=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.14 retrieving revision 1.31 diff -u -p -r1.14 -r1.31 --- OpenXM/src/hgm/doc/ref-hgm.html 2016/02/07 05:18:20 1.14 +++ OpenXM/src/hgm/doc/ref-hgm.html 2020/06/11 22:39:10 1.31 @@ -2,6 +2,8 @@ + + References for HGM @@ -12,6 +14,57 @@ the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

    +
  1. M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data + arxiv: 1912.00396 +
  2. +Anna-Laura Sattelberger, Bernd Sturmfels, +D-Modules and Holonomic Functions + arxiv:1910.01395 +
  3. +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, + + jmva +
  4. M.Harkonen, T.Sei, Y.Hirose, +Holonomic extended least angle regression, + arxiv:1809.08190 +
  5. S.Mano, +Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, + +JSS Research Series in Statistics, 2018. +
  6. A.Kume, T.Sei, +On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, + doi (2018) +
  7. Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, +Holonomic Gradient Method for Two Way Contingency Tables, + arxiv:1803.04170 +
  8. F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, +Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix +(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), + arxiv:1707.02564 +
  9. T.Koyama, +An integral formula for the powered sum of the independent, identically and normally distributed random variables, + arxiv:1706.03989 +
  10. H.Hashiguchi, N.Takayama, A.Takemura, +Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability +by Holonomic Gradient Method, + arxiv:1610.09187 + +
  11. R.Vidunas, A.Takemura, +Differential relations for the largest root distribution +of complex non-central Wishart matrices, + arxiv:1609.01799 + +
  12. S.Mano, +The A-hypergeometric System Associated with the Rational Normal Curve and +Exchangeable Structures, + arxiv:1607.03569 + +
  13. M.Noro, +System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, + ACM DL +
  14. Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, arxiv:1602.01637 @@ -31,6 +84,11 @@ A-Hpergeometric Distributions and Newton Polytopes, Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace, arxiv:1506.00142 +
  15. C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin, +Exact ZF Analysis and Computer-Algebra-Aided Evaluation +in Rank-1 LoS Rician Fading, + arxiv:1507.07056 +
  16. K.Ohara, N.Takayama, Pfaffian Systems of A-Hypergeometric Systems II --- Holonomic Gradient Method, @@ -49,6 +107,18 @@ of noncentral chi-square random variables, Contiguity relations of Lauricella's F_D revisited, arxiv:1412.3256 +
  17. +T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama, +Software Packages for Holonomic Gradient Method, +Mathematial Software --- ICMS 2014, +4th International Conference, Proceedings. +Edited by Hoon Hong and Chee Yap, +Springer lecture notes in computer science 8592, +706--712. + +DOI + +
  18. N.Marumo, T.Oaku, A.Takemura, Properties of powers of functions satisfying second-order linear differential equations with applications to statistics, arxiv:1405.4451 @@ -69,7 +139,9 @@ Holonomic Modules Associated with Multivariate Normal Pfaffian Systems of A-Hypergeometric Equations I, Bases of Twisted Cohomology Groups, arxiv:1212.6103 -(major revision v2 of arxiv:1212.6103) +(major revision v2 of arxiv:1212.6103). +Accepted version is at + DOI
  19. Intro @@ -156,9 +228,11 @@ equations.

    Software Packages for HGM

    -CRAN package
    hgm (for R). +
+ +

Programs to try examples of our papers

  1. d-dimensional Fisher-Bingham System
-
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.13 2016/02/05 21:42:46 takayama Exp $ 
+
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.30 2019/12/03 23:19:40 takayama Exp $