[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.23

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
                      5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
1.13      takayama    6: <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
1.1       takayama    7: </head>
                      8: <body>
                      9:
                     10: <h1> References for the Holonomic Gradient Method (HGM) and
                     11: the Holonomic Gradient Descent Method  (HGD) </h1>
                     12:
                     13: <h2> Papers  and Tutorials</h2>
                     14: <ol>
1.23    ! takayama   15: <li> F.H.Danufane, K.Ohara, N.Takayama,
        !            16: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices,
        !            17: <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a>
        !            18: <li> T.Koyama,
        !            19: An integral formula for the powered sum of the independent, identically and normally distributed random variables,
        !            20: <a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a>
1.21      takayama   21: <li> H.Hashiguchi, N.Takayama, A.Takemura,
                     22: Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
                     23: by Holonomic Gradient Method,
                     24: <a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a>
                     25:
1.18      takayama   26: <li> R.Vidunas, A.Takemura,
                     27: Differential relations for the largest root distribution
                     28: of complex non-central Wishart matrices,
                     29: <a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
                     30:
1.20      takayama   31: <li> S.Mano,
                     32: The A-hypergeometric System Associated with the Rational Normal Curve and
                     33: Exchangeable Structures,
                     34: <a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a>
                     35:
1.19      takayama   36: <li> M.Noro,
                     37: System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
                     38: <a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a>
                     39:
1.12      takayama   40: <li> Y.Goto, K.Matsumoto,
                     41: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
1.13      takayama   42: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
                     43:
                     44: <li>  T.Koyama,
                     45: Holonomic gradient method for the probability content of a simplex
                     46: region
                     47: with a multivariate normal distribution,
                     48: <a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
                     49:
                     50:
                     51: <li> N.Takayama, S.Kuriki, A.Takemura,
                     52: A-Hpergeometric Distributions and Newton Polytopes,
                     53: <a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
                     54:
                     55: <li> G.Weyenberg, R.Yoshida, D.Howe,
                     56: Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
                     57: <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
                     58:
1.17      takayama   59: <li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
                     60: Exact ZF Analysis and Computer-Algebra-Aided Evaluation
                     61: in Rank-1 LoS Rician Fading,
                     62: <a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
                     63:
1.13      takayama   64: <li> K.Ohara, N.Takayama,
                     65: Pfaffian Systems of A-Hypergeometric Systems II ---
                     66: Holonomic Gradient Method,
                     67: <a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
                     68:
                     69: <li> T.Koyama,
                     70: The Annihilating Ideal of the Fisher Integral,
                     71: <a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
                     72:
                     73: <li> T.Koyama, A.Takemura,
                     74: Holonomic gradient method for distribution function of a weighted sum
                     75: of noncentral chi-square random variables,
                     76: <a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
                     77:
                     78: <li> Y.Goto,
                     79: Contiguity relations of Lauricella's F_D revisited,
                     80: <a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
1.12      takayama   81:
1.15      takayama   82: <li>
                     83: T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama,
                     84: Software Packages for Holonomic Gradient Method,
                     85: Mathematial Software --- ICMS 2014,
                     86: 4th International Conference, Proceedings.
                     87: Edited by Hoon Hong and Chee Yap,
                     88: Springer lecture notes in computer science 8592,
                     89: 706--712.
                     90: <a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105">
                     91: DOI
                     92: </a>
                     93:
1.11      takayama   94: <li>N.Marumo, T.Oaku, A.Takemura,
                     95: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                     96: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                     97:
1.8       takayama   98: <li> J.Hayakawa, A.Takemura,
                     99: Estimation of exponential-polynomial distribution by holonomic gradient descent
                    100: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                    101:
                    102: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                    103: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                    104: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                    105:
1.4       takayama  106: <li> T.Koyama,
1.1       takayama  107: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                    108: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                    109:
                    110: <li> T.Hibi, K.Nishiyama, N.Takayama,
                    111: Pfaffian Systems of A-Hypergeometric Equations I,
                    112: Bases of Twisted Cohomology Groups,
                    113: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
1.22      takayama  114: (major revision v2 of arxiv:1212.6103).
