[BACK]Return to jack-n.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / hgm / mh / src

Annotation of OpenXM/src/hgm/mh/src/jack-n.c, Revision 1.28

1.1       takayama    1: #include <stdio.h>
                      2: #include <stdlib.h>
                      3: #define _ISOC99_SOURCE
                      4: #include <math.h>
                      5: #include <string.h>
                      6: #include "sfile.h"
                      7: /*
1.28    ! takayama    8:   $OpenXM: OpenXM/src/hgm/mh/src/jack-n.c,v 1.27 2014/03/20 09:37:16 takayama Exp $
1.12      takayama    9:   Ref: copied from this11/misc-2011/A1/wishart/Prog
                     10:   jack-n.c, translated from mh.rr or tk_jack.rr in the asir-contrib. License: LGPL
                     11:   Koev-Edelman for higher order derivatives.
                     12:   cf. 20-my-note-mh-jack-n.pdf,  /Movies/oxvh/priv-j1/2011-12-14-ke-mh-jack.mov
                     13:   Todo:
                     14:   1. Cash the transposes of partitions.
                     15:   2. Use the recurrence to obtain beta().
                     16:   3. Easier input data file format for mh-n.c
                     17:   Changelog:
1.22      takayama   18:   2014.03.15 http://fe.math.kobe-u.ac.jp/Movies/oxvh/2014-03-11-jack-n-c-automatic  see also hgm/doc/ref.html, @s/2014/03/15-my-note-jack-automatic-order-F_A-casta.pdf.
1.18      takayama   19:   2014.03.14, --automatic option. Output estimation data.
1.12      takayama   20:   2012.02.21, porting to OpenXM/src/hgm
                     21:   2011.12.22, --table option, which is experimental.
                     22:   2011.12.19, bug fix.  jjk() should return double. It can become more than max int.
                     23:   2011.12.15, mh.r --> jack-n.c
1.1       takayama   24: */
                     25:
1.3       takayama   26: /****** from mh-n.c *****/
                     27: static int JK_byFile=1;
1.6       takayama   28: static int JK_deallocate=0;
1.3       takayama   29: #define M_n_default 3
1.4       takayama   30: #define Sample_default 1
1.3       takayama   31: static int M_n=0;
1.1       takayama   32: /* global variables. They are set in setParam() */
1.2       takayama   33: static int Mg;  /* n */
                     34: static int Mapprox; /* m, approximation degree */
                     35: static double *Beta; /* beta[0], ..., beta[m-1] */
                     36: static double *Ng;   /* freedom n.  c=(m+1)/2+n/2; Note that it is a pointer */
                     37: static double X0g;   /* initial point */
                     38: static double *Iv;   /* Initial values of mhg sorted by mhbase() in rd.rr at beta*x0 */
                     39: static double Ef;   /* exponential factor at beta*x0 */
                     40: static double Hg;   /* step size of rk defined in rk.c */
                     41: static int Dp;      /* Data sampling period */
                     42: static double Xng=0.0;   /* the last point */
1.4       takayama   43: static int Sample = Sample_default;
1.1       takayama   44:
                     45: /* for sample inputs */
1.2       takayama   46: static double *Iv2;
                     47: static double Ef2;
1.1       takayama   48:
                     49: #ifdef NAN
                     50: #else
1.2       takayama   51: #define NAN  3.40282e+38  /* for old 32 bit machines. Todo, configure */
1.1       takayama   52: #endif
                     53:
                     54: /* #define M_n  3  defined in the Makefile */ /* number of variables */
                     55: #define M_n0 3 /* used for tests. Must be equal to M_n */
                     56: #define M_m_MAX 200
1.3       takayama   57: #define M_nmx  M_m_MAX  /* maximal of M_n */
1.1       takayama   58: #define A_LEN  1 /* (a_1) , (a_1, ..., a_p)*/
                     59: #define B_LEN  1 /* (b_1) */
1.9       takayama   60: static int Debug = 0;
1.5       takayama   61: static int Alpha = 2;  /* 2 implies the zonal polynomial */
1.2       takayama   62: static int *Darray = NULL;
                     63: static int **Parray = NULL; /* array of partitions of size M_n */
                     64: static int *ParraySize = NULL; /* length of each partitions */
1.3       takayama   65: static int M_kap[M_nmx];
1.2       takayama   66: static int M_m=M_m_MAX-2;   /* | | <= M_m, bug do check of M_m <=M_m_MAX-2 */
1.1       takayama   67: void (*M_pExec)(void);
1.3       takayama   68: static int HS_mu[M_nmx];
                     69: static int HS_n=M_nmx;      /* It is initialized to M_n in jk_main */
1.1       takayama   70: void (*HS_hsExec)(void);
