[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.32

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
1.28      takayama    5: <meta name="viewport" content="width=device-width,initial-scale=1.0,minimum-scale=1.0">
                      6: <!-- for mobile friendly -->
1.1       takayama    7: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
1.13      takayama    8: <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
1.1       takayama    9: </head>
                     10: <body>
                     11:
                     12: <h1> References for the Holonomic Gradient Method (HGM) and
                     13: the Holonomic Gradient Descent Method  (HGD) </h1>
                     14:
                     15: <h2> Papers  and Tutorials</h2>
                     16: <ol>
1.30      takayama   17: <li> M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data
                     18: <a href="https://arxiv.org/abs/1912.00396"> arxiv: 1912.00396 </a>
1.28      takayama   19: <li>
1.29      takayama   20: Anna-Laura Sattelberger, Bernd Sturmfels,
                     21: D-Modules and Holonomic Functions
                     22: <a href="https://arxiv.org/abs/1910.01395"> arxiv:1910.01395 </a>
                     23: <li>
1.28      takayama   24: N.Takayama, L.Jiu, S.Kuriki, Y.Zhang,
                     25: Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix,
1.31      takayama   26: <!--
                     27: <a href="https://arxiv.org/abs/1903.10099"> arxiv:1903.10099 </a> -->
                     28: <a href="https://doi.org/10.1016/j.jmva.2020.104642"> jmva </a>
1.27      takayama   29: <li> M.Harkonen, T.Sei, Y.Hirose,
                     30: Holonomic extended least angle regression,
                     31: <a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a>
                     32: <li> S.Mano,
                     33: Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
                     34: <a href="https://www.springer.com/jp/book/9784431558866">
                     35: JSS Research Series in Statistics</a>, 2018.
1.26      takayama   36: <li> A.Kume, T.Sei,
                     37: On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
                     38: <a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018)
1.24      takayama   39: <li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
                     40: Holonomic Gradient Method for Two Way Contingency Tables,
1.25      takayama   41: <a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a>
                     42: <li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
                     43: Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
                     44: (Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
1.23      takayama   45: <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a>
                     46: <li> T.Koyama,
                     47: An integral formula for the powered sum of the independent, identically and normally distributed random variables,
                     48: <a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a>
1.21      takayama   49: <li> H.Hashiguchi, N.Takayama, A.Takemura,
                     50: Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
                     51: by Holonomic Gradient Method,
                     52: <a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a>
                     53:
1.18      takayama   54: <li> R.Vidunas, A.Takemura,
                     55: Differential relations for the largest root distribution
                     56: of complex non-central Wishart matrices,
                     57: <a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
                     58:
1.20      takayama   59: <li> S.Mano,
                     60: The A-hypergeometric System Associated with the Rational Normal Curve and
                     61: Exchangeable Structures,
                     62: <a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a>
                     63:
1.19      takayama   64: <li> M.Noro,
                     65: System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
                     66: <a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a>
                     67:
1.12      takayama   68: <li> Y.Goto, K.Matsumoto,
                     69: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
1.13      takayama   70: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
                     71:
                     72: <li>  T.Koyama,
                     73: Holonomic gradient method for the probability content of a simplex
                     74: region
                     75: with a multivariate normal distribution,
                     76: <a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
                     77:
1.32    ! takayama   78: <li> N.Takayama, Holonomic Gradient Method (in Japanese, survey),
        !            79: <a href="http://www.math.kobe-u.ac.jp/HOME/taka/2015/hgm-dic.pdf">
        !            80: hgm-dic.pdf </a>
1.13      takayama   81:
                     82: <li> N.Takayama, S.Kuriki, A.Takemura,
                     83: A-Hpergeometric Distributions and Newton Polytopes,
                     84: <a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
                     85:
                     86: <li> G.Weyenberg, R.Yoshida, D.Howe,
                     87: Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
                     88: <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
                     89:
1.17      takayama   90: <li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
                     91: Exact ZF Analysis and Computer-Algebra-Aided Evaluation
                     92: in Rank-1 LoS Rician Fading,
                     93: <a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
                     94:
1.13      takayama   95: <li> K.Ohara, N.Takayama,
                     96: Pfaffian Systems of A-Hypergeometric Systems II ---
                     97: Holonomic Gradient Method,
                     98: <a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
                     99:
                    100: <li> T.Koyama,
                    101: The Annihilating Ideal of the Fisher Integral,
                    102: <a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
                    103:
                    104: <li> T.Koyama, A.Takemura,
                    105: Holonomic gradient method for distribution function of a weighted sum
                    106: of noncentral chi-square random variables,
                    107: <a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
                    108:
                    109: <li> Y.Goto,
                    110: Contiguity relations of Lauricella's F_D revisited,
                    111: <a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
1.12      takayama  112:
1.15      takayama  113: <li>
                    114: T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama,
                    115: Software Packages for Holonomic Gradient Method,
                    116: Mathematial Software --- ICMS 2014,
                    117: 4th International Conference, Proceedings.
                    118: Edited by Hoon Hong and Chee Yap,
                    119: Springer lecture notes in computer science 8592,
                    120: 706--712.