                    115: Accepted version is at
                    116: <a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
1.1       takayama  117:
                    118: <li> <img src="./wakaba01.png" alt="Intro">
                    119: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                    120: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                    121:
                    122: <li> <img src="./wakaba01.png" alt="Intro">
                    123: Introduction to the Holonomic Gradient Method (movie), 2013.
                    124: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                    125:
1.2       takayama  126:
1.1       takayama  127: <li> T.Sei, A.Kume,
1.2       takayama  128: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama  129: Statistics and Computing, 2013,
                    130: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                    131:
1.4       takayama  132: <li> T.Koyama, A.Takemura,
1.2       takayama  133: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                    134: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                    135:
1.1       takayama  136: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    137: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                    138: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama  139: Journal of Pure and Applied Algebra  (online),
                    140: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama  141:
                    142: <li>
                    143: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    144: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                    145: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                    146: Computational Statistics (2013)
                    147: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                    148:
                    149: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                    150: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    151: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                    152: Journal of Multivariate Analysis, 117, (2013) 296-312,
                    153: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                    154:
                    155: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                    156: Properties and applications of Fisher distribution on the rotation group,
                    157: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                    158: Journal of Multivariate Analysis, 116 (2013), 440--455,
                    159: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                    160:
                    161: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                    162: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama  163: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                    164: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama  165:
                    166: <li>
                    167: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                    168: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                    169: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                    170: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                    171: Advances in Applied Mathematics 47 (2011), 639--658,
                    172: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
1.13      takayama  173:
1.1       takayama  174: </ol>
                    175:
1.13      takayama  176: Early papers related to HGM. <br>
                    177: <ol>
                    178: <li>
                    179: H.Dwinwoodie, L.Matusevich, E. Mosteig,
                    180: Transform methods for the hypergeometric distribution,
                    181: Statistics and Computing 14 (2004), 287--297.
                    182: </ol>
                    183:
                    184:
                    185:
1.2       takayama  186: <h2> Three Steps of HGM </h2>
                    187: <ol>
1.10      takayama  188: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  189: We may use computational or theoretical methods to find it.
                    190: Groebner basis and related methods are used.
1.10      takayama  191: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  192: This is equivalent to evaluating the normalizing constant and its derivatives
                    193: at a point.
                    194: This step is usually performed by a series expansion.
1.10      takayama  195: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  196: in numerical analysis such as the Runge-Kutta method of solving
                    197: ordinary differential equations and efficient solvers of systems of linear
                    198: equations.
                    199: </ol>
                    200:
1.1       takayama  201: <h2> Software Packages for HGM</h2>
1.14      takayama  202:
1.15      takayama  203: <ul>
                    204: <li>
1.16      takayama  205: CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R).
1.14      takayama  206:
1.15      takayama  207: <li>
1.14      takayama  208: Some software packages are experimental and temporary documents are found in
1.6       takayama  209: "asir-contrib manual" (auto-autogenerated part), or
                    210: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    211: of the
                    212: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  213: OpenXM documents</a>
1.8       takayama  214: or in <a href="./"> this folder</a>.
1.10      takayama  215: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  216: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  217: cvsweb page</a>.
1.1       takayama  218: <ol>
1.9       takayama  219: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    220: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    221: OpenXM distribution page </a>.
1.14      takayama  222: <li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
1.11      takayama  223: To install this package in R, type in
                    224: <pre>
                    225: R CMD install hgm_*.tar.gz
                    226: </pre>
1.10      takayama  227: <li> The following packages are
                    228: for the computer algebra system
                    229: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    230: They are in the asir-contrib collection.
                    231: <ul>
                    232: <li> yang.rr (for Pfaffian systems) ,
                    233: nk_restriction.rr (for D-module integrations),
                    234: tk_jack.rr  (for Jack polynomials),
                    235: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    236: are for the steps 1 or 2.
                    237: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  238: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  239: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    240: </ul>
1.1       takayama  241: </ol>
                    242:
1.15      takayama  243: </ul>
                    244:
1.1       takayama  245: <h2> Programs to try examples of our papers </h2>
                    246: <ol>
                    247: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    248: </ol>
                    249:
1.23    ! takayama  250: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.22 2016/11/03 23:19:18 takayama Exp $ </pre>
1.1       takayama  251: </body>
                    252: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>