[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.13

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
                      5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
1.13    ! takayama    6: <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
1.1       takayama    7: </head>
                      8: <body>
                      9:
                     10: <h1> References for the Holonomic Gradient Method (HGM) and
                     11: the Holonomic Gradient Descent Method  (HGD) </h1>
                     12:
                     13: <h2> Papers  and Tutorials</h2>
                     14: <ol>
1.12      takayama   15: <li> Y.Goto, K.Matsumoto,
                     16: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
1.13    ! takayama   17: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
        !            18:
        !            19: <li>  T.Koyama,
        !            20: Holonomic gradient method for the probability content of a simplex
        !            21: region
        !            22: with a multivariate normal distribution,
        !            23: <a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
        !            24:
        !            25:
        !            26: <li> N.Takayama, S.Kuriki, A.Takemura,
        !            27: A-Hpergeometric Distributions and Newton Polytopes,
        !            28: <a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
        !            29:
        !            30: <li> G.Weyenberg, R.Yoshida, D.Howe,
        !            31: Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
        !            32: <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
        !            33:
        !            34: <li> K.Ohara, N.Takayama,
        !            35: Pfaffian Systems of A-Hypergeometric Systems II ---
        !            36: Holonomic Gradient Method,
        !            37: <a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
        !            38:
        !            39: <li> T.Koyama,
        !            40: The Annihilating Ideal of the Fisher Integral,
        !            41: <a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
        !            42:
        !            43: <li> T.Koyama, A.Takemura,
        !            44: Holonomic gradient method for distribution function of a weighted sum
        !            45: of noncentral chi-square random variables,
        !            46: <a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
        !            47:
        !            48: <li> Y.Goto,
        !            49: Contiguity relations of Lauricella's F_D revisited,
        !            50: <a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
1.12      takayama   51:
1.11      takayama   52: <li>N.Marumo, T.Oaku, A.Takemura,
                     53: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                     54: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                     55:
1.8       takayama   56: <li> J.Hayakawa, A.Takemura,
                     57: Estimation of exponential-polynomial distribution by holonomic gradient descent
                     58: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                     59:
                     60: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                     61: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                     62: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                     63:
1.4       takayama   64: <li> T.Koyama,
1.1       takayama   65: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                     66: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                     67:
                     68: <li> T.Hibi, K.Nishiyama, N.Takayama,
                     69: Pfaffian Systems of A-Hypergeometric Equations I,
                     70: Bases of Twisted Cohomology Groups,
                     71: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
                     72: (major revision v2 of arxiv:1212.6103)
                     73:
                     74: <li> <img src="./wakaba01.png" alt="Intro">
                     75: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                     76: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                     77:
                     78: <li> <img src="./wakaba01.png" alt="Intro">
                     79: Introduction to the Holonomic Gradient Method (movie), 2013.
                     80: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                     81:
1.2       takayama   82:
1.1       takayama   83: <li> T.Sei, A.Kume,
1.2       takayama   84: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama   85: Statistics and Computing, 2013,
                     86: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                     87:
1.4       takayama   88: <li> T.Koyama, A.Takemura,
1.2       takayama   89: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                     90: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                     91:
1.1       takayama   92: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                     93: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                     94: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama   95: Journal of Pure and Applied Algebra  (online),
                     96: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama   97:
                     98: <li>
                     99: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    100: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                    101: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                    102: Computational Statistics (2013)
                    103: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                    104:
                    105: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                    106: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    107: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                    108: Journal of Multivariate Analysis, 117, (2013) 296-312,
                    109: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                    110:
                    111: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                    112: Properties and applications of Fisher distribution on the rotation group,
                    113: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                    114: Journal of Multivariate Analysis, 116 (2013), 440--455,
                    115: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                    116:
                    117: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                    118: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama  119: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                    120: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama  121:
                    122: <li>
                    123: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                    124: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                    125: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                    126: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                    127: Advances in Applied Mathematics 47 (2011), 639--658,
                    128: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
1.13    ! takayama  129:
1.1       takayama  130: </ol>
                    131:
1.13    ! takayama  132: Early papers related to HGM. <br>
        !           133: <ol>
        !           134: <li>
        !           135: H.Dwinwoodie, L.Matusevich, E. Mosteig,
        !           136: Transform methods for the hypergeometric distribution,
        !           137: Statistics and Computing 14 (2004), 287--297.
        !           138: </ol>
        !           139:
        !           140:
        !           141:
1.2       takayama  142: <h2> Three Steps of HGM </h2>
                    143: <ol>
1.10      takayama  144: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  145: We may use computational or theoretical methods to find it.
                    146: Groebner basis and related methods are used.
1.10      takayama  147: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  148: This is equivalent to evaluating the normalizing constant and its derivatives
                    149: at a point.
                    150: This step is usually performed by a series expansion.
1.10      takayama  151: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  152: in numerical analysis such as the Runge-Kutta method of solving
                    153: ordinary differential equations and efficient solvers of systems of linear
                    154: equations.
                    155: </ol>
                    156:
1.1       takayama  157: <h2> Software Packages for HGM</h2>
1.6       takayama  158: Most software packages are experimental and temporary documents are found in
                    159: "asir-contrib manual" (auto-autogenerated part), or
                    160: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    161: of the
                    162: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  163: OpenXM documents</a>
1.8       takayama  164: or in <a href="./"> this folder</a>.
1.10      takayama  165: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  166: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  167: cvsweb page</a>.
1.1       takayama  168: <ol>
1.9       takayama  169: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    170: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    171: OpenXM distribution page </a>.
1.11      takayama  172: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
                    173: To install this package in R, type in
                    174: <pre>
                    175: R CMD install hgm_*.tar.gz
                    176: </pre>
1.10      takayama  177: <li> The following packages are
                    178: for the computer algebra system
                    179: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    180: They are in the asir-contrib collection.
                    181: <ul>
                    182: <li> yang.rr (for Pfaffian systems) ,
                    183: nk_restriction.rr (for D-module integrations),
                    184: tk_jack.rr  (for Jack polynomials),
                    185: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    186: are for the steps 1 or 2.
                    187: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  188: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  189: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    190: </ul>
1.1       takayama  191: </ol>
                    192:
                    193: <h2> Programs to try examples of our papers </h2>
                    194: <ol>
                    195: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    196: </ol>
                    197:
1.13    ! takayama  198: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.12 2016/02/05 01:58:34 takayama Exp $ </pre>
1.1       takayama  199: </body>
                    200: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>