version 1.18, 2016/09/11 22:55:33 |
version 1.33, 2021/12/13 04:40:21 |
|
|
<html> |
<html> |
<head> |
<head> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
|
<meta name="viewport" content="width=device-width,initial-scale=1.0,minimum-scale=1.0"> |
|
<!-- for mobile friendly --> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> |
<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> |
</head> |
</head> |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 14 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> Nobuki Takayama, Takaharu Yaguchi, Yi Zhang, |
|
Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics, |
|
<a href="https://arxiv.org/abs/2111.10947"> arxiv:2111.10947 </a> |
|
|
|
<li> Shuhei Mano, Nobuki Takayama, |
|
Algebraic algorithm for direct sampling from toric models, |
|
<a href="https://arxiv.org/abs/2110.14992"> arxiv:2110.14992 </a> |
|
|
|
<li> M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data |
|
<a href="https://arxiv.org/abs/1912.00396"> arxiv: 1912.00396 </a> |
|
<li> |
|
Anna-Laura Sattelberger, Bernd Sturmfels, |
|
D-Modules and Holonomic Functions |
|
<a href="https://arxiv.org/abs/1910.01395"> arxiv:1910.01395 </a> |
|
<li> |
|
N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, |
|
Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, |
|
<!-- |
|
<a href="https://arxiv.org/abs/1903.10099"> arxiv:1903.10099 </a> --> |
|
<a href="https://doi.org/10.1016/j.jmva.2020.104642"> jmva </a> |
|
<li> M.Harkonen, T.Sei, Y.Hirose, |
|
Holonomic extended least angle regression, |
|
<a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a> |
|
<li> S.Mano, |
|
Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, |
|
<a href="https://www.springer.com/jp/book/9784431558866"> |
|
JSS Research Series in Statistics</a>, 2018. |
|
<li> A.Kume, T.Sei, |
|
On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, |
|
<a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018) |
|
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
|
Holonomic Gradient Method for Two Way Contingency Tables, |
|
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a> |
|
<li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, |
|
Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix |
|
(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), |
|
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
|
<li> T.Koyama, |
|
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
|
<a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a> |
|
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
|
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
|
by Holonomic Gradient Method, |
|
<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a> |
|
|
<li> R.Vidunas, A.Takemura, |
<li> R.Vidunas, A.Takemura, |
Differential relations for the largest root distribution |
Differential relations for the largest root distribution |
of complex non-central Wishart matrices, |
of complex non-central Wishart matrices, |
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
|
|
|
<li> S.Mano, |
|
The A-hypergeometric System Associated with the Rational Normal Curve and |
|
Exchangeable Structures, |
|
<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a> |
|
|
|
<li> M.Noro, |
|
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
|
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
|
|
<li> Y.Goto, K.Matsumoto, |
<li> Y.Goto, K.Matsumoto, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
|
|
with a multivariate normal distribution, |
with a multivariate normal distribution, |
<a href="http://arxiv.org/abs/1512.06564"> arxiv:1512.06564 </a> |
<a href="http://arxiv.org/abs/1512.06564"> arxiv:1512.06564 </a> |
|
|
|
<li> N.Takayama, Holonomic Gradient Method (in Japanese, survey), |
|
<a href="http://www.math.kobe-u.ac.jp/HOME/taka/2015/hgm-dic.pdf"> |
|
hgm-dic.pdf </a> |
|
|
<li> N.Takayama, S.Kuriki, A.Takemura, |
<li> N.Takayama, S.Kuriki, A.Takemura, |
A-Hpergeometric Distributions and Newton Polytopes, |
A-Hpergeometric Distributions and Newton Polytopes, |
Line 91 Holonomic Modules Associated with Multivariate Normal |
|
Line 150 Holonomic Modules Associated with Multivariate Normal |
|
Pfaffian Systems of A-Hypergeometric Equations I, |
Pfaffian Systems of A-Hypergeometric Equations I, |
Bases of Twisted Cohomology Groups, |
Bases of Twisted Cohomology Groups, |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
(major revision v2 of arxiv:1212.6103) |
(major revision v2 of arxiv:1212.6103). |
|
Accepted version is at |
|
<a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a> |
|
|
<li> <img src="./wakaba01.png" alt="Intro"> |
<li> <img src="./wakaba01.png" alt="Intro"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
Line 225 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 286 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.17 2016/04/30 11:15:58 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.32 2020/08/24 23:24:27 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |