version 1.16, 2016/02/07 07:23:21 |
version 1.21, 2016/11/03 23:05:22 |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
|
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
|
by Holonomic Gradient Method, |
|
<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a> |
|
|
|
<li> R.Vidunas, A.Takemura, |
|
Differential relations for the largest root distribution |
|
of complex non-central Wishart matrices, |
|
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
|
|
|
<li> S.Mano, |
|
The A-hypergeometric System Associated with the Rational Normal Curve and |
|
Exchangeable Structures, |
|
<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a> |
|
|
|
<li> M.Noro, |
|
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
|
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
|
|
<li> Y.Goto, K.Matsumoto, |
<li> Y.Goto, K.Matsumoto, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
Line 31 A-Hpergeometric Distributions and Newton Polytopes, |
|
Line 50 A-Hpergeometric Distributions and Newton Polytopes, |
|
Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace, |
Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace, |
<a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a> |
<a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a> |
|
|
|
<li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin, |
|
Exact ZF Analysis and Computer-Algebra-Aided Evaluation |
|
in Rank-1 LoS Rician Fading, |
|
<a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a> |
|
|
<li> K.Ohara, N.Takayama, |
<li> K.Ohara, N.Takayama, |
Pfaffian Systems of A-Hypergeometric Systems II --- |
Pfaffian Systems of A-Hypergeometric Systems II --- |
Holonomic Gradient Method, |
Holonomic Gradient Method, |
Line 215 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 239 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.15 2016/02/07 06:53:00 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.20 2016/09/22 02:51:13 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |