version 1.1, 2014/03/24 06:43:55 |
version 1.6, 2014/03/28 03:02:36 |
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
Line 12 the Holonomic Gradient Descent Method (HGD) </h1> |
|
|
|
<h2> Papers and Tutorials</h2> |
<h2> Papers and Tutorials</h2> |
<ol> |
<ol> |
<li> T.Koyama, |
<li> T.Koyama, |
Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra, |
Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra, |
<a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a> |
<a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a> |
|
|
Line 30 T.Hibi et al, Groebner Bases : Statistics and Software |
|
Line 30 T.Hibi et al, Groebner Bases : Statistics and Software |
|
Introduction to the Holonomic Gradient Method (movie), 2013. |
Introduction to the Holonomic Gradient Method (movie), 2013. |
<a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a> |
<a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a> |
|
|
|
|
<li> T.Sei, A.Kume, |
<li> T.Sei, A.Kume, |
Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method, |
Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method, |
Statistics and Computing, 2013, |
Statistics and Computing, 2013, |
<a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a> |
<a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a> |
|
|
|
<li> T.Koyama, A.Takemura, |
|
Calculation of Orthant Probabilities by the Holonomic Gradient Method, |
|
<a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a> |
|
|
<li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
<li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama, |
Holonomic Rank of the Fisher-Bingham System of Differential Equations, |
Holonomic Rank of the Fisher-Bingham System of Differential Equations, |
<!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>--> |
<!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>--> |
Line 73 Advances in Applied Mathematics 47 (2011), 639--658, |
|
Line 78 Advances in Applied Mathematics 47 (2011), 639--658, |
|
<a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a> |
<a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a> |
</ol> |
</ol> |
|
|
|
<h2> Three Steps of HGM </h2> |
|
<ol> |
|
<li> Find a holonomic system satisfied by the normalizing constant. |
|
We may use computational or theoretical methods to find it. |
|
Groebner basis and related methods are used. |
|
<li> Find an initial value vector for the holonomic system. |
|
This is equivalent to evaluating the normalizing constant and its derivatives |
|
at a point. |
|
This step is usually performed by a series expansion. |
|
<li> Solve the holonomic system numerically. We use several methods |
|
in numerical analysis such as the Runge-Kutta method of solving |
|
ordinary differential equations and efficient solvers of systems of linear |
|
equations. |
|
</ol> |
|
|
<h2> Software Packages for HGM</h2> |
<h2> Software Packages for HGM</h2> |
|
Most software packages are experimental and temporary documents are found in |
|
"asir-contrib manual" (auto-autogenerated part), or |
|
"Experimental Functions in Asir", or "miscellaneous and other documents" |
|
of the |
|
<a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html"> |
|
OpenXM documents</a>. |
|
The nightly snapshot of the asir-contrib can be found in the Asir-Contrib page below, |
|
or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/"> |
|
cvsweb page </a> |
<ol> |
<ol> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> for the step 3. |
<li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations), |
<li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations), |
tk_jack (for Jack polynomials) are in the |
tk_jack (for Jack polynomials), ko_fb_pfaffian (Pfaffian system for the Fisher-Bingham system) |
|
are for the steps 1 or 2 and in the |
<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a> |
<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a> |
|
<li> nk_fb_gen_c is a package to generate a C program to perform |
|
maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent) |
|
It is in the |
|
<a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a> |
</ol> |
</ol> |
|
|
<h2> Programs to try examples of our papers </h2> |
<h2> Programs to try examples of our papers </h2> |
Line 86 tk_jack (for Jack polynomials) are in the |
|
Line 120 tk_jack (for Jack polynomials) are in the |
|
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
<li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a> |
</ol> |
</ol> |
|
|
<pre> $OpenXM$ </pre> |
<pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.5 2014/03/26 05:02:18 takayama Exp $ </pre> |
</body> |
</body> |
</html> |
</html> |