===================================================================
RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v
retrieving revision 1.20
retrieving revision 1.26
diff -u -p -r1.20 -r1.26
--- OpenXM/src/hgm/doc/ref-hgm.html 2016/09/22 02:51:13 1.20
+++ OpenXM/src/hgm/doc/ref-hgm.html 2018/07/06 06:01:51 1.26
@@ -12,6 +12,24 @@ the Holonomic Gradient Descent Method (HGD)
Papers and Tutorials
+- A.Kume, T.Sei,
+On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
+ doi (2018)
+
- Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
+Holonomic Gradient Method for Two Way Contingency Tables,
+ arxiv:1803.04170
+
- F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
+Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
+(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
+ arxiv:1707.02564
+
- T.Koyama,
+An integral formula for the powered sum of the independent, identically and normally distributed random variables,
+ arxiv:1706.03989
+
- H.Hashiguchi, N.Takayama, A.Takemura,
+Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
+by Holonomic Gradient Method,
+ arxiv:1610.09187
+
- R.Vidunas, A.Takemura,
Differential relations for the largest root distribution
of complex non-central Wishart matrices,
@@ -100,7 +118,9 @@ Holonomic Modules Associated with Multivariate Normal
Pfaffian Systems of A-Hypergeometric Equations I,
Bases of Twisted Cohomology Groups,
arxiv:1212.6103
-(major revision v2 of arxiv:1212.6103)
+(major revision v2 of arxiv:1212.6103).
+Accepted version is at
+ DOI
-
@@ -234,6 +254,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
- d-dimensional Fisher-Bingham System
- $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.19 2016/09/15 02:25:48 takayama Exp $
+ $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.25 2018/05/07 04:50:46 takayama Exp $