=================================================================== RCS file: /home/cvs/OpenXM/src/hgm/doc/ref-hgm.html,v retrieving revision 1.18 retrieving revision 1.34 diff -u -p -r1.18 -r1.34 --- OpenXM/src/hgm/doc/ref-hgm.html 2016/09/11 22:55:33 1.18 +++ OpenXM/src/hgm/doc/ref-hgm.html 2022/08/21 21:47:08 1.34 @@ -2,6 +2,8 @@ + + References for HGM @@ -12,11 +14,67 @@ the Holonomic Gradient Descent Method (HGD)

Papers and Tutorials

    +
  1. Nobuki Takayama, Takaharu Yaguchi, Yi Zhang, +Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics, + arxiv:2111.10947 + +
  2. Shuhei Mano, Nobuki Takayama, +Algebraic algorithm for direct sampling from toric models, + arxiv:2110.14992 + +
  3. M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data + arxiv: 1912.00396 +
  4. +Anna-Laura Sattelberger, Bernd Sturmfels, +D-Modules and Holonomic Functions + arxiv:1910.01395 +
  5. +N.Takayama, L.Jiu, S.Kuriki, Y.Zhang, +Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, + + jmva +
  6. M.Harkonen, T.Sei, Y.Hirose, +Holonomic extended least angle regression, + arxiv:1809.08190 +
  7. S.Mano, +Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, + +JSS Research Series in Statistics, 2018. +
  8. A.Kume, T.Sei, +On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method, + doi (2018) +
  9. Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, +Holonomic Gradient Method for Two Way Contingency Tables, + arxiv:1803.04170 +
  10. F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu, +Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix +(Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices), + arxiv:1707.02564 +
  11. T.Koyama, +An integral formula for the powered sum of the independent, identically and normally distributed random variables, + arxiv:1706.03989 +
  12. H.Hashiguchi, N.Takayama, A.Takemura, +Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability +by Holonomic Gradient Method, + arxiv:1610.09187 +
  13. R.Vidunas, A.Takemura, Differential relations for the largest root distribution of complex non-central Wishart matrices, arxiv:1609.01799 +
  14. S.Mano, +The A-hypergeometric System Associated with the Rational Normal Curve and +Exchangeable Structures, + doi , + arxiv:1607.03569 + + +
  15. M.Noro, +System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions, + ACM DL +
  16. Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications, arxiv:1602.01637 @@ -27,6 +85,9 @@ region with a multivariate normal distribution, arxiv:1512.06564 +
  17. N.Takayama, Holonomic Gradient Method (in Japanese, survey), + +hgm-dic.pdf
  18. N.Takayama, S.Kuriki, A.Takemura, A-Hpergeometric Distributions and Newton Polytopes, @@ -91,7 +152,9 @@ Holonomic Modules Associated with Multivariate Normal Pfaffian Systems of A-Hypergeometric Equations I, Bases of Twisted Cohomology Groups, arxiv:1212.6103 -(major revision v2 of arxiv:1212.6103) +(major revision v2 of arxiv:1212.6103). +Accepted version is at + DOI
  19. Intro @@ -225,6 +288,6 @@ maximal Likehood estimates for the Fisher-Bingham dist
  20. d-dimensional Fisher-Bingham System
-
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.17 2016/04/30 11:15:58 takayama Exp $ 
+
 $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.33 2021/12/13 04:40:21 takayama Exp $