=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.26 retrieving revision 1.33 diff -u -p -r1.26 -r1.33 --- OpenXM/src/hgm/doc/ref-hgm.html 2018/07/06 06:01:51 1.26 +++ OpenXM/src/hgm/doc/ref-hgm.html 2021/12/13 04:40:21 1.33 @@ -2,6 +2,8 @@ + + References for HGM @@ -12,6 +14,33 @@ the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

    +
  1. Nobuki Takayama, Takaharu Yaguchi, Yi Zhang, +Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics, + arxiv:2111.10947 + +
  2. Shuhei Mano, Nobuki Takayama, +Algebraic algorithm for direct sampling from toric models, + arxiv:2110.14992 + +
  3. M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data + arxiv: 1912.00396 +
  4. +Anna-Laura Sattelberger, Bernd Sturmfels, +D-Modules and Holonomic Functions + arxiv:1910.01395 +
  5. +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, + + jmva +
  6. M.Harkonen, T.Sei, Y.Hirose, +Holonomic extended least angle regression, + arxiv:1809.08190 +
  7. S.Mano, +Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, + +JSS Research Series in Statistics, 2018.
  8. A.Kume, T.Sei, On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, doi (2018) @@ -54,6 +83,9 @@ region with a multivariate normal distribution, arxiv:1512.06564 +
  9. N.Takayama, Holonomic Gradient Method (in Japanese, survey), + +hgm-dic.pdf
  10. N.Takayama, S.Kuriki, A.Takemura, A-Hpergeometric Distributions and Newton Polytopes, @@ -254,6 +286,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
  11. d-dimensional Fisher-Bingham System
-
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.25 2018/05/07 04:50:46 takayama Exp $ 
+
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.32 2020/08/24 23:24:27 takayama Exp $