[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Diff for /OpenXM/src/hgm/doc/ref-hgm.html between version 1.16 and 1.19

version 1.16, 2016/02/07 07:23:21 version 1.19, 2016/09/15 02:25:48
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
   
 <h2> Papers  and Tutorials</h2>  <h2> Papers  and Tutorials</h2>
 <ol>  <ol>
   <li> R.Vidunas, A.Takemura,
   Differential relations for the largest root distribution
   of complex non-central Wishart matrices,
   <a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
   
   <li> M.Noro,
   System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
   <a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a>
   
 <li> Y.Goto, K.Matsumoto,  <li> Y.Goto, K.Matsumoto,
 Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,  Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
 <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>  <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
Line 31  A-Hpergeometric Distributions and Newton Polytopes,
Line 40  A-Hpergeometric Distributions and Newton Polytopes,
 Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,  Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
 <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>  <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
   
   <li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
   Exact ZF Analysis and Computer-Algebra-Aided Evaluation
   in Rank-1 LoS Rician Fading,
   <a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
   
 <li> K.Ohara, N.Takayama,  <li> K.Ohara, N.Takayama,
 Pfaffian Systems of A-Hypergeometric Systems II ---  Pfaffian Systems of A-Hypergeometric Systems II ---
 Holonomic Gradient Method,  Holonomic Gradient Method,
Line 215  maximal Likehood estimates for the Fisher-Bingham dist
Line 229  maximal Likehood estimates for the Fisher-Bingham dist
 <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>  <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
 </ol>  </ol>
   
 <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.15 2016/02/07 06:53:00 takayama Exp $ </pre>  <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.18 2016/09/11 22:55:33 takayama Exp $ </pre>
 </body>  </body>
 </html>  </html>

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.19

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>