version 1.1, 2014/03/24 06:43:55 |
version 1.21, 2016/11/03 23:05:22 |
|
|
<head> |
<head> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<!-- Do not edit this file. Edit it under misc-2012/09/keisan-1/ref.html. --> |
<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> |
</head> |
</head> |
<body> |
<body> |
|
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
|
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
|
by Holonomic Gradient Method, |
|
<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a> |
|
|
|
<li> R.Vidunas, A.Takemura, |
|
Differential relations for the largest root distribution |
|
of complex non-central Wishart matrices, |
|
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
|
|
|
<li> S.Mano, |
|
The A-hypergeometric System Associated with the Rational Normal Curve and |
|
Exchangeable Structures, |
|
<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a> |
|
|
|
<li> M.Noro, |
|
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
|
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
|
|
|
<li> Y.Goto, K.Matsumoto, |
|
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
|
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
|
|
|
<li> T.Koyama, |
|
Holonomic gradient method for the probability content of a simplex |
|
region |
|
with a multivariate normal distribution, |
|
<a href="http://arxiv.org/abs/1512.06564"> arxiv:1512.06564 </a> |
|
|
|
|
|
<li> N.Takayama, S.Kuriki, A.Takemura, |
|
A-Hpergeometric Distributions and Newton Polytopes, |
|
<a href="http://arxiv.org/abs/1510.02269"> arxiv:1510.02269 </a> |
|
|
|
<li> G.Weyenberg, R.Yoshida, D.Howe, |
|
Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace, |
|
<a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a> |
|
|
|
<li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin, |
|
Exact ZF Analysis and Computer-Algebra-Aided Evaluation |
|
in Rank-1 LoS Rician Fading, |
|
<a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a> |
|
|
|
<li> K.Ohara, N.Takayama, |
|
Pfaffian Systems of A-Hypergeometric Systems II --- |
|
Holonomic Gradient Method, |
|
<a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a> |
|
|
<li> T.Koyama, |
<li> T.Koyama, |
|
The Annihilating Ideal of the Fisher Integral, |
|
<a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a> |
|
|
|
<li> T.Koyama, A.Takemura, |
|
Holonomic gradient method for distribution function of a weighted sum |
|
of noncentral chi-square random variables, |
|
<a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a> |
|
|
|
<li> Y.Goto, |
|
Contiguity relations of Lauricella's F_D revisited, |
|
<a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a> |
|
|
|
<li> |
|
T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama, |
|
Software Packages for Holonomic Gradient Method, |
|
Mathematial Software --- ICMS 2014, |
|
4th International Conference, Proceedings. |
|
Edited by Hoon Hong and Chee Yap, |
|
Springer lecture notes in computer science 8592, |
|
706--712. |
|
<a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105"> |
|
DOI |
|
</a> |
|
|
|
<li>N.Marumo, T.Oaku, A.Takemura, |
|
Properties of powers of functions satisfying second-order linear differential equations with applications to statistics, |
|
<a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a> |
|
|
|
<li> J.Hayakawa, A.Takemura, |
|
Estimation of exponential-polynomial distribution by holonomic gradient descent |
|
<a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a> |
|
|
|
<li> C.Siriteanu, A.Takemura, S.Kuriki, |
|
MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method |
|
<a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a> |
|
|
|
<li> T.Koyama, |
Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra, |
Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra, |
<a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a> |
<a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a> |
|
|
Line 30 T.Hibi et al, Groebner Bases : Statistics and Software |
|
Line 115 T.Hibi et al, Groebner Bases : Statistics and Software |
|
Introduction to the Holonomic Gradient Method (movie), 2013. |
Introduction to the Holonomic Gradient Method (movie), 2013. |
<a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a> |
<a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a> |
|
|
|
|
<li> T.Sei, A.Kume, |
<li> T.Sei, A.Kume, |
Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method, |
Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method, |
Statistics and Computing, 2013, |
Statistics and Computing, 2013, |
<a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a> |
<a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a> |
|
|
|
<li> T.Koyama, A.Takemura, |
|
Calculation of Orthant Probabilities by the Holonomic Gradient Method, |
|
<a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a> |
|
|
<li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