1.3       takayama   71: static double M_x[M_nmx];
1.1       takayama   72:
                     73: /* They are used in pmn */
1.2       takayama   74: static int *P_pki=NULL;
                     75: static int P_pmn=0;
1.1       takayama   76:
                     77: /* It is used genDarray2(), list partitions... */
1.2       takayama   78: static int DR_parray=0;
1.1       takayama   79:
                     80: /* Used in genBeta() and enumeration of horizontal strip. */
1.2       takayama   81: static double *M_beta_0=NULL;  /* M_beta[0][*] value of beta_{kappa,mu}, M_beta[1][*] N_mu */
                     82: static int *M_beta_1=NULL;
                     83: static int M_beta_pt=0;
1.3       takayama   84: static int M_beta_kap[M_nmx];
1.2       takayama   85: static int UseTable = 0;
                     86:
                     87: static double **M_jack;
                     88: static int M_df=1; /* Compute differentials? */
                     89: static int M_2n=0; /* 2^N */
1.1       takayama   90:
1.3       takayama   91: static double Xarray[M_nmx][M_m_MAX];
1.1       takayama   92: /* (x_1, ..., x_n) */
                     93: /* Xarray[i][0]  x_{i+1}^0, Xarray[i][1], x_{i+1}^1, ... */
                     94:
1.2       takayama   95: static double *M_qk=NULL;  /* saves pochhammerb */
                     96: static double M_rel_error=0.0; /* relative errors */
1.1       takayama   97:
1.16      takayama   98: /* For automatic degree and X0g setting. */
1.19      takayama   99: /*
                    100:  If automatic == 1, then the series is reevaluated as long as t_success!=1
                    101:  by increasing X0g (evaluation point) and M_m (approx degree);
                    102:  */
1.26      takayama  103: static int M_automatic=1;
1.19      takayama  104: /* Estimated degree bound for series expansion. See mh_t */
1.16      takayama  105: static int M_m_estimated_approx_deg=0;
1.19      takayama  106: /* Let F(i) be the approximation up to degree i.
                    107:    The i-th series_error is defined
                    108:    by |(F(i)-F(i-1))/F(i-1)|.
                    109: */
                    110: static double M_series_error;
                    111: /*
                    112:   M_series_error < M_assigend_series_error (A) is required for the
                    113:   estimated_approx_deg.
                    114:  */
1.26      takayama  115: static double M_assigned_series_error=M_ASSIGNED_SERIES_ERROR_DEFAULT;
1.19      takayama  116: /*
                    117:   Let Ef be the exponential factor ( Ef=(4)/1F1 of [HNTT] )
                    118:   If F(M_m)*Ef < x0value_min (B), the success=0 and X0g is increased.
                    119:   Note that minimal double is about 2e-308
                    120:  */
1.26      takayama  121: static double M_x0value_min=1e-60;
1.19      takayama  122: /*
                    123:   estimated_X0g is the suggested value of X0g.
                    124:  */
1.16      takayama  125: static double M_estimated_X0g=0.0;
1.19      takayama  126: /*
                    127:  X0g should be less than M_X0g_bound.
                    128:  */
                    129: static double M_X0g_bound = 1e+100;
                    130: /*
                    131:  success is set to 1 when (A) and (B) are satisfied.
                    132:  */
1.16      takayama  133: static int M_mh_t_success=1;
1.19      takayama  134: /*
                    135:   recommended_abserr is the recommended value of the absolute error
                    136:   for the Runge-Kutta method. It is defined as
                    137:   assigend_series_error(standing for significant digits)*Ig[0](initial value)
                    138:  */
                    139: static double M_recommended_abserr;
                    140: /*
1.27      takayama  141:   recommended_relerr is the recommended value of the relative error
                    142:   for the Runge-Kutta method..
                    143:  */
                    144: static double M_recommended_relerr;
                    145: /*
1.19      takayama  146:   max of beta(i)*x/2
                    147:  */
                    148: static double M_beta_i_x_o2_max;
                    149: /*
                    150:   minimum of |beta_i-beta_j|
                    151:  */
                    152: static double M_beta_i_beta_j_min;
                    153: /*
                    154:   Value of matrix hg
                    155: */
                    156: static double M_mh_t_value;
1.25      takayama  157: /*
                    158:  Show the process of updating degree.
                    159:  */
                    160: int M_show_autosteps=1;
1.16      takayama  161:
1.2       takayama  162: /* prototypes */
                    163: static void *mymalloc(int size);
1.10      takayama  164: static int myfree(void *p);
                    165: static int myerror(char *s);
1.2       takayama  166: static double jack1(int K);
                    167: static double jack1diff(int k);
                    168: static double xval(int i,int p); /* x_i^p */
                    169: static int mysum(int L[]);
                    170: static int plength(int P[]);
                    171: static int plength_t(int P[]);
1.3       takayama  172: static void ptrans(int P[M_nmx],int Pt[]);
1.10      takayama  173: static int test_ptrans();
1.2       takayama  174: static int huk(int K[],int I,int J);
                    175: static int hdk(int K[],int I,int J);
                    176: static double jjk(int K[]);
                    177: static double ppoch(double A,int K[]);
                    178: static double ppoch2(double A,double B,int K[]);
                    179: static double mypower(double x,int n);
                    180: static double qk(int K[],double A[A_LEN],double B[B_LEN]);
                    181: static int bb(int N[],int K[],int M[],int I,int J);
                    182: static double beta(int K[],int M[]);
1.10      takayama  183: static int printp(int kappa[]);
                    184: static int printp2(int kappa[]);
                    185: static int test_beta();
1.2       takayama  186: static double q3_10(int K[],int M[],int SK);
                    187: static double q3_5(double A[],double B[],int K[],int I);
                    188: static void mtest4();
                    189: static void mtest4b();
                    190: static int nk(int KK[]);
                    191: static int plength2(int P1[],int P2[]);
                    192: static int myeq(int P1[],int P2[]);
                    193: static int pListPartition(int M,int N);
                    194: static int pListPartition2(int Less,int From,int To, int M);
                    195: static void pExec_0();
                    196: static int pListHS(int Kap[],int N);
                    197: static int pListHS2(int From,int To,int Kap[]);
                    198: static void hsExec_0();
                    199: static int pmn(int M,int N);
                    200: static int *cloneP(int a[]);
1.10      takayama  201: static int copyP(int p[],int a[]);
1.2       takayama  202: static void pExec_darray(void);
1.10      takayama  203: static int genDarray2(int M,int N);
                    204: static int isHStrip(int Kap[],int Nu[]);
1.2       takayama  205: static void hsExec_beta(void);
1.10      takayama  206: static int genBeta(int Kap[]);
                    207: static int checkBeta1();
1.2       takayama  208: static int psublen(int Kap[],int Mu[]);
1.10      takayama  209: static int genJack(int M,int N);
                    210: static int checkJack1(int M,int N);
                    211: static int checkJack2(int M,int N);
                    212: static int mtest1b();
1.2       takayama  213:
                    214: static int imypower(int x,int n);
1.10      takayama  215: static int usage();
                    216: static int setParamDefault();
                    217: static int next(struct SFILE *fp,char *s,char *msg);
1.2       takayama  218: static int gopen_file(void);
                    219: static int setParam(char *fname);
1.8       takayama  220: static int showParam(struct SFILE *fp,int fd);
1.2       takayama  221: static double iv_factor(void);
                    222: static double gammam(double a,int n);
                    223: static double mypower(double a,int n);
                    224:
                    225: double mh_t(double A[A_LEN],double B[B_LEN],int N,int M);
                    226: double mh_t2(int J);
1.3       takayama  227: struct MH_RESULT *jk_main(int argc,char *argv[]);
1.16      takayama  228: struct MH_RESULT *jk_main2(int argc,char *argv[],int automode,double newX0g,int newDegree);
1.3       takayama  229: int jk_freeWorkArea();
                    230: int jk_initializeWorkArea();
                    231:
                    232: int jk_freeWorkArea() {
                    233:   /* bug, p in the cloneP will not be deallocated.
1.12      takayama  234:      Nk in genDarray2 will not be deallocated.
                    235:   */
1.3       takayama  236:   int i;
1.6       takayama  237:   JK_deallocate=1;
1.3       takayama  238:   if (Darray) {myfree(Darray); Darray=NULL;}
                    239:   if (Parray) {myfree(Parray); Parray=NULL;}
                    240:   if (ParraySize) {myfree(ParraySize); ParraySize=NULL;}
                    241:   if (M_beta_0) {myfree(M_beta_0); M_beta_0=NULL;}
                    242:   if (M_beta_1) {myfree(M_beta_1); M_beta_1=NULL;}
                    243:   if (M_jack) {
1.12      takayama  244:     for (i=0; M_jack[i] != NULL; i++) {
                    245:       if (Debug) printf("Free M_jack[%d]\n",i);
                    246:       myfree(M_jack[i]); M_jack[i] = NULL;
                    247:     }
                    248:     myfree(M_jack); M_jack=NULL;
1.3       takayama  249:   }
                    250:   if (M_qk) {myfree(M_qk); M_qk=NULL;}
                    251:   if (P_pki) {myfree(P_pki); P_pki=NULL;}
1.6       takayama  252:   JK_deallocate=0;
1.13      takayama  253:   return(0);
1.3       takayama  254: }
                    255: int jk_initializeWorkArea() {
                    256:   int i,j;
1.6       takayama  257:   JK_deallocate=1;
                    258:   xval(0,0);
                    259:   JK_deallocate=0;
1.3       takayama  260:   Darray=NULL;
                    261:   Parray=NULL;
                    262:   ParraySize=NULL;
                    263:   M_beta_0=NULL;
                    264:   M_beta_1=NULL;
                    265:   M_jack=NULL;
                    266:   M_qk=NULL;
                    267:   for (i=0; i<M_nmx; i++) M_kap[i]=HS_mu[i]=0;
                    268:   for (i=0; i<M_nmx; i++) M_x[i]=0;
                    269:   for (i=0; i<M_nmx; i++) for (j=0; j<M_m_MAX; j++) Xarray[i][j]=0;
1.5       takayama  270:   for (i=0; i<M_nmx; i++) M_beta_kap[i]=0;
1.3       takayama  271:   M_m=M_m_MAX-2;
                    272:   Alpha = 2;
                    273:   HS_n=M_nmx;
                    274:   P_pki=NULL;
                    275:   P_pmn=0;
                    276:   DR_parray=0;
                    277:   M_beta_pt=0;
                    278:   M_df=1;
                    279:   M_2n=0;
                    280:   M_rel_error=0.0;
1.4       takayama  281:   Sample = Sample_default;
1.5       takayama  282:   Xng=0.0;
                    283:   M_n=0;
1.13      takayama  284:   return(0);
1.3       takayama  285: }
1.2       takayama  286:
                    287: static void *mymalloc(int size) {
1.1       takayama  288:   void *p;
                    289:   if (Debug) printf("mymalloc(%d)\n",size);
1.8       takayama  290:   p = (void *)mh_malloc(size);
1.1       takayama  291:   if (p == NULL) {
                    292:     fprintf(stderr,"No more memory.\n");
1.3       takayama  293:     mh_exit(-1);
1.1       takayama  294:   }
                    295:   return(p);
                    296: }
1.10      takayama  297: static int myfree(void *p) {
1.8       takayama  298:   if (Debug) printf("myFree at %p\n",p);
1.13      takayama  299:   return(mh_free(p));
1.7       takayama  300: }
1.13      takayama  301: static int myerror(char *s) { fprintf(stderr,"%s: type in control-C\n",s); getchar(); getchar(); return(0);}
1.1       takayama  302:
1.2       takayama  303: static double jack1(int K) {
1.1       takayama  304:   double F;
                    305:   extern int Alpha;
                    306:   int I,J,L,II,JJ,N;
                    307:   N = 1;
                    308:   if (K == 0) return((double)1);
                    309:   F = xval(1,K);
                    310:   for (J=0; J<K; J++) {
                    311:     II = 1; JJ = J+1;
                    312:     F *= (N-(II-1)+Alpha*(JJ-1));
                    313:   }
                    314:   return(F);
                    315: }
1.2       takayama  316: static double jack1diff(int K) {
1.1       takayama  317:   double F;
                    318:   extern int Alpha;
                    319:   int I,J,S,L,II,JJ,N;
                    320:   N = 1;
                    321:   if (K == 0) return((double)1);
                    322:   F = K*xval(1,K-1);
                    323:   for (J=0; J<K; J++) {
                    324:     II = 1; JJ = J+1;
                    325:     F *= (N-(II-1)+Alpha*(JJ-1));
                    326:   }
                    327:   return(F);
                    328: }
                    329:
1.2       takayama  330: static double xval(int ii,int p) { /* x_i^p */
1.1       takayama  331:   extern double M_x[];
                    332:   double F;
                    333:   int i,j;
1.10      takayama  334:   static int init=0;
1.6       takayama  335:   if (JK_deallocate) { init=0; return(0.0);}
1.1       takayama  336:   if (!init) {
                    337:     for (i=1; i<=M_n; i++) {
                    338:       for (j=0; j<M_m_MAX; j++) {
1.12      takayama  339:         if (j != 0) {
                    340:           Xarray[i-1][j] = M_x[i-1]*Xarray[i-1][j-1];
                    341:         }else{
                    342:           Xarray[i-1][0] = 1;
                    343:         }
1.1       takayama  344:       }
                    345:     }
                    346:     init = 1;
                    347:   }
                    348:   if (ii < 1) myerror("xval, index out of bound.");
                    349:   if (p > M_m_MAX-2) myerror("xval, p is too large.");
                    350:   if (p < 0) {
                    351:     myerror("xval, p is negative.");
                    352:     printf("ii=%d, p=%d\n",ii,p);
1.3       takayama  353:     mh_exit(-1);
1.1       takayama  354:   }
                    355:   return(Xarray[ii-1][p]);
                    356: }
                    357:
1.2       takayama  358: static int mysum(int L[]) {
1.1       takayama  359:   int S,I,N;
                    360:   N=M_n;
                    361:   S=0;
                    362:   for (I=0; I<N; I++) S += L[I];
                    363:   return(S);
                    364: }
                    365:
                    366: /*
1.12      takayama  367:   (3,2,2,0,0) --> 3
1.1       takayama  368: */
1.2       takayama  369: static int plength(int P[]) {
1.1       takayama  370:   int I;
                    371:   for (I=0; I<M_n; I++) {
                    372:     if (P[I] == 0) return(I);
                    373:   }
                    374:   return(M_n);
                    375: }
                    376: /* plength for transpose */
1.2       takayama  377: static int plength_t(int P[]) {
1.1       takayama  378:   int I;
                    379:   for (I=0; I<M_m; I++) {
                    380:     if (P[I] == 0) return(I);
                    381:   }
                    382:   return(M_m);
                    383: }
                    384:
                    385: /*
1.12      takayama  386:     ptrans(P)  returns Pt
1.1       takayama  387: */
1.3       takayama  388: static void ptrans(int P[M_nmx],int Pt[]) { /* Pt[M_m] */
1.1       takayama  389:   extern int M_m;
                    390:   int i,j,len;
1.3       takayama  391:   int p[M_nmx];
1.1       takayama  392:   for (i=0; i<M_n; i++) p[i] = P[i];
                    393:   for (i=0; i<M_m+1; i++) Pt[i] = 0;
                    394:   for (i=0; i<M_m; i++) {
                    395:     len=plength(p); Pt[i] = len;
                    396:     if (len == 0) return;
                    397:     for (j=0; j<len; j++) p[j] -= 1;
                    398:   }
                    399: }
                    400:
1.10      takayama  401: static int test_ptrans() {
1.1       takayama  402:   extern int M_m;
                    403:   int p[M_n0]={5,3,2};
                    404:   int pt[10];
                    405:   int i;
                    406:   M_m = 10;
                    407:   ptrans(p,pt);
                    408:   if (Debug) {for (i=0; i<10; i++) printf("%d,",pt[i]);  printf("\n");}
1.13      takayama  409:   return(0);
1.1       takayama  410: }
                    411:
                    412:
                    413: /*
                    414:   upper hook length
                    415:   h_kappa^*(K)
                    416: */
1.2       takayama  417: static int huk(int K[],int I,int J) {
1.1       takayama  418:   extern int Alpha;
                    419:   int Kp[M_m_MAX];
                    420:   int A,H;
                    421:   A=Alpha;
                    422:   /*printf("h^k(%a,%a,%a,%a)\n",K,I,J,A);*/
                    423:   ptrans(K,Kp);
                    424:   H=Kp[J-1]-I+A*(K[I-1]-J+1);
                    425:   return(H);
                    426: }
                    427:
                    428: /*
                    429:   lower hook length
                    430:   h^kappa_*(K)
                    431: */
1.2       takayama  432: static int hdk(int K[],int I,int J) {
1.1       takayama  433:   extern int Alpha;
                    434:   int Kp[M_m_MAX];
                    435:   int A,H;
                    436:   A = Alpha;
                    437:   /*printf("h_k(%a,%a,%a,%a)\n",K,I,J,A);*/
                    438:   ptrans(K,Kp);
                    439:   H=Kp[J-1]-I+1+A*(K[I-1]-J);
                    440:   return(H);
                    441: }
                    442: /*
                    443:   j_kappa.  cf. Stanley.
                    444: */
1.2       takayama  445: static double jjk(int K[]) {
1.1       takayama  446:   extern int Alpha;
                    447:   int A,L,I,J;
                    448:   double V;
                    449:   A=Alpha;
                    450:   V=1;
                    451:   L=plength(K);
                    452:   for (I=0; I<L; I++) {
                    453:     for (J=0; J<K[I]; J++) {
                    454:       V *= huk(K,I+1,J+1)*hdk(K,I+1,J+1);
                    455:     }
                    456:   }
                    457:   if (Debug) {printp(K); printf("<--K, jjk=%lg\n",V);}
                    458:   return(V);
                    459: }
                    460: /*
                    461:   (a)_kappa^\alpha, Pochhammer symbol
                    462:   Note that  ppoch(a,[n]) = (a)_n, Alpha=2
                    463: */
1.2       takayama  464: static double ppoch(double A,int K[]) {
1.1       takayama  465:   extern int Alpha;
                    466:   double V;
                    467:   int L,I,J,II,JJ;
                    468:   V = 1;
                    469:   L=plength(K);
                    470:   for (I=0; I<L; I++) {
                    471:     for (J=0; J<K[I]; J++) {
                    472:       II = I+1; JJ = J+1;
                    473:       V *= (A-((double)(II-1))/((double)Alpha)+JJ-1);
                    474:     }
                    475:   }
                    476:   return(V);
                    477: }
1.2       takayama  478: static double ppoch2(double A,double B,int K[]) {
1.1       takayama  479:   extern int Alpha;
                    480:   double V;
                    481:   int L,I,J,II,JJ;
                    482:   V = 1;
                    483:   L=plength(K);
                    484:   for (I=0; I<L; I++) {
                    485:     for (J=0; J<K[I]; J++) {
                    486:       II = I+1; JJ = J+1;
                    487:       V *= (A-((double)(II-1))/((double)Alpha)+JJ-1);
                    488:       V /= (B-((double)(II-1))/((double)Alpha)+JJ-1);
