===================================================================
RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v
retrieving revision 1.15
retrieving revision 1.21
diff -u -p -r1.15 -r1.21
--- OpenXM/src/hgm/doc/ref-hgm.html 2016/02/07 06:53:00 1.15
+++ OpenXM/src/hgm/doc/ref-hgm.html 2016/11/03 23:05:22 1.21
@@ -12,6 +12,25 @@ the Holonomic Gradient Descent Method (HGD)
Papers and Tutorials
+- H.Hashiguchi, N.Takayama, A.Takemura,
+Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
+by Holonomic Gradient Method,
+ arxiv:1610.09187
+
+
- R.Vidunas, A.Takemura,
+Differential relations for the largest root distribution
+of complex non-central Wishart matrices,
+ arxiv:1609.01799
+
+
- S.Mano,
+The A-hypergeometric System Associated with the Rational Normal Curve and
+Exchangeable Structures,
+ arxiv:1607.03569
+
+
- M.Noro,
+System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
+ ACM DL
+
- Y.Goto, K.Matsumoto,
Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
arxiv:1602.01637
@@ -31,6 +50,11 @@ A-Hpergeometric Distributions and Newton Polytopes,
Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
arxiv:1506.00142
+
- C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
+Exact ZF Analysis and Computer-Algebra-Aided Evaluation
+in Rank-1 LoS Rician Fading,
+ arxiv:1507.07056
+
- K.Ohara, N.Takayama,
Pfaffian Systems of A-Hypergeometric Systems II ---
Holonomic Gradient Method,
@@ -170,7 +194,7 @@ equations.
-
-CRAN package hgm (for R).
+CRAN package hgm (for R).
-
Some software packages are experimental and temporary documents are found in
@@ -215,6 +239,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
- d-dimensional Fisher-Bingham System
- $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.14 2016/02/07 05:18:20 takayama Exp $
+ $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.20 2016/09/22 02:51:13 takayama Exp $