version 1.22, 2016/11/03 23:19:18 |
version 1.24, 2018/03/19 01:17:46 |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
|
Holonomic Gradient Method for Two Way Contingency Tables, |
|
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 |
|
<li> F.H.Danufane, K.Ohara, N.Takayama, |
|
Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices, |
|
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
|
<li> T.Koyama, |
|
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
|
<a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a> |
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
by Holonomic Gradient Method, |
by Holonomic Gradient Method, |
Line 241 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 250 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.21 2016/11/03 23:05:22 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.23 2017/07/12 01:32:58 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |