd(B}
                   1517:  $B%F%-%9%HJT=8$^$?$O%F%-%9%H$N1\Mw$@$1$G7W;;$r$9$k$D$b$j$O$"$j$^$;$s$,(B. \\
                   1518: \fbox{$BEz$((B}
                   1519:    ``$B<B9T(B'' $B%a%K%e!<$G(B ``$B%(%s%8%s$r<+F05/F0$7$J$$(B'' $B$rA*Br(B. \\
                   1520: %<C
                   1521: \scalebox{0.3}{\includegraphics{Figs/menuNoEngine.eps}} \\
                   1522: %>C
                   1523: $B$"$H$G%(%s%8%s$r5/F0$7$?$$>l9g$O(B  ``$B:F5/(B'' $B%\%?%s$r$*$7$F%(%s%8%s$r5/F0$9$k(B. \\
                   1524: %<C
                   1525: \scalebox{0.3}{\includegraphics{Figs/popupRestart.eps}}
                   1526: %>C
                   1527:
                   1528:
                   1529: \section{OpenGL$B%$%s%?%W%j%?(B}
                   1530:
                   1531: \index{OpenGL}
                   1532: Cfep $B$K$O(B OpenGL $B%$%s%?%W%j%?!<$,AH$_9~$s$G$"$k(B.
                   1533: OpenGL $B$O(B3$B<!85%0%i%U%#%C%/%9$rMQ$$$k%=%U%H%&%(%":n@.$N$?$a$K(B
                   1534: $BMQ$$$i$l$kLs(B 150$B<oN`$N%3%^%s%I$+$i9=@.$5$l$F$$$k%Q%C%1!<%8$G(B
                   1535: 3$B<!85%0%i%U%#%C%/%9$NI8=`5,3J$N$R$H$D$G$b$"$k(B.
                   1536: cfep 1.1$B$G$O$=$NCf$N(B 10 $B<e$N%3%^%s%I$rMxMQ$G$-$k(B.
                   1537: $B>\$7$/$O(B
                   1538: {\tt cfep.app/OpenXM/lib/asir-contrib/cfep-opengl.rr} $B$r;2>H(B.
                   1539:
                   1540: \index{OpenGL$B$0$i$U$#$C$/$*$V$8$'$/$H(B@OpenGL$B%0%i%U%#%C%/%*%V%8%'%/%H(B}
                   1541: OpenGL $B$G$O$^$:(B OpenGL$B%0%i%U%#%C%/%*%V%8%'%/%H$rG[CV$7(B,
                   1542: $B$=$l$+$i;kE@$N0LCV$+$i8+$?2hA|$rIA2h$9$kJ}K!$rMQ$$$k(B.
                   1543: $B$7$?$,$C$F(B, $B%7%9%F%`$O>o$K(B OpenGL$B%0%i%U%#%C%/%*%V%8%'%/%H$N=89g$rJ];}(B
                   1544: $B$7$F$$$k(B.
                   1545: {\tt glib\_remove\_last()} $BL?Na$O$=$N:G8e$NMWAG$r:o=|$9$kL?Na$G$"$k(B.
                   1546: {\tt cfep-opengl.rr} $B%i%$%V%i%j$G$O(B,
                   1547: {\tt opengl.metaRemoveLast()} $B4X?t$G:G8e$NMWAG$r:o=|$G$-$k(B.
                   1548: \index{opengl}
                   1549:
                   1550: %<C
                   1551: \begin{figure}[tb]
                   1552: \scalebox{0.6}{\includegraphics{Figs/twoPolygon.eps}}
                   1553: \caption{} \label{fig:twoPolygon}
                   1554: \end{figure}
                   1555: %>C
                   1556:
                   1557: \begin{screen}
                   1558: \begin{verbatim}
                   1559:       import("cfep-opengl.rr");
                   1560:       opengl.metaRemoveAll();
                   1561:       opengl.init();
                   1562:       opengl.glib3DefaultScene(0);
                   1563:       opengl.redraw();
                   1564:       opengl.glColor4f(0.0,0.0,1.0,0.3);
                   1565:       opengl.glBegin(GL_POLYGON); Y=0.1;
                   1566:       opengl.glVertex3f(-1.0, Y, 0.5);
                   1567:       opengl.glVertex3f(-1.0, Y, -0.5);
                   1568:       opengl.glVertex3f(1.0, Y, -0.5);
                   1569:       opengl.glVertex3f(1.0, Y, 0.5);
                   1570:       opengl.glEnd();
                   1571:
                   1572:       opengl.glColor4f(1.0,0.0,0.0,0.5);
                   1573:       opengl.glBegin(GL_POLYGON);
                   1574:       opengl.glVertex3f(0.0, 0.5, 0.0);
                   1575:       opengl.glVertex3f(0.0, 0.5, -0.4);
                   1576:       opengl.glVertex3f(0.5, -0.2, -0.4);
                   1577:       opengl.glVertex3f(0.5, -0.2, 0.0);
                   1578:       opengl.glEnd();
                   1579:       opengl.glFlush() ;
                   1580:       opengl.metaShowListOfOpenGLCommands();
                   1581: \end{verbatim}
                   1582: \end{screen}
                   1583: $B$3$N%W%m%0%i%`$G$O(B 2 $BKg$ND9J}7A$rIA$$$F$$$k(B.