                    121: <a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105">
                    122: DOI
                    123: </a>
                    124:
1.11      takayama  125: <li>N.Marumo, T.Oaku, A.Takemura,
                    126: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                    127: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                    128:
1.8       takayama  129: <li> J.Hayakawa, A.Takemura,
                    130: Estimation of exponential-polynomial distribution by holonomic gradient descent
                    131: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                    132:
                    133: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                    134: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                    135: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                    136:
1.4       takayama  137: <li> T.Koyama,
1.1       takayama  138: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                    139: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                    140:
                    141: <li> T.Hibi, K.Nishiyama, N.Takayama,
                    142: Pfaffian Systems of A-Hypergeometric Equations I,
                    143: Bases of Twisted Cohomology Groups,
                    144: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
1.22      takayama  145: (major revision v2 of arxiv:1212.6103).
                    146: Accepted version is at
                    147: <a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
1.1       takayama  148:
                    149: <li> <img src="./wakaba01.png" alt="Intro">
                    150: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                    151: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                    152:
                    153: <li> <img src="./wakaba01.png" alt="Intro">
                    154: Introduction to the Holonomic Gradient Method (movie), 2013.
                    155: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                    156:
1.2       takayama  157:
1.1       takayama  158: <li> T.Sei, A.Kume,
1.2       takayama  159: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama  160: Statistics and Computing, 2013,
                    161: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                    162:
1.4       takayama  163: <li> T.Koyama, A.Takemura,
1.2       takayama  164: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                    165: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                    166:
1.1       takayama  167: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    168: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                    169: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama  170: Journal of Pure and Applied Algebra  (online),
                    171: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama  172:
                    173: <li>
                    174: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    175: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                    176: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                    177: Computational Statistics (2013)
                    178: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                    179:
                    180: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                    181: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    182: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                    183: Journal of Multivariate Analysis, 117, (2013) 296-312,
                    184: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                    185:
                    186: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                    187: Properties and applications of Fisher distribution on the rotation group,
                    188: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                    189: Journal of Multivariate Analysis, 116 (2013), 440--455,
                    190: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                    191:
                    192: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                    193: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama  194: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                    195: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama  196:
                    197: <li>
                    198: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                    199: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                    200: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                    201: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                    202: Advances in Applied Mathematics 47 (2011), 639--658,
                    203: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
1.13      takayama  204:
1.1       takayama  205: </ol>
                    206:
1.13      takayama  207: Early papers related to HGM. <br>
                    208: <ol>
                    209: <li>
                    210: H.Dwinwoodie, L.Matusevich, E. Mosteig,
                    211: Transform methods for the hypergeometric distribution,
                    212: Statistics and Computing 14 (2004), 287--297.
                    213: </ol>
                    214:
                    215:
                    216:
1.2       takayama  217: <h2> Three Steps of HGM </h2>
                    218: <ol>
1.10      takayama  219: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  220: We may use computational or theoretical methods to find it.
                    221: Groebner basis and related methods are used.
1.10      takayama  222: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  223: This is equivalent to evaluating the normalizing constant and its derivatives
                    224: at a point.
                    225: This step is usually performed by a series expansion.
1.10      takayama  226: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  227: in numerical analysis such as the Runge-Kutta method of solving
                    228: ordinary differential equations and efficient solvers of systems of linear
                    229: equations.
                    230: </ol>
                    231:
1.1       takayama  232: <h2> Software Packages for HGM</h2>
1.14      takayama  233:
1.15      takayama  234: <ul>
                    235: <li>
1.16      takayama  236: CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R).
1.14      takayama  237:
1.15      takayama  238: <li>
1.14      takayama  239: Some software packages are experimental and temporary documents are found in
1.6       takayama  240: "asir-contrib manual" (auto-autogenerated part), or
                    241: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    242: of the
                    243: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  244: OpenXM documents</a>
1.8       takayama  245: or in <a href="./"> this folder</a>.
1.10      takayama  246: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  247: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  248: cvsweb page</a>.
1.1       takayama  249: <ol>
1.9       takayama  250: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    251: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    252: OpenXM distribution page </a>.
1.14      takayama  253: <li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
1.11      takayama  254: To install this package in R, type in
                    255: <pre>
                    256: R CMD install hgm_*.tar.gz
                    257: </pre>
1.10      takayama  258: <li> The following packages are
                    259: for the computer algebra system
                    260: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    261: They are in the asir-contrib collection.
                    262: <ul>
                    263: <li> yang.rr (for Pfaffian systems) ,
                    264: nk_restriction.rr (for D-module integrations),
                    265: tk_jack.rr  (for Jack polynomials),
                    266: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    267: are for the steps 1 or 2.
                    268: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  269: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  270: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    271: </ul>
1.1       takayama  272: </ol>
                    273:
1.15      takayama  274: </ul>
                    275:
1.1       takayama  276: <h2> Programs to try examples of our papers </h2>
                    277: <ol>
                    278: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    279: </ol>
                    280:
1.32    ! takayama  281: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.31 2020/06/11 22:39:10 takayama Exp $ </pre>
1.1       takayama  282: </body>
                    283: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>