version 1.24, 2018/03/19 01:17:46 |
version 1.29, 2019/10/31 01:53:51 |
|
|
<html> |
<html> |
<head> |
<head> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> |
|
<meta name="viewport" content="width=device-width,initial-scale=1.0,minimum-scale=1.0"> |
|
<!-- for mobile friendly --> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<title>References for HGM</title> <!-- Use UTF-8 文字 code--> |
<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> |
<!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc --> |
</head> |
</head> |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 14 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> |
|
Anna-Laura Sattelberger, Bernd Sturmfels, |
|
D-Modules and Holonomic Functions |
|
<a href="https://arxiv.org/abs/1910.01395"> arxiv:1910.01395 </a> |
|
<li> |
|
N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, |
|
Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, |
|
<a href="https://arxiv.org/abs/1903.10099"> arxiv:1903.10099 </a> |
|
<li> M.Harkonen, T.Sei, Y.Hirose, |
|
Holonomic extended least angle regression, |
|
<a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a> |
|
<li> S.Mano, |
|
Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, |
|
<a href="https://www.springer.com/jp/book/9784431558866"> |
|
JSS Research Series in Statistics</a>, 2018. |
|
<li> A.Kume, T.Sei, |
|
On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, |
|
<a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018) |
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
Holonomic Gradient Method for Two Way Contingency Tables, |
Holonomic Gradient Method for Two Way Contingency Tables, |
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 |
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a> |
<li> F.H.Danufane, K.Ohara, N.Takayama, |
<li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, |
Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices, |
Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix |
|
(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), |
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
<li> T.Koyama, |
<li> T.Koyama, |
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
Line 250 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 271 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.23 2017/07/12 01:32:58 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.28 2019/04/23 22:51:12 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |