[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.34

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
1.28      takayama    5: <meta name="viewport" content="width=device-width,initial-scale=1.0,minimum-scale=1.0">
                      6: <!-- for mobile friendly -->
1.1       takayama    7: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
1.13      takayama    8: <!-- Do not edit this file. Edit it under OpenXM/src/hgm/doc -->
1.1       takayama    9: </head>
                     10: <body>
                     11:
                     12: <h1> References for the Holonomic Gradient Method (HGM) and
                     13: the Holonomic Gradient Descent Method  (HGD) </h1>
                     14:
                     15: <h2> Papers  and Tutorials</h2>
                     16: <ol>
1.33      takayama   17: <li> Nobuki Takayama, Takaharu Yaguchi, Yi Zhang,
                     18: Comparison of Numerical Solvers for Differential Equations for Holonomic Gradient Method in Statistics,
                     19: <a href="https://arxiv.org/abs/2111.10947"> arxiv:2111.10947 </a>
                     20:
                     21: <li> Shuhei Mano, Nobuki Takayama,
                     22: Algebraic algorithm for direct sampling from toric models,
                     23: <a href="https://arxiv.org/abs/2110.14992"> arxiv:2110.14992 </a>
                     24:
1.30      takayama   25: <li> M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data
                     26: <a href="https://arxiv.org/abs/1912.00396"> arxiv: 1912.00396 </a>
1.28      takayama   27: <li>
1.29      takayama   28: Anna-Laura Sattelberger, Bernd Sturmfels,
                     29: D-Modules and Holonomic Functions
                     30: <a href="https://arxiv.org/abs/1910.01395"> arxiv:1910.01395 </a>
                     31: <li>
1.28      takayama   32: N.Takayama, L.Jiu, S.Kuriki, Y.Zhang,
                     33: Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix,
1.31      takayama   34: <!--
                     35: <a href="https://arxiv.org/abs/1903.10099"> arxiv:1903.10099 </a> -->
                     36: <a href="https://doi.org/10.1016/j.jmva.2020.104642"> jmva </a>
1.27      takayama   37: <li> M.Harkonen, T.Sei, Y.Hirose,
                     38: Holonomic extended least angle regression,
                     39: <a href="https://arxiv.org/abs/1809.08190"> arxiv:1809.08190 </a>
                     40: <li> S.Mano,
                     41: Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics,
                     42: <a href="https://www.springer.com/jp/book/9784431558866">
                     43: JSS Research Series in Statistics</a>, 2018.
1.26      takayama   44: <li> A.Kume, T.Sei,
                     45: On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method,
                     46: <a href="https://doi.org/10.1007/s11222-017-9765-3"> doi </a> (2018)
1.24      takayama   47: <li> Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama,
                     48: Holonomic Gradient Method for Two Way Contingency Tables,
1.25      takayama   49: <a href="https://arxiv.org/abs/1803.04170"> arxiv:1803.04170 </a>
                     50: <li> F.H.Danufane, K.Ohara, N.Takayama, C.Siriteanu,
                     51: Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix
                     52: (Title of the version 1: Holonomic Gradient Method for the Distribution Function of the Largest Root of Complex Non-central Wishart Matrices),
1.23      takayama   53: <a href="https://arxiv.org/abs/1707.02564"> arxiv:1707.02564 </a>
                     54: <li> T.Koyama,
                     55: An integral formula for the powered sum of the independent, identically and normally distributed random variables,
                     56: <a href="https://arxiv.org/abs/1706.03989"> arxiv:1706.03989 </a>
1.21      takayama   57: <li> H.Hashiguchi, N.Takayama, A.Takemura,
                     58: Distribution of Ratio of two Wishart Matrices and Evaluation of Cumulative Probability
                     59: by Holonomic Gradient Method,
                     60: <a href="https://arxiv.org/abs/1610.09187"> arxiv:1610.09187 </a>
                     61:
1.18      takayama   62: <li> R.Vidunas, A.Takemura,
                     63: Differential relations for the largest root distribution
                     64: of complex non-central Wishart matrices,
                     65: <a href="http://arxiv.org/abs/1609.01799"> arxiv:1609.01799 </a>
                     66:
1.20      takayama   67: <li> S.Mano,
                     68: The A-hypergeometric System Associated with the Rational Normal Curve and
                     69: Exchangeable Structures,
1.34    ! takayama   70: <a href="http://doi.org/10.1214/17-EJS1361"> doi </a>,
1.20      takayama   71: <a href="http://arxiv.org/abs/1607.03569"> arxiv:1607.03569 </a>
                     72:
1.34    ! takayama   73:
1.19      takayama   74: <li> M.Noro,
                     75: System of Partial Differential Equations for the Hypergeometric Function 1F1 of a Matrix Argument on Diagonal Regions,
                     76: <a href="http://dl.acm.org/citation.cfm?doid=2930889.2930905"> ACM DL </a>
                     77:
1.12      takayama   78: <li> Y.Goto, K.Matsumoto,
