version 1.17, 2016/04/30 11:15:58 |
version 1.25, 2018/05/07 04:50:46 |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
|
Holonomic Gradient Method for Two Way Contingency Tables, |
|
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a> |
|
<li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, |
|
Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix |
|
(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), |
|
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
|
<li> T.Koyama, |
|
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
|
<a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a> |
|
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
|
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
|
by Holonomic Gradient Method, |
|
<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a> |
|
|
|
<li> R.Vidunas, A.Takemura, |
|
Differential relations for the largest root distribution |
|
of complex non-central Wishart matrices, |
|
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
|
|
|
<li> S.Mano, |
|
The A-hypergeometric System Associated with the Rational Normal Curve and |
|
Exchangeable Structures, |
|
<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a> |
|
|
|
<li> M.Noro, |
|
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
|
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
|
|
<li> Y.Goto, K.Matsumoto, |
<li> Y.Goto, K.Matsumoto, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
<a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a> |
Line 86 Holonomic Modules Associated with Multivariate Normal |
|
Line 115 Holonomic Modules Associated with Multivariate Normal |
|
Pfaffian Systems of A-Hypergeometric Equations I, |
Pfaffian Systems of A-Hypergeometric Equations I, |
Bases of Twisted Cohomology Groups, |
Bases of Twisted Cohomology Groups, |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
(major revision v2 of arxiv:1212.6103) |
(major revision v2 of arxiv:1212.6103). |
|
Accepted version is at |
|
<a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a> |
|
|
<li> <img src="./wakaba01.png" alt="Intro"> |
<li> <img src="./wakaba01.png" alt="Intro"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
Line 220 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 251 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.16 2016/02/07 07:23:21 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.24 2018/03/19 01:17:46 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |