=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.24 retrieving revision 1.28 diff -u -p -r1.24 -r1.28 --- OpenXM/src/hgm/doc/ref-hgm.html 2018/03/19 01:17:46 1.24 +++ OpenXM/src/hgm/doc/ref-hgm.html 2019/04/23 22:51:12 1.28 @@ -2,6 +2,8 @@ + + References for HGM @@ -12,11 +14,26 @@ the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

    +
  1. +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, + arxiv:1903.10099 +
  2. M.Harkonen, T.Sei, Y.Hirose, +Holonomic extended least angle regression, + arxiv:1809.08190 +
  3. S.Mano, +Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, + +JSS Research Series in Statistics, 2018. +
  4. A.Kume, T.Sei, +On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, + doi (2018)
  5. Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, Holonomic Gradient Method for Two Way Contingency Tables, - arxiv:1803.04170 -
  6. F.H.Danufane, K.Ohara, N.Takayama, -Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices, + arxiv:1803.04170 +
  7. F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, +Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix +(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), arxiv:1707.02564
  8. T.Koyama, An integral formula for the powered sum of the independent, identically and normally distributed random variables, @@ -250,6 +267,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
  9. d-dimensional Fisher-Bingham System
-
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.23 2017/07/12 01:32:58 takayama Exp $ 
+
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.27 2018/11/13 01:14:49 takayama Exp $