                    489:     }
                    490:   }
                    491:   return(V);
                    492: }
1.2       takayama  493: static double mypower(double x,int n) {
1.1       takayama  494:   int i;
                    495:   double v;
                    496:   if (n < 0) return(1/mypower(x,-n));
                    497:   v = 1;
                    498:   for (i=0; i<n; i++) v *= x;
                    499:   return(v);
                    500: }
                    501: /* Q_kappa
1.12      takayama  502:  */
1.2       takayama  503: static double qk(int K[],double A[A_LEN],double B[B_LEN]) {
1.1       takayama  504:   extern int Alpha;
                    505:   int P,Q,I;
                    506:   double V;
                    507:   P = A_LEN;
                    508:   Q = B_LEN;
                    509:   V = mypower((double) Alpha,mysum(K))/jjk(K);
1.2       takayama  510:   /* to reduce numerical errors, temporary. */
1.1       takayama  511:   if (P == Q) {
                    512:     for (I=0; I<P; I++) V = V*ppoch2(A[I],B[I],K);
                    513:   }
                    514:   return(V);
                    515:
                    516:   for (I=0; I<P; I++) V = V*ppoch(A[I],K);
                    517:   for (I=0; I<Q; I++) V = V/ppoch(B[I],K);
                    518:   return(V);
                    519: }
                    520:
                    521: /*
1.12      takayama  522:   B^nu_{kappa,mu}(i,j)
                    523:   bb(N,K,M,I,J)
1.1       takayama  524: */
1.2       takayama  525: static int bb(int N[],int K[],int M[],int I,int J) {
1.1       takayama  526:   int Kp[M_m_MAX]; int Mp[M_m_MAX];
                    527:   ptrans(K,Kp);
                    528:   ptrans(M,Mp);
                    529:
                    530:   /*
1.12      takayama  531:     printp(K); printf("K<--, "); printp2(Kp); printf("<--Kp\n");
                    532:     printp(M); printf("M<--, "); printp2(Mp); printf("<--Mp\n");
1.1       takayama  533:   */
                    534:
                    535:   if ((plength_t(Kp) < J) || (plength_t(Mp) < J)) return(hdk(N,I,J));
                    536:   if (Kp[J-1] == Mp[J-1]) return(huk(N,I,J));
                    537:   else return(hdk(N,I,J));
                    538: }
                    539: /*
                    540:   beta_{kappa,mu}
                    541:   beta(K,M)
                    542: */
1.2       takayama  543: static double beta(int K[],int M[]) {
1.1       takayama  544:   double V;
                    545:   int L,I,J,II,JJ;
                    546:   V = 1;
                    547:
                    548:   L=plength(K);
                    549:   for (I=0; I<L; I++) {
                    550:     for (J=0; J<K[I]; J++) {
                    551:       II = I+1; JJ = J+1;
                    552:       V *= (double)bb(K,K,M,II,JJ);
                    553:       /* printf("[%d,%d,%lf]\n",I,J,V); */
                    554:     }
                    555:   }
                    556:
                    557:   L=plength(M);
                    558:   for (I=0; I<L; I++) {
                    559:     for (J=0; J<M[I]; J++) {
                    560:       II = I+1; JJ = J+1;
                    561:       V /= (double)bb(M,K,M,II,JJ);
                    562:       /* printf("[%d,%d,%lf]\n",I,J,V);*/
                    563:     }
                    564:   }
                    565:
                    566:   return(V);
                    567: }
1.10      takayama  568: static int printp(int kappa[]) {
1.1       takayama  569:   int i;
                    570:   printf("(");
                    571:   for (i=0; i<M_n; i++) {
                    572:     if (i <M_n-1) printf("%d,",kappa[i]);
                    573:     else printf("%d)",kappa[i]);
                    574:   }
1.13      takayama  575:   return(0);
1.1       takayama  576: }
1.10      takayama  577: static int printp2(int kappa[]) {
1.1       takayama  578:   int i,ell;
                    579:   printf("(");
                    580:   ell = plength_t(kappa);
                    581:   for (i=0; i<ell+1; i++) {
                    582:     if (i <ell+1-1) printf("%d,",kappa[i]);
                    583:     else printf("%d)",kappa[i]);
                    584:   }
1.13      takayama  585:   return(0);
1.1       takayama  586: }
                    587:
1.10      takayama  588: static int test_beta() {
1.1       takayama  589:   int kappa[M_n0]={2,1,0};
                    590:   int mu1[M_n0]={1,0,0};
                    591:   int mu2[M_n0]={1,1,0};
                    592:   int mu3[M_n0]={2,0,0};
                    593:   printp(kappa); printf(","); printp(mu3); printf(": beta = %lf\n",beta(kappa,mu3));
                    594:   printp(kappa); printf(","); printp(mu1); printf(": beta = %lf\n",beta(kappa,mu1));
                    595:   printp(kappa); printf(","); printp(mu2); printf(": beta = %lf\n",beta(kappa,mu2));
                    596: }
                    597:
                    598: /* main() { test_beta(); } */
                    599:
                    600:
                    601: /*
1.12      takayama  602:   cf. w1m.rr
1.1       takayama  603:   matrix hypergeometric by jack
                    604:   N variables, up to degree M.
                    605: */
                    606: /* todo
1.12      takayama  607:    def mhgj(A,B,N,M) {
                    608:    F = 0;
                    609:    P = partition_a(N,M);
                    610:    for (I=0; I<length(P); I++) {
                    611:    K = P[I];
                    612:    F += qk(K,A,B)*jack(K,N);
                    613:    }
                    614:    return(F);
                    615:    }
1.1       takayama  616: */
                    617:
                    618:
                    619: /* The quotient of (3.10) of Koev-Edelman K=kappa, M=mu, SK=k */
1.2       takayama  620: static double q3_10(int K[],int M[],int SK) {
1.1       takayama  621:   extern int Alpha;
                    622:   int Mp[M_m_MAX];
1.3       takayama  623:   int ML[M_nmx];
                    624:   int N[M_nmx];
1.1       takayama  625:   int i,R;
                    626:   double T,Q,V,Ur,Vr,Wr;
                    627:   ptrans(M,Mp);
                    628:   for (i=0; i<M_n; i++) {ML[i] = M[i]; N[i] = M[i];}
                    629:   N[SK-1] = N[SK-1]-1;
                    630:
                    631:   T = SK-Alpha*M[SK-1];
                    632:   Q = T+1;
                    633:   V = Alpha;
                    634:   for (R=1; R<=SK; R++) {
                    635:     Ur = Q-R+Alpha*K[R-1];
                    636:     V *= Ur/(Ur+Alpha-1);
                    637:   }
                    638:   for (R=1; R<=SK-1; R++) {
                    639:     Vr = T-R+Alpha*M[R-1];
                    640:     V *= (Vr+Alpha)/Vr;
                    641:   }
                    642:   for (R=1; R<=M[SK-1]-1; R++) {
                    643:     Wr = Mp[R-1]-T-Alpha*R;
                    644:     V *= (Wr+Alpha)/Wr;
                    645:   }
                    646:   return(V);
                    647: }
                    648:
1.2       takayama  649: static double q3_5(double A[],double B[],int K[],int I) {
1.1       takayama  650:   extern int Alpha;
                    651:   int Kp[M_m_MAX];
                    652:   double C,D,V,Ej,Fj,Gj,Hj,Lj;
                    653:   int J,P,Q;
                    654:   ptrans(K,Kp);
                    655:   P=A_LEN;; Q = B_LEN;
                    656:   C = -((double)(I-1))/Alpha+K[I-1]-1;
                    657:   D = K[I-1]*Alpha-I;
                    658:
                    659:   V=1;
                    660:
                    661:   for (J=1; J<=P; J++)  {
1.12      takayama  662:     V *= (A[J-1]+C);
1.1       takayama  663:   }
                    664:   for (J=1; J<=Q; J++) {
1.12      takayama  665:     V /= (B[J-1]+C);
1.1       takayama  666:   }
                    667:
                    668:   for (J=1; J<=K[I-1]-1; J++) {
1.12      takayama  669:     Ej = D-J*Alpha+Kp[J-1];
                    670:     Gj = Ej+1;
                    671:     V *= (Gj-Alpha)*Ej/(Gj*(Ej+Alpha));
1.1       takayama  672:   }
                    673:   for (J=1; J<=I-1; J++) {
1.12      takayama  674:     Fj=K[J-1]*Alpha-J-D;
                    675:     Hj=Fj+Alpha;
                    676:     Lj=Hj*Fj;
                    677:     V *= (Lj-Fj)/(Lj+Hj);
1.1       takayama  678:   }
                    679:   return(V);
                    680: }
                    681:
1.2       takayama  682: static void mtest4() {
1.1       takayama  683:   double A[A_LEN] = {1.5};
                    684:   double B[B_LEN]={6.5};
                    685:   int K[M_n0] = {3,2,0};
                    686:   int I=2;
                    687:   int Ki[M_n0]={3,1,0};
                    688:   double V1,V2;
                    689:   V1=q3_5(A,B,K,I);
                    690:   V2=qk(K,A,B)/qk(Ki,A,B);
                    691:   printf("%lf== %lf?\n",V1,V2);
                    692: }
1.2       takayama  693: static void mtest4b() {
1.1       takayama  694:   int K[M_n0]={3,2,0};
                    695:   int M[M_n0]={2,1,0};
                    696:   int N[M_n0]={2,0};
                    697:   int SK=2;
                    698:   double V1,V2;
                    699:   V1=q3_10(K,M,SK);
                    700:   V2=beta(K,N)/beta(K,M);
                    701:   printf("%lf== %lf?\n",V1,V2);
                    702: }
                    703:
                    704: /* main() { mtest4(); mtest4b(); } */
                    705:
                    706: /* nk in (4.1),
1.12      takayama  707:  */
1.2       takayama  708: static int nk(int KK[]) {
1.1       takayama  709:   extern int *Darray;
                    710:   int N,I,Ki;
1.3       takayama  711:   int Kpp[M_nmx];
1.1       takayama  712:   int i;
                    713:   N = plength(KK);
                    714:   if (N == 0) return(0);
                    715:   if (N == 1) return(KK[0]);
                    716:   for (i=0; i<M_n; i++) Kpp[i] = 0;
                    717:   for (I=0; I<N-1; I++) Kpp[I] = KK[I];
                    718:   Ki = KK[N-1];
                    719:   /* K = (Kpp,Ki) */
                    720:   return(Darray[nk(Kpp)]+Ki-1);
                    721: }
1.2       takayama  722: static int plength2(int P1[],int P2[]) {
1.1       takayama  723:   int S1,S2;
                    724:   S1 = plength(P1); S2 = plength(P2);
                    725:   if (S1 > S2) return(1);
                    726:   else if (S1 == S2) {
                    727:     S1=mysum(P1); S2=mysum(P2);
                    728:     if(S1 > S2) return(1);
                    729:     else if (S1 == S2) return(0);
                    730:     else return(-1);
                    731:   }
                    732:   else return(-1);
                    733: }
1.2       takayama  734: static int myeq(int P1[],int P2[]) {
1.1       takayama  735:   int I,L1;
                    736:   if ((L1=plength(P1)) != plength(P2)) return(0);
                    737:   for (I=0; I<L1; I++) {
                    738:     if (P1[I] != P2[I]) return(0);
                    739:   }
                    740:   return(1);
                    741: }
                    742: /*
                    743:   M is a degree, N is a number of variables
                    744:   genDarray(3,3);
                    745:   N(0)=0;
                    746:   N(1)=1;
                    747:   N(2)=2;
                    748:   N(3)=3;
                    749:   N(1,1)=4;  D[1] = 4
                    750:   N(2,1)=5;  D[2] = 5;
                    751:   N(1,1,1)=6; D[4] = 6;
                    752:   still buggy.
