Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.1
1.1 ! takayama 1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
! 2: <html>
! 3: <head>
! 4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
! 5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
! 6: <!-- Do not edit this file. Edit it under misc-2012/09/keisan-1/ref.html. -->
! 7: </head>
! 8: <body>
! 9:
! 10: <h1> References for the Holonomic Gradient Method (HGM) and
! 11: the Holonomic Gradient Descent Method (HGD) </h1>
! 12:
! 13: <h2> Papers and Tutorials</h2>
! 14: <ol>
! 15: <li> T.Koyama,
! 16: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
! 17: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
! 18:
! 19: <li> T.Hibi, K.Nishiyama, N.Takayama,
! 20: Pfaffian Systems of A-Hypergeometric Equations I,
! 21: Bases of Twisted Cohomology Groups,
! 22: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
! 23: (major revision v2 of arxiv:1212.6103)
! 24:
! 25: <li> <img src="./wakaba01.png" alt="Intro">
! 26: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
! 27: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
! 28:
! 29: <li> <img src="./wakaba01.png" alt="Intro">
! 30: Introduction to the Holonomic Gradient Method (movie), 2013.
! 31: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
! 32:
! 33: <li> T.Sei, A.Kume,
! 34: Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method,
! 35: Statistics and Computing, 2013,
! 36: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
! 37:
! 38: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
! 39: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
! 40: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
! 41: to appear in Journal of Pure and Applied Algebra
! 42:
! 43: <li>
! 44: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
! 45: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
! 46: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
! 47: Computational Statistics (2013)
! 48: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
! 49:
! 50: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
! 51: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
! 52: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
! 53: Journal of Multivariate Analysis, 117, (2013) 296-312,
! 54: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
! 55:
! 56: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
! 57: Properties and applications of Fisher distribution on the rotation group,
! 58: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
! 59: Journal of Multivariate Analysis, 116 (2013), 440--455,
! 60: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
! 61:
! 62: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
! 63: Funkcialaj Ekvacioj 56 (2013), 51--61.
! 64: <!-- <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a> -->
! 65: <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a>
! 66:
! 67: <li>
! 68: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
! 69: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
! 70: Holonomic Gradient Descent and its Application to Fisher-Bingham Integral,
! 71: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a> -->
! 72: Advances in Applied Mathematics 47 (2011), 639--658,
! 73: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
! 74: </ol>
! 75:
! 76: <h2> Software Packages for HGM</h2>
! 77: <ol>
! 78: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a>
! 79: <li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations),
! 80: tk_jack (for Jack polynomials) are in the
! 81: <a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib </a>
! 82: </ol>
! 83:
! 84: <h2> Programs to try examples of our papers </h2>
! 85: <ol>
! 86: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
! 87: </ol>
! 88:
! 89: <pre> $OpenXM$ </pre>
! 90: </body>
! 91: </html>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>