[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.12

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
                      5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
                      6: <!-- Do not edit this file. Edit it under misc-2012/09/keisan-1/ref.html. -->
                      7: </head>
                      8: <body>
                      9:
                     10: <h1> References for the Holonomic Gradient Method (HGM) and
                     11: the Holonomic Gradient Descent Method  (HGD) </h1>
                     12:
                     13: <h2> Papers  and Tutorials</h2>
                     14: <ol>
1.12    ! takayama   15: <li> Y.Goto, K.Matsumoto,
        !            16: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
        !            17: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637
        !            18:
1.11      takayama   19: <li>N.Marumo, T.Oaku, A.Takemura,
                     20: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                     21: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                     22:
1.8       takayama   23: <li> J.Hayakawa, A.Takemura,
                     24: Estimation of exponential-polynomial distribution by holonomic gradient descent
                     25: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                     26:
                     27: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                     28: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                     29: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                     30:
1.4       takayama   31: <li> T.Koyama,
1.1       takayama   32: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                     33: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                     34:
                     35: <li> T.Hibi, K.Nishiyama, N.Takayama,
                     36: Pfaffian Systems of A-Hypergeometric Equations I,
                     37: Bases of Twisted Cohomology Groups,
                     38: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
                     39: (major revision v2 of arxiv:1212.6103)
                     40:
                     41: <li> <img src="./wakaba01.png" alt="Intro">
                     42: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                     43: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                     44:
                     45: <li> <img src="./wakaba01.png" alt="Intro">
                     46: Introduction to the Holonomic Gradient Method (movie), 2013.
                     47: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                     48:
1.2       takayama   49:
1.1       takayama   50: <li> T.Sei, A.Kume,
1.2       takayama   51: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama   52: Statistics and Computing, 2013,
                     53: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                     54:
1.4       takayama   55: <li> T.Koyama, A.Takemura,
1.2       takayama   56: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                     57: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                     58:
1.1       takayama   59: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                     60: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                     61: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama   62: Journal of Pure and Applied Algebra  (online),
                     63: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama   64:
                     65: <li>
                     66: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                     67: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                     68: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                     69: Computational Statistics (2013)
                     70: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                     71:
                     72: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                     73: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                     74: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                     75: Journal of Multivariate Analysis, 117, (2013) 296-312,
                     76: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                     77:
                     78: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                     79: Properties and applications of Fisher distribution on the rotation group,
                     80: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                     81: Journal of Multivariate Analysis, 116 (2013), 440--455,
                     82: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                     83:
                     84: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                     85: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama   86: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                     87: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama   88:
                     89: <li>
                     90: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                     91: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                     92: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                     93: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                     94: Advances in Applied Mathematics 47 (2011), 639--658,
                     95: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
                     96: </ol>
                     97:
1.2       takayama   98: <h2> Three Steps of HGM </h2>
                     99: <ol>
1.10      takayama  100: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  101: We may use computational or theoretical methods to find it.
                    102: Groebner basis and related methods are used.
1.10      takayama  103: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  104: This is equivalent to evaluating the normalizing constant and its derivatives
                    105: at a point.
                    106: This step is usually performed by a series expansion.
1.10      takayama  107: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  108: in numerical analysis such as the Runge-Kutta method of solving
                    109: ordinary differential equations and efficient solvers of systems of linear
                    110: equations.
                    111: </ol>
                    112:
1.1       takayama  113: <h2> Software Packages for HGM</h2>
1.6       takayama  114: Most software packages are experimental and temporary documents are found in
                    115: "asir-contrib manual" (auto-autogenerated part), or
                    116: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    117: of the
                    118: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  119: OpenXM documents</a>
1.8       takayama  120: or in <a href="./"> this folder</a>.
1.10      takayama  121: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  122: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  123: cvsweb page</a>.
1.1       takayama  124: <ol>
1.9       takayama  125: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    126: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    127: OpenXM distribution page </a>.
1.11      takayama  128: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
                    129: To install this package in R, type in
                    130: <pre>
                    131: R CMD install hgm_*.tar.gz
                    132: </pre>
1.10      takayama  133: <li> The following packages are
                    134: for the computer algebra system
                    135: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    136: They are in the asir-contrib collection.
                    137: <ul>
                    138: <li> yang.rr (for Pfaffian systems) ,
                    139: nk_restriction.rr (for D-module integrations),
                    140: tk_jack.rr  (for Jack polynomials),
                    141: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    142: are for the steps 1 or 2.
                    143: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  144: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  145: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    146: </ul>
1.1       takayama  147: </ol>
                    148:
                    149: <h2> Programs to try examples of our papers </h2>
                    150: <ol>
                    151: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    152: </ol>
                    153:
1.12    ! takayama  154: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.11 2014/05/20 02:12:18 takayama Exp $ </pre>
1.1       takayama  155: </body>
                    156: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>