<li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
Holonomic Rank of the Fisher-Bingham System of Differential Equations, |
Holonomic Rank of the Fisher-Bingham System of Differential Equations, |
<!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>--> |
<!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>--> |
to appear in Journal of Pure and Applied Algebra |
Journal of Pure and Applied Algebra (online), |
|
<a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a> |
|
|
<li> |
<li> |
T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
Line 61 Journal of Multivariate Analysis, 116 (2013), 440--455 |
|
Line 152 Journal of Multivariate Analysis, 116 (2013), 440--455 |
|
|
|
<li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral, |
<li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral, |
Funkcialaj Ekvacioj 56 (2013), 51--61. |
Funkcialaj Ekvacioj 56 (2013), 51--61. |
<!-- <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a> --> |
<a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a> |
<a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> |
<!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> --> |
|
|
<li> |
<li> |
Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, |
Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, |
Line 71 Holonomic Gradient Descent and its Application to Fis |
|
Line 162 Holonomic Gradient Descent and its Application to Fis |
|
<!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a> --> |
<!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a> --> |
Advances in Applied Mathematics 47 (2011), 639--658, |
Advances in Applied Mathematics 47 (2011), 639--658, |
<a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a> |
<a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a> |
|
|
</ol> |
</ol> |
|
|
|
Early papers related to HGM. <br> |
|
<ol> |
|
<li> |
|
H.Dwinwoodie, L.Matusevich, E. Mosteig, |
|
Transform methods for the hypergeometric distribution, |
|
Statistics and Computing 14 (2004), 287--297. |
|
</ol> |
|
|
|
|
|
|
|
<h2> Three Steps of HGM </h2> |
|
<ol> |
|
<li> Finding a holonomic system satisfied by the normalizing constant. |
|
We may use computational or theoretical methods to find it. |
|
Groebner basis and related methods are used. |
|
<li> Finding an initial value vector for the holonomic system. |
|
This is equivalent to evaluating the normalizing constant and its derivatives |
|
at a point. |
|
This step is usually performed by a series expansion. |
|
<li> Solving the holonomic system numerically. We use several methods |
|
in numerical analysis such as the Runge-Kutta method of solving |
|
ordinary differential equations and efficient solvers of systems of linear |
|
equations. |
|
</ol> |
|
|
<h2> Software Packages for HGM</h2> |
<h2> Software Packages for HGM</h2> |
|
|
|
<ul> |
|
<li> |
|
CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R). |
|
|
|
<li> |
|
Some software packages are experimental and temporary documents are found in |
|
"asir-contrib manual" (auto-autogenerated part), or |
|
"Experimental Functions in Asir", or "miscellaneous and other documents" |
|
of the |
|
<a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html"> |
|
OpenXM documents</a> |
|
or in <a href="./"> this folder</a>. |
|
The nightly snapshot of the asir-contrib can be found in the asir page below, |
|
or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/"> |
|
cvsweb page</a>. |
<ol> |
<ol> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> |
<li> Command line interfaces are in the folder OpenXM/src/hgm |
<li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations), |
in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM"> |
tk_jack (for Jack polynomials) are in the |
OpenXM distribution page </a>. |
<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a> |
<li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3. |
|
To install this package in R, type in |
|
<pre> |
|
R CMD install hgm_*.tar.gz |
|
</pre> |
|
<li> The following packages are |
|
for the computer algebra system |
|
<a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>. |
|
They are in the asir-contrib collection. |
|
<ul> |
|
<li> yang.rr (for Pfaffian systems) , |
|
nk_restriction.rr (for D-module integrations), |
|
tk_jack.rr (for Jack polynomials), |
|
ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system), |
|
are for the steps 1 or 2. |
|
<li> nk_fb_gen_c.rr is a package to generate a C program to perform |
|
maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent). |
|
<li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental). |
|
</ul> |
</ol> |
</ol> |
|
|
|
</ul> |
|
|
<h2> Programs to try examples of our papers </h2> |
<h2> Programs to try examples of our papers </h2> |
<ol> |
<ol> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM$ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.20 2016/09/22 02:51:13 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |