[BACK]Return to ref-hgm.html CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / doc

Annotation of OpenXM/src/hgm/doc/ref-hgm.html, Revision 1.8

1.1       takayama    1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//JA" "http://www.w3.org/TR/REC-html40/loose.dtd">
                      2: <html>
                      3: <head>
                      4: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
                      5: <title>References for HGM</title> <!-- Use UTF-8 文字 code-->
                      6: <!-- Do not edit this file. Edit it under misc-2012/09/keisan-1/ref.html. -->
                      7: </head>
                      8: <body>
                      9:
                     10: <h1> References for the Holonomic Gradient Method (HGM) and
                     11: the Holonomic Gradient Descent Method  (HGD) </h1>
                     12:
                     13: <h2> Papers  and Tutorials</h2>
                     14: <ol>
1.8     ! takayama   15: <li> J.Hayakawa, A.Takemura,
        !            16: Estimation of exponential-polynomial distribution by holonomic gradient descent
        !            17: <a href="http://arxiv.org/abs/1403.7852"> arxiv:1403.7852</a>
        !            18:
        !            19: <li> C.Siriteanu, A.Takemura, S.Kuriki,
        !            20: MIMO Zero-Forcing Detection Performance Evaluation by Holonomic Gradient Method
        !            21: <a href="http://arxiv.org/abs/1403.3788"> arxiv:1403.3788</a>
        !            22:
1.4       takayama   23: <li> T.Koyama,
1.1       takayama   24: Holonomic Modules Associated with Multivariate Normal Probabilities of Polyhedra,
                     25: <a href="http://arxiv.org/abs/1311.6905"> arxiv:1311.6905 </a>
                     26:
                     27: <li> T.Hibi, K.Nishiyama, N.Takayama,
                     28: Pfaffian Systems of A-Hypergeometric Equations I,
                     29: Bases of Twisted Cohomology Groups,
                     30: <a href="http://arxiv.org/abs/1212.6103"> arxiv:1212.6103 </a>
                     31: (major revision v2 of arxiv:1212.6103)
                     32:
                     33: <li> <img src="./wakaba01.png" alt="Intro">
                     34: <a href="http://link.springer.com/book/10.1007/978-4-431-54574-3">
                     35: T.Hibi et al, Groebner Bases : Statistics and Software Systems </a>, Springer, 2013.
                     36:
                     37: <li> <img src="./wakaba01.png" alt="Intro">
                     38: Introduction to the Holonomic Gradient Method (movie), 2013.
                     39: <a href="http://www.youtube.com/watch?v=SgyDDLzWTyI"> movie at youtube </a>
                     40:
1.2       takayama   41:
1.1       takayama   42: <li> T.Sei, A.Kume,
1.2       takayama   43: Calculating the Normalising Constant of the Bingham Distribution on the Sphere using the Holonomic Gradient Method,
1.1       takayama   44: Statistics and Computing, 2013,
                     45: <a href="http://dx.doi.org/10.1007/s11222-013-9434-0">DOI</a>
                     46:
1.4       takayama   47: <li> T.Koyama, A.Takemura,
1.2       takayama   48: Calculation of Orthant Probabilities by the Holonomic Gradient Method,
                     49: <a href="http://arxiv.org/abs/1211.6822"> arxiv:1211.6822</a>
                     50:
1.1       takayama   51: <li>T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                     52: Holonomic Rank of the Fisher-Bingham System of Differential Equations,
                     53: <!-- <a href="http://arxiv.org/abs/1205.6144"> arxiv:1205.6144 </a>-->
                     54: to appear in Journal of Pure and Applied Algebra
                     55:
                     56: <li>
                     57: T. Koyama, H. Nakayama, K. Nishiyama, N. Takayama,
                     58: Holonomic Gradient Descent for the Fisher-Bingham Distribution on the d-dimensional Sphere,
                     59: <!-- <a href="http://arxiv.org/abs/1201.3239"> 1201.3239 </a> -->
                     60: Computational Statistics (2013)
                     61: <a href="http://dx.doi.org/10.1007/s00180-013-0456-z"> DOI </a>
                     62:
                     63: <li> Hiroki Hashiguchi, Yasuhide Numata, Nobuki Takayama, Akimichi Takemura,
                     64: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                     65: <!-- <a href="http://arxiv.org/abs/1201.0472"> 1201.0472 </a> -->
                     66: Journal of Multivariate Analysis, 117, (2013) 296-312,
                     67: <a href="http://dx.doi.org/10.1016/j.jmva.2013.03.011"> DOI </a>
                     68:
                     69: <li> Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
                     70: Properties and applications of Fisher distribution on the rotation group,
                     71: <!-- <a href="http://arxiv.org/abs/1110.0721"> 1110.0721 </a> -->
                     72: Journal of Multivariate Analysis, 116 (2013), 440--455,
                     73: <a href="http://dx.doi.org/10.1016/j.jmva.2013.01.010">DOI</a>
                     74:
                     75: <li>T.Koyama, A Holonomic Ideal which Annihilates the Fisher-Bingham Integral,
                     76: Funkcialaj Ekvacioj 56 (2013), 51--61.
                     77: <!-- <a href="http://dx.doi.org/10.1619/fesi.56.51">DOI</a> -->
                     78: <a href="https://www.jstage.jst.go.jp/article/fesi/56/1/56_51/_article">jstage</a>
                     79:
                     80: <li>
                     81: Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara,
                     82: Tomonari Sei, Nobuki Takayama, Akimichi Takemura ,
                     83: Holonomic Gradient Descent  and its Application to Fisher-Bingham Integral,
                     84: <!-- <a href="http://arxiv.org/abs//1005.5273"> arxiv:1005.5273 </a>  -->
                     85: Advances in Applied Mathematics 47 (2011), 639--658,
                     86: <a href="http://dx.doi.org/10.1016/j.aam.2011.03.001"> DOI </a>
                     87: </ol>
                     88:
1.2       takayama   89: <h2> Three Steps of HGM </h2>
                     90: <ol>
                     91: <li> Find a holonomic system satisfied by the normalizing constant.
                     92: We may use computational or theoretical methods to find it.
                     93: Groebner basis and related methods are used.
                     94: <li> Find an initial value vector for the holonomic system.
                     95: This is equivalent to evaluating the normalizing constant and its derivatives
                     96: at a point.
                     97: This step is usually performed by a series expansion.
                     98: <li> Solve the holonomic system numerically. We use several methods
                     99: in numerical analysis such as the Runge-Kutta method of solving
                    100: ordinary differential equations and efficient solvers of systems of linear
                    101: equations.
                    102: </ol>
                    103:
1.1       takayama  104: <h2> Software Packages for HGM</h2>
1.6       takayama  105: Most software packages are experimental and temporary documents are found in
                    106: "asir-contrib manual" (auto-autogenerated part), or
                    107: "Experimental Functions in Asir", or "miscellaneous and other documents"
                    108: of the
                    109: <a href="http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc.html">
1.7       takayama  110: OpenXM documents</a>
1.8     ! takayama  111: or in <a href="./"> this folder</a>.
1.6       takayama  112: The nightly snapshot of the asir-contrib can be found in the Asir-Contrib page below,
                    113: or look up our <a href="http://www.math.sci.kobe-u.ac.jp/cgi/cvsweb.cgi/">
1.8     ! takayama  114: cvsweb page</a>.
1.1       takayama  115: <ol>
1.2       takayama  116: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/"> hgm package for R </a> for the step 3.
1.1       takayama  117: <li> yang (for Pfaffian systems) , nk_restriction (for D-module integrations),
1.5       takayama  118: tk_jack  (for Jack polynomials), ko_fb_pfaffian (Pfaffian system for the Fisher-Bingham system)
                    119: are for the steps 1 or 2 and in the
1.8     ! takayama  120: <a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib</a>.
1.5       takayama  121: <li> nk_fb_gen_c is a package to generate a C program to perform
1.7       takayama  122: maximal Likehood estimates for the Fisher-Bingham distribution by HGD (holonomic gradient descent).
1.5       takayama  123: It is in the
1.8     ! takayama  124: <a href="http://www.math.kobe-u.ac.jp/Asir"> asir-contrib</a>.
1.1       takayama  125: </ol>
                    126:
                    127: <h2> Programs to try examples of our papers </h2>
                    128: <ol>
                    129: <li> <a href="http://www.math.kobe-u.ac.jp/OpenXM/Math/Fisher-Bingham-2"> d-dimensional Fisher-Bingham System </a>
                    130: </ol>
                    131:
1.8     ! takayama  132: <pre> $OpenXM: OpenXM/src/hgm/doc/ref-hgm.html,v 1.7 2014/03/31 07:23:09 takayama Exp $ </pre>
1.1       takayama  133: </body>
                    134: </html>

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>