[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.18

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
                      5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
1.13      takayama    6: <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
1.1       takayama    7: </head>
                      8: <body>
                      9:
                     10: <h1> References for the Holonomic Gradient Method (HGM) and
                     11: the Holonomic Gradient Descent Method  (HGD) </h1>
                     12:
                     13: <h2> Papers  and Tutorials</h2>
                     14: <ol>
1.18    ! takayama   15: <li> R.Vidunas, A.Takemura,
        !            16: Differential relations for the largest root distribution
        !            17: of complex non-central Wishart matrices,
        !            18: <a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
        !            19:
1.12      takayama   20: <li> Y.Goto, K.Matsumoto,
                     21: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
1.13      takayama   22: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
                     23:
                     24: <li>  T.Koyama,
                     25: Holonomic gradient method for the probability content of a simplex
                     26: region
                     27: with a multivariate normal distribution,
                     28: <a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
                     29:
                     30:
                     31: <li> N.Takayama, S.Kuriki, A.Takemura,
                     32: A-Hpergeometric Distributions and Newton Polytopes,
                     33: <a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
                     34:
                     35: <li> G.Weyenberg, R.Yoshida, D.Howe,
                     36: Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
                     37: <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
                     38:
1.17      takayama   39: <li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
                     40: Exact ZF Analysis and Computer-Algebra-Aided Evaluation
                     41: in Rank-1 LoS Rician Fading,
                     42: <a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
                     43:
1.13      takayama   44: <li> K.Ohara, N.Takayama,
                     45: Pfaffian Systems of A-Hypergeometric Systems II ---
                     46: Holonomic Gradient Method,
                     47: <a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
                     48:
                     49: <li> T.Koyama,
                     50: The Annihilating Ideal of the Fisher Integral,
                     51: <a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
                     52:
                     53: <li> T.Koyama, A.Takemura,
                     54: Holonomic gradient method for distribution function of a weighted sum
                     55: of noncentral chi-square random variables,
                     56: <a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
                     57:
                     58: <li> Y.Goto,
                     59: Contiguity relations of Lauricella's F_D revisited,
                     60: <a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
1.12      takayama   61:
1.15      takayama   62: <li>
                     63: T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama,
                     64: Software Packages for Holonomic Gradient Method,
                     65: Mathematial Software --- ICMS 2014,
                     66: 4th International Conference, Proceedings.
                     67: Edited by Hoon Hong and Chee Yap,
                     68: Springer lecture notes in computer science 8592,
                     69: 706--712.
                     70: <a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105">
                     71: DOI
                     72: </a>
                     73:
1.11      takayama   74: <li>N.Marumo, T.Oaku, A.Takemura,
                     75: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                     76: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                     77:
1.8       takayama   78: <li> J.Hayakawa, A.Takemura,
                     79: Estimation of exponential-polynomial distribution by holonomic gradient descent
                     80: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                     81:
                     82: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                     83: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                     84: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                     85:
1.4       takayama   86: <li> T.Koyama,
1.1       takayama   87: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                     88: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                     89:
                     90: <li> T.Hibi, K.Nishiyama, N.Takayama,
                     91: Pfaffian Systems of A-Hypergeometric Equations I,
                     92: Bases of Twisted Cohomology Groups,
                     93: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
                     94: (major revision v2 of arxiv:1212.6103)
                     95:
                     96: <li> <img src="./wakaba01.png" alt="Intro">
                     97: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                     98: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                     99:
                    100: <li> <img src="./wakaba01.png" alt="Intro">
                    101: Introduction to the Holonomic Gradient Method (movie), 2013.
                    102: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                    103:
1.2       takayama  104:
1.1       takayama  105: <li> T.Sei, A.Kume,
1.2       takayama  106: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama  107: Statistics and Computing, 2013,
                    108: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                    109:
1.4       takayama  110: <li> T.Koyama, A.Takemura,
1.2       takayama  111: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                    112: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                    113:
1.1       takayama  114: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    115: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                    116: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama  117: Journal of Pure and Applied Algebra  (online),
                    118: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama  119:
                    120: <li>
                    121: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    122: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                    123: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                    124: Computational Statistics (2013)
                    125: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                    126:
                    127: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                    128: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    129: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                    130: Journal of Multivariate Analysis, 117, (2013) 296-312,
                    131: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                    132:
                    133: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                    134: Properties and applications of Fisher distribution on the rotation group,
                    135: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                    136: Journal of Multivariate Analysis, 116 (2013), 440--455,
                    137: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                    138:
                    139: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                    140: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama  141: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                    142: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama  143:
                    144: <li>
                    145: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                    146: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                    147: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                    148: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                    149: Advances in Applied Mathematics 47 (2011), 639--658,
                    150: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
1.13      takayama  151:
1.1       takayama  152: </ol>
                    153:
1.13      takayama  154: Early papers related to HGM. <br>
                    155: <ol>
                    156: <li>
                    157: H.Dwinwoodie, L.Matusevich, E. Mosteig,
                    158: Transform methods for the hypergeometric distribution,
                    159: Statistics and Computing 14 (2004), 287--297.
                    160: </ol>
                    161:
                    162:
                    163:
1.2       takayama  164: <h2> Three Steps of HGM </h2>
                    165: <ol>
1.10      takayama  166: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  167: We may use computational or theoretical methods to find it.
                    168: Groebner basis and related methods are used.
1.10      takayama  169: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  170: This is equivalent to evaluating the normalizing constant and its derivatives
                    171: at a point.
                    172: This step is usually performed by a series expansion.
1.10      takayama  173: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  174: in numerical analysis such as the Runge-Kutta method of solving
                    175: ordinary differential equations and efficient solvers of systems of linear
                    176: equations.
                    177: </ol>
                    178:
1.1       takayama  179: <h2> Software Packages for HGM</h2>
1.14      takayama  180:
1.15      takayama  181: <ul>
                    182: <li>
1.16      takayama  183: CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R).
1.14      takayama  184:
1.15      takayama  185: <li>
1.14      takayama  186: Some software packages are experimental and temporary documents are found in
1.6       takayama  187: "asir-contrib manual" (auto-autogenerated part), or
                    188: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    189: of the
                    190: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  191: OpenXM documents</a>
1.8       takayama  192: or in <a href="./"> this folder</a>.
1.10      takayama  193: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  194: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  195: cvsweb page</a>.
1.1       takayama  196: <ol>
1.9       takayama  197: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    198: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    199: OpenXM distribution page </a>.
1.14      takayama  200: <li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
1.11      takayama  201: To install this package in R, type in
                    202: <pre>
                    203: R CMD install hgm_*.tar.gz
                    204: </pre>
1.10      takayama  205: <li> The following packages are
                    206: for the computer algebra system
                    207: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    208: They are in the asir-contrib collection.
                    209: <ul>
                    210: <li> yang.rr (for Pfaffian systems) ,
                    211: nk_restriction.rr (for D-module integrations),
                    212: tk_jack.rr  (for Jack polynomials),
                    213: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    214: are for the steps 1 or 2.
                    215: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  216: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  217: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    218: </ul>
1.1       takayama  219: </ol>
                    220:
1.15      takayama  221: </ul>
                    222:
1.1       takayama  223: <h2> Programs to try examples of our papers </h2>
                    224: <ol>
                    225: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    226: </ol>
                    227:
1.18    ! takayama  228: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.17 2016/04/30 11:15:58 takayama Exp $ </pre>
1.1       takayama  229: </body>
                    230: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>