                     79: Pfaffian equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications,
1.13      takayama   80: <a href="http://arxiv.org/abs/1602.01637"> arxiv:1602.01637 </a>
                     81:
                     82: <li>  T.Koyama,
                     83: Holonomic gradient method for the probability content of a simplex
                     84: region
                     85: with a multivariate normal distribution,
                     86: <a href="http://arxiv.org/abs/1512.06564">  arxiv:1512.06564 </a>
                     87:
1.32      takayama   88: <li> N.Takayama, Holonomic Gradient Method (in Japanese, survey),
                     89: <a href="http://www.math.kobe-u.ac.jp/HOME/taka/2015/hgm-dic.pdf">
                     90: hgm-dic.pdf </a>
1.13      takayama   91:
                     92: <li> N.Takayama, S.Kuriki, A.Takemura,
                     93: A-Hpergeometric Distributions and Newton Polytopes,
                     94: <a href="http://arxiv.org/abs/1510.02269">  arxiv:1510.02269 </a>
                     95:
                     96: <li> G.Weyenberg, R.Yoshida, D.Howe,
                     97: Normalizing Kernels in the Billera-Holmes-Vogtmann Treespace,
                     98: <a href="http://arxiv.org/abs/1506.00142"> arxiv:1506.00142 </a>
                     99:
1.17      takayama  100: <li> C.Siriteanu, A.Takemura, C.Koutschan, S.Kuriki, D.St.P.Richards, H.Sin,
                    101: Exact ZF Analysis and Computer-Algebra-Aided Evaluation
                    102: in Rank-1 LoS Rician Fading,
                    103: <a href="http://arxiv.org/abs/1507.07056"> arxiv:1507.07056 </a>
                    104:
1.13      takayama  105: <li> K.Ohara, N.Takayama,
                    106: Pfaffian Systems of A-Hypergeometric Systems II ---
                    107: Holonomic Gradient Method,
                    108: <a href="http://arxiv.org/abs/1505.02947"> arxiv:1505.02947 </a>
                    109:
                    110: <li> T.Koyama,
                    111: The Annihilating Ideal of the Fisher Integral,
                    112: <a href="http://arxiv.org/abs/1503.05261"> arxiv:1503.05261 </a>
                    113:
                    114: <li> T.Koyama, A.Takemura,
                    115: Holonomic gradient method for distribution function of a weighted sum
                    116: of noncentral chi-square random variables,
                    117: <a href="http://arxiv.org/abs/1503.00378"> arxiv:1503.00378 </a>
                    118:
                    119: <li> Y.Goto,
                    120: Contiguity relations of Lauricella's F_D revisited,
                    121: <a href="http://arxiv.org/abs/1412.3256"> arxiv:1412.3256 </a>
1.12      takayama  122:
1.15      takayama  123: <li>
                    124: T.Koyama, H.Nakayama, K.Ohara, T.Sei, N.Takayama,
                    125: Software Packages for Holonomic Gradient Method,
                    126: Mathematial Software --- ICMS 2014,
                    127: 4th International Conference, Proceedings.
                    128: Edited by Hoon Hong and Chee Yap,
                    129: Springer lecture notes in computer science 8592,
                    130: 706--712.
                    131: <a href="http://link.springer.com/chapter/10.1007%2F978-3-662-44199-2_105">
                    132: DOI
                    133: </a>
                    134:
1.11      takayama  135: <li>N.Marumo, T.Oaku, A.Takemura,
                    136: Properties of powers of functions satisfying second-order linear differential equations with applications to statistics,
                    137: <a href="http://arxiv.org/abs/1405.4451"> arxiv:1405.4451</a>
                    138:
1.8       takayama  139: <li> J.Hayakawa, A.Takemura,
                    140: Estimation of exponential-polynomial distribution by holonomic gradient descent
                    141: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
                    142:
                    143: <li> C.Siriteanu, A.Takemura, S.Kuriki,
                    144: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
                    145: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
                    146:
1.4       takayama  147: <li> T.Koyama,
1.1       takayama  148: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                    149: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                    150:
                    151: <li> T.Hibi, K.Nishiyama, N.Takayama,
                    152: Pfaffian Systems of A-Hypergeometric Equations I,
                    153: Bases of Twisted Cohomology Groups,
                    154: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
1.22      takayama  155: (major revision v2 of arxiv:1212.6103).
                    156: Accepted version is at
                    157: <a href="http://dx.doi.org/10.1016/j.aim.2016.10.021"> DOI </a>
1.1       takayama  158:
                    159: <li> <img src="./wakaba01.png" alt="Intro">
                    160: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                    161: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                    162:
                    163: <li> <img src="./wakaba01.png" alt="Intro">
                    164: Introduction to the Holonomic Gradient Method (movie), 2013.
                    165: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                    166:
1.2       takayama  167:
1.1       takayama  168: <li> T.Sei, A.Kume,
1.2       takayama  169: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama  170: Statistics and Computing, 2013,
                    171: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                    172:
1.4       takayama  173: <li> T.Koyama, A.Takemura,
1.2       takayama  174: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                    175: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                    176:
1.1       takayama  177: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    178: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                    179: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
1.11      takayama  180: Journal of Pure and Applied Algebra  (online),
                    181: <a href="http://dx.doi.org/10.1016/j.jpaa.2014.03.004"> DOI </a>
1.1       takayama  182:
                    183: <li>
                    184: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                    185: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                    186: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                    187: Computational Statistics (2013)
                    188: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                    189:
                    190: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                    191: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    192: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                    193: Journal of Multivariate Analysis, 117, (2013) 296-312,
                    194: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                    195:
                    196: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                    197: Properties and applications of Fisher distribution on the rotation group,
                    198: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                    199: Journal of Multivariate Analysis, 116 (2013), 440--455,
                    200: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                    201:
                    202: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                    203: Funkcialaj Ekvacioj 56 (2013), 51--61.
1.11      takayama  204: <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a>
                    205: <!-- <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a> -->
1.1       takayama  206:
                    207: <li>
                    208: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                    209: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                    210: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                    211: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                    212: Advances in Applied Mathematics 47 (2011), 639--658,
                    213: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
1.13      takayama  214:
1.1       takayama  215: </ol>
                    216:
1.13      takayama  217: Early papers related to HGM. <br>
                    218: <ol>
                    219: <li>
                    220: H.Dwinwoodie, L.Matusevich, E. Mosteig,
                    221: Transform methods for the hypergeometric distribution,
                    222: Statistics and Computing 14 (2004), 287--297.
                    223: </ol>
                    224:
                    225:
                    226:
1.2       takayama  227: <h2> Three Steps of HGM </h2>
                    228: <ol>
1.10      takayama  229: <li> Finding a holonomic system satisfied by the normalizing constant.
1.2       takayama  230: We may use computational or theoretical methods to find it.
                    231: Groebner basis and related methods are used.
1.10      takayama  232: <li> Finding an initial value vector for the holonomic system.
1.2       takayama  233: This is equivalent to evaluating the normalizing constant and its derivatives
                    234: at a point.
                    235: This step is usually performed by a series expansion.
1.10      takayama  236: <li> Solving the holonomic system numerically. We use several methods
1.2       takayama  237: in numerical analysis such as the Runge-Kutta method of solving
                    238: ordinary differential equations and efficient solvers of systems of linear
                    239: equations.
                    240: </ol>
                    241:
1.1       takayama  242: <h2> Software Packages for HGM</h2>
1.14      takayama  243:
1.15      takayama  244: <ul>
                    245: <li>
1.16      takayama  246: CRAN package <a href="https://cran.r-project.org/web/packages/hgm/index.html"> hgm </a> (for R).
1.14      takayama  247:
1.15      takayama  248: <li>
1.14      takayama  249: Some software packages are experimental and temporary documents are found in
1.6       takayama  250: "asir-contrib manual" (auto-autogenerated part), or
                    251: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    252: of the
                    253: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  254: OpenXM documents</a>
1.8       takayama  255: or in <a href="./"> this folder</a>.
1.10      takayama  256: The nightly snapshot of the asir-contrib can be found in the asir page below,
1.6       takayama  257: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8       takayama  258: cvsweb page</a>.
1.1       takayama  259: <ol>
1.9       takayama  260: <li> Command line interfaces are in the folder OpenXM/src/hgm
                    261: in the OpenXM source tree. See <a href="http://www.math.kobe-u.ac.jp/OpenXM">
                    262: OpenXM distribution page </a>.
1.14      takayama  263: <li> Experimental version of <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> (hgm_*tar.gz, hgm-manual.pdf) for the step 3.
1.11      takayama  264: To install this package in R, type in
                    265: <pre>
                    266: R CMD install hgm_*.tar.gz
                    267: </pre>
1.10      takayama  268: <li> The following packages are
                    269: for the computer algebra system
                    270: <a href="http://www.math.kobe-u.ac.jp/Asir"> Risa/Asir</a>.
                    271: They are in the asir-contrib collection.
                    272: <ul>
                    273: <li> yang.rr (for Pfaffian systems) ,
                    274: nk_restriction.rr (for D-module integrations),
                    275: tk_jack.rr  (for Jack polynomials),
                    276: ko_fb_pfaffian.rr (Pfaffian system for the Fisher-Bingham system),
                    277: are for the steps 1 or 2.
                    278: <li> nk_fb_gen_c.rr is a package to generate a C program to perform
1.7       takayama  279: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.10      takayama  280: <li> ot_hgm_ahg.rr (HGM for A-distributions, very experimental).
                    281: </ul>
1.1       takayama  282: </ol>
                    283:
1.15      takayama  284: </ul>
                    285:
1.1       takayama  286: <h2> Programs to try examples of our papers </h2>
                    287: <ol>
                    288: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    289: </ol>
                    290:
1.34    ! takayama  291: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.33 2021/12/13 04:40:21 takayama Exp $ </pre>
1.1       takayama  292: </body>
                    293: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>