                   1584: $B$3$N%W%m%0%i%`$N=PNO$O?^(B\ref{fig:twoPolygon}.
                   1585: -----$B>\$7$$@bL@$O$^$@(B.
                   1586:
                   1587: OpenGL $B$N2hLL$K$OIaDL$N?t3X$N$h$&$K(B $(x,y)$ $B:BI8$,$O$$$C$F$*$j(B,
                   1588: $B2hLL$+$i<jA0B&$,(B $z$ $B:BI8$,@5$NJ}8~(B, $B2hLL$N8~$3$&B&$,(B
                   1589: $z$ $B:BI8$,Ii$NJ}8~$G$"$k(B.
                   1590: ``$BL\(B'' $B$+$i86E@J}8~$r8+$?2hA|$,(B
                   1591: $B?^(B\ref{fig:twoPolygon}$B$K$"$k$h$&$K(B 3 $B$D$N%9%i%$%@!<$rMQ$$$FL\$N0LCV$rF0$+$;$k$N$G(B,
                   1592: OpenGL$B%*%V%8%'%/%H$r$$$m$$$m$J3QEY$+$i$_$k$3$H$,2DG=$G$"$k(B.
                   1593: $B2<$N%9%i%$%@!<$,L\$N(B $x$ $B:BI8(B, $B1&$NFs$D$N%9%i%$%@!<$,$=$l$>$lL\$N(B $y$, $z$ $B:BI8$G$"$k(B.
                   1594: $BL\$NF0$-$K47$l$k$K$O(B, $B<!$NFs$D$N%G%b2hLL$r$?$a$9$HLLGr$$$@$m$&(B.
                   1595: \begin{screen}
                   1596: \begin{verbatim}
                   1597: import("cfep-opengl.rr");
                   1598: opengl.glib3DefaultScene("mesa demo/ray");
                   1599: \end{verbatim}
                   1600: \end{screen}
                   1601:
                   1602: \begin{screen}
                   1603: \begin{verbatim}
                   1604: import("cfep-opengl.rr");
1.3       takayama 1605: opengl.glib3DefaultScene("cfep demo/icosahedron");
1.1       takayama 1606: \end{verbatim}
                   1607: \end{screen}
                   1608:
1.4       takayama 1609: \section{asir $B0J30$N7W;;%(%s%8%s$NMxMQ(B}
                   1610:
                   1611: cfep$B$+$i(B asir $B0J30$N(B OpenXM $B=`5r$N7W;;%(%s%8%s$bMxMQ$G$-$^$9(B.
                   1612: $B$?$H$($P(B, $B<B9T(B, $B7W;;%(%s%8%s$NA*Br$G(B, kan/sm1 $B$rMxMQ$9$k$3$H$b2DG=$G$9(B.
                   1613: cfep, {\tt ox\_texmacs}, {\tt ox\_sm1} $B$,Aj8_$KDL?.$7$J$,$i7W;;$7$F$$$^$9(B.
                   1614:
                   1615: $B$J$*(B kan/sm1 $B$N(B {\tt run} $B%3%^%s%I$O;H$($^$;$s(B.
                   1616: \begin{verbatim}
                   1617: [(parse) ($B%U%!%$%kL>(B)  pushfile] extension
                   1618: \end{verbatim}
                   1619: $B$GBeMQ$7$F2<$5$$(B.
                   1620:
1.1       takayama 1621: \cleardoublepage
                   1622: \flushbottom
                   1623: \printindex
                   1624:
                   1625: \end{document}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>