===================================================================
RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v
retrieving revision 1.19
retrieving revision 1.33
diff -u -p -r1.19 -r1.33
--- OpenXM/src/hgm/doc/ref-hgm.html 2016/09/15 02:25:48 1.19
+++ OpenXM/src/hgm/doc/ref-hgm.html 2021/12/13 04:40:21 1.33
@@ -2,6 +2,8 @@
+
+
References for HGM
@@ -12,11 +14,61 @@ the Holonomic Gradient Descent Method (HGD)
Papers and Tutorials
+- Nobuki Takayama, Takaharu Yaguchi, Yi Zhang,
+Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics,
+ arxiv:2111.10947
+
+
- Shuhei Mano, Nobuki Takayama,
+Algebraic algorithm for direct sampling from toric models,
+ arxiv:2110.14992
+
+
- M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data
+ arxiv: 1912.00396
+
-
+Anna-Laura Sattelberger, Bernd Sturmfels,
+D-Modules and Holonomic Functions
+ arxiv:1910.01395
+
-
+N.Takayama, L.Jiu, S.Kuriki, Y.Zhang,
+Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix,
+
+ jmva
+
- M.Harkonen, T.Sei, Y.Hirose,
+Holonomic extended least angle regression,
+ arxiv:1809.08190
+
- S.Mano,
+Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
+
+JSS Research Series in Statistics, 2018.
+
- A.Kume, T.Sei,
+On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
+ doi (2018)
+
- Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
+Holonomic Gradient Method for Two Way Contingency Tables,
+ arxiv:1803.04170
+
- F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
+Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
+(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
+ arxiv:1707.02564
+
- T.Koyama,
+An integral formula for the powered sum of the independent, identically and normally distributed random variables,
+ arxiv:1706.03989
+
- H.Hashiguchi, N.Takayama, A.Takemura,
+Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
+by Holonomic Gradient Method,
+ arxiv:1610.09187
+
- R.Vidunas, A.Takemura,
Differential relations for the largest root distribution
of complex non-central Wishart matrices,
arxiv:1609.01799
+
- S.Mano,
+The A-hypergeometric System Associated with the Rational Normal Curve and
+Exchangeable Structures,
+ arxiv:1607.03569
+
- M.Noro,
System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
ACM DL
@@ -31,6 +83,9 @@ region
with a multivariate normal distribution,
arxiv:1512.06564
+
- N.Takayama, Holonomic Gradient Method (in Japanese, survey),
+
+hgm-dic.pdf
- N.Takayama, S.Kuriki, A.Takemura,
A-Hpergeometric Distributions and Newton Polytopes,
@@ -95,7 +150,9 @@ Holonomic Modules Associated with Multivariate Normal
Pfaffian Systems of A-Hypergeometric Equations I,
Bases of Twisted Cohomology Groups,
arxiv:1212.6103
-(major revision v2 of arxiv:1212.6103)
+(major revision v2 of arxiv:1212.6103).
+Accepted version is at
+ DOI
-
@@ -229,6 +286,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
- d-dimensional Fisher-Bingham System
- $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.18 2016/09/11 22:55:33 takayama Exp $
+ $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.32 2020/08/24 23:24:27 takayama Exp $