[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Diff for /OpenXM/src/hgm/doc/ref-hgm.html between version 1.20 and 1.27

version 1.20, 2016/09/22 02:51:13 version 1.27, 2018/11/13 01:14:49
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
Line 12  the Holonomic Gradient Descent Method  (HGD) </h1>
   
 <h2> Papers  and Tutorials</h2>  <h2> Papers  and Tutorials</h2>
 <ol>  <ol>
   <li> M.Harkonen, T.Sei, Y.Hirose,
   Holonomic extended least angle regression,
   <a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a>
   <li> S.Mano,
   Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
   <a href="https://www.springer.com/jp/book/9784431558866">
   JSS Research Series in Statistics</a>, 2018.
   <li> A.Kume, T.Sei,
   On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
   <a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018)
   <li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
   Holonomic Gradient Method for Two Way Contingency Tables,
   <a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a>
   <li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
   Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
   (Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
   <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a>
   <li> T.Koyama,
   An integral formula for the powered sum of the independent, identically and normally distributed random variables,
   <a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a>
   <li> H.Hashiguchi, N.Takayama, A.Takemura,
   Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
   by Holonomic Gradient Method,
   <a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a>
   
 <li> R.Vidunas, A.Takemura,  <li> R.Vidunas, A.Takemura,
 Differential relations for the largest root distribution  Differential relations for the largest root distribution
 of complex non-central Wishart matrices,  of complex non-central Wishart matrices,
Line 100  Holonomic Modules Associated with Multivariate Normal 
Line 125  Holonomic Modules Associated with Multivariate Normal 
 Pfaffian Systems of A-Hypergeometric Equations I,  Pfaffian Systems of A-Hypergeometric Equations I,
 Bases of Twisted Cohomology Groups,  Bases of Twisted Cohomology Groups,
 <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>  <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
 (major revision v2 of arxiv:1212.6103)  (major revision v2 of arxiv:1212.6103).
   Accepted version is at
   <a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
   
 <li> <img src="./wakaba01.png" alt="Intro">  <li> <img src="./wakaba01.png" alt="Intro">
 <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">  <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
Line 234  maximal Likehood estimates for the Fisher-Bingham dist
Line 261  maximal Likehood estimates for the Fisher-Bingham dist
 <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>  <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
 </ol>  </ol>
   
 <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.19 2016/09/15 02:25:48 takayama Exp $ </pre>  <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.26 2018/07/06 06:01:51 takayama Exp $ </pre>
 </body>  </body>
 </html>  </html>

Legend:
Removed from v.1.20  
changed lines
  Added in v.1.27

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>