[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Diff for /OpenXM/src/hgm/doc/ref-hgm.html between version 1.21 and 1.26

version 1.21, 2016/11/03 23:05:22 version 1.26, 2018/07/06 06:01:51
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
   
 <h2> Papers  and Tutorials</h2>  <h2> Papers  and Tutorials</h2>
 <ol>  <ol>
   <li> A.Kume, T.Sei,
   On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
   <a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018)
   <li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
   Holonomic Gradient Method for Two Way Contingency Tables,
   <a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a>
   <li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
   Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
   (Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
   <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a>
   <li> T.Koyama,
   An integral formula for the powered sum of the independent, identically and normally distributed random variables,
   <a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a>
 <li> H.Hashiguchi, N.Takayama, A.Takemura,  <li> H.Hashiguchi, N.Takayama, A.Takemura,
 Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability  Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
 by Holonomic Gradient Method,  by Holonomic Gradient Method,
Line 105  Holonomic Modules Associated with Multivariate Normal 
Line 118  Holonomic Modules Associated with Multivariate Normal 
 Pfaffian Systems of A-Hypergeometric Equations I,  Pfaffian Systems of A-Hypergeometric Equations I,
 Bases of Twisted Cohomology Groups,  Bases of Twisted Cohomology Groups,
 <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>  <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
 (major revision v2 of arxiv:1212.6103)  (major revision v2 of arxiv:1212.6103).
   Accepted version is at
   <a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
   
 <li> <img src="./wakaba01.png" alt="Intro">  <li> <img src="./wakaba01.png" alt="Intro">
 <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">  <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
Line 239  maximal Likehood estimates for the Fisher-Bingham dist
Line 254  maximal Likehood estimates for the Fisher-Bingham dist
 <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>  <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
 </ol>  </ol>
   
 <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.20 2016/09/22 02:51:13 takayama Exp $ </pre>  <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.25 2018/05/07 04:50:46 takayama Exp $ </pre>
 </body>  </body>
 </html>  </html>

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.26

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>