===================================================================
RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v
retrieving revision 1.22
retrieving revision 1.28
diff -u -p -r1.22 -r1.28
--- OpenXM/src/hgm/doc/ref-hgm.html 2016/11/03 23:19:18 1.22
+++ OpenXM/src/hgm/doc/ref-hgm.html 2019/04/23 22:51:12 1.28
@@ -2,6 +2,8 @@
+
+
References for HGM
@@ -12,6 +14,30 @@ the Holonomic Gradient Descent Method (HGD)
Papers and Tutorials
+-
+N.Takayama, L.Jiu, S.Kuriki, Y.Zhang,
+Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix,
+ arxiv:1903.10099
+
- M.Harkonen, T.Sei, Y.Hirose,
+Holonomic extended least angle regression,
+ arxiv:1809.08190
+
- S.Mano,
+Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
+
+JSS Research Series in Statistics, 2018.
+
- A.Kume, T.Sei,
+On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
+ doi (2018)
+
- Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
+Holonomic Gradient Method for Two Way Contingency Tables,
+ arxiv:1803.04170
+
- F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
+Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
+(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
+ arxiv:1707.02564
+
- T.Koyama,
+An integral formula for the powered sum of the independent, identically and normally distributed random variables,
+ arxiv:1706.03989
- H.Hashiguchi, N.Takayama, A.Takemura,
Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
by Holonomic Gradient Method,
@@ -241,6 +267,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
- d-dimensional Fisher-Bingham System
- $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.21 2016/11/03 23:05:22 takayama Exp $
+ $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.27 2018/11/13 01:14:49 takayama Exp $