version 1.19, 2016/09/15 02:25:48 |
version 1.26, 2018/07/06 06:01:51 |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
|
<li> A.Kume, T.Sei, |
|
On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, |
|
<a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018) |
|
<li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, |
|
Holonomic Gradient Method for Two Way Contingency Tables, |
|
<a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a> |
|
<li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, |
|
Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix |
|
(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), |
|
<a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a> |
|
<li> T.Koyama, |
|
An integral formula for the powered sum of the independent, identically and normally distributed random variables, |
|
<a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a> |
|
<li> H.Hashiguchi, N.Takayama, A.Takemura, |
|
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability |
|
by Holonomic Gradient Method, |
|
<a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a> |
|
|
<li> R.Vidunas, A.Takemura, |
<li> R.Vidunas, A.Takemura, |
Differential relations for the largest root distribution |
Differential relations for the largest root distribution |
of complex non-central Wishart matrices, |
of complex non-central Wishart matrices, |
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
<a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a> |
|
|
|
<li> S.Mano, |
|
The A-hypergeometric System Associated with the Rational Normal Curve and |
|
Exchangeable Structures, |
|
<a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a> |
|
|
<li> M.Noro, |
<li> M.Noro, |
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, |
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
<a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a> |
Line 95 Holonomic Modules Associated with Multivariate Normal |
|
Line 118 Holonomic Modules Associated with Multivariate Normal |
|
Pfaffian Systems of A-Hypergeometric Equations I, |
Pfaffian Systems of A-Hypergeometric Equations I, |
Bases of Twisted Cohomology Groups, |
Bases of Twisted Cohomology Groups, |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
<a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a> |
(major revision v2 of arxiv:1212.6103) |
(major revision v2 of arxiv:1212.6103). |
|
Accepted version is at |
|
<a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a> |
|
|
<li> <img src="./wakaba01.png" alt="Intro"> |
<li> <img src="./wakaba01.png" alt="Intro"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
<a href="http://link.springer.com/book/10.1007/978-4-431-54574-3"> |
Line 229 maximal Likehood estimates for the Fisher-Bingham dist |
|
Line 254 maximal Likehood estimates for the Fisher-Bingham dist |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.18 2016/09/11 22:55:33 takayama Exp $ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.25 2018/05/07 04:50:46 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |