=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.27 retrieving revision 1.34 diff -u -p -r1.27 -r1.34 --- OpenXM/src/hgm/doc/ref-hgm.html 2018/11/13 01:14:49 1.27 +++ OpenXM/src/hgm/doc/ref-hgm.html 2022/08/21 21:47:08 1.34 @@ -2,6 +2,8 @@ + + References for HGM @@ -12,6 +14,26 @@ the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

    +
  1. Nobuki Takayama, Takaharu Yaguchi, Yi Zhang, +Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics, + arxiv:2111.10947 + +
  2. Shuhei Mano, Nobuki Takayama, +Algebraic algorithm for direct sampling from toric models, + arxiv:2110.14992 + +
  3. M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data + arxiv: 1912.00396 +
  4. +Anna-Laura Sattelberger, Bernd Sturmfels, +D-Modules and Holonomic Functions + arxiv:1910.01395 +
  5. +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, + + jmva
  6. M.Harkonen, T.Sei, Y.Hirose, Holonomic extended least angle regression, arxiv:1809.08190 @@ -45,8 +67,10 @@ of complex non-central Wishart matrices,
  7. S.Mano, The A-hypergeometric System Associated with the Rational Normal Curve and Exchangeable Structures, + doi , arxiv:1607.03569 +
  8. M.Noro, System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, ACM DL @@ -61,6 +85,9 @@ region with a multivariate normal distribution, arxiv:1512.06564 +
  9. N.Takayama, Holonomic Gradient Method (in Japanese, survey), + +hgm-dic.pdf
  10. N.Takayama, S.Kuriki, A.Takemura, A-Hpergeometric Distributions and Newton Polytopes, @@ -261,6 +288,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
  11. d-dimensional Fisher-Bingham System
-
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.26 2018/07/06 06:01:51 takayama Exp $ 
+
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.33 2021/12/13 04:40:21 takayama Exp $