                    753: */
                    754:
1.2       takayama  755: static int pListPartition(int M,int N) {
1.1       takayama  756:   extern int M_m;
                    757:   extern int M_kap[];
                    758:   int I;
                    759:   /* initialize */
                    760:   if (M_n != N) {
1.3       takayama  761:     fprintf(stderr,"M_n != N\n"); mh_exit(-1);
1.1       takayama  762:   }
                    763:   M_m = M;
                    764:   /* M_plist = []; */
                    765:   /* end of initialize */
                    766:   (*M_pExec)();  /* exec for 0 */
                    767:   for (I=1; I<=M_n; I++) {
                    768:     pListPartition2(M_m,1,I,M_m);
                    769:   }
                    770:   /* M_plist = reverse(M_plist); */
                    771:   return(1);
                    772: }
                    773:
                    774: /*
                    775:   Enumerate all such that
                    776:   Less >= M_kap[From], ..., M_kap[To],  |(M_kap[From],...,M_kap[To])|<=M,
                    777: */
1.2       takayama  778: static int pListPartition2(int Less,int From,int To, int M) {
1.1       takayama  779:   int I,R;
1.11      takayama  780:   mh_check_intr(100);
1.1       takayama  781:   if (To < From) {
1.12      takayama  782:     (*M_pExec)(); return(0);
1.1       takayama  783:   }
                    784:   for (I=1; (I<=Less) && (I<=M) ; I++) {
                    785:     M_kap[From-1] = I;
                    786:     R = pListPartition2(I,From+1,To,M-I);
                    787:   }
                    788:   return(1);
                    789: }
                    790:
                    791: /*
                    792:   partition に対してやる仕事をこちらへ書く.
                    793: */
1.2       takayama  794: static void pExec_0() {
1.1       takayama  795:   if (Debug) {
1.12      takayama  796:     printf("M_kap=");
                    797:     printp(M_kap);
                    798:     printf("\n");
1.1       takayama  799:   }
                    800: }
                    801:
                    802: /* Test.
1.12      takayama  803:    Compare pListPartition(4,3);  genDarray(4,3);
                    804:    Compare pListPartition(5,3);  genDarray(5,3);
1.1       takayama  805:
                    806: */
                    807:
                    808: /*
1.12      takayama  809:   main() {
1.1       takayama  810:   M_pExec = pExec_0;
                    811:   pListPartition(5,3);
1.12      takayama  812:   }
1.1       takayama  813: */
                    814:
                    815:
                    816: /*
                    817:   List all horizontal strips.
                    818:   Kap[0] is not a dummy in C code. !(Start from Kap[1].)
                    819: */
1.2       takayama  820: static int pListHS(int Kap[],int N) {
1.1       takayama  821:   extern int HS_n;
                    822:   extern int HS_mu[];
                    823:   int i;
                    824:   HS_n = N;
                    825:   /* Clear HS_mu. Do not forget when N < M_n  */
                    826:   for (i=0; i<M_n; i++) HS_mu[i] = 0;
1.13      takayama  827:   return(pListHS2(1,N,Kap));
1.1       takayama  828: }
                    829:
1.2       takayama  830: static int pListHS2(int From,int To,int Kap[]) {
1.1       takayama  831:   int More,I;
                    832:   if (To <From) {(*HS_hsExec)(); return(0);}
                    833:   if (From == HS_n) More=0; else More=Kap[From];
                    834:   for (I=Kap[From-1]; I>= More; I--) {
                    835:     HS_mu[From-1] = I;
                    836:     pListHS2(From+1,To,Kap);
                    837:   }
                    838:   return(1);
                    839: }
                    840:
1.2       takayama  841: static void hsExec_0() {
1.1       takayama  842:   int i;
                    843:   if(Debug) {printf("hsExec: "); printp(HS_mu); printf("\n");}
                    844: }
                    845:
                    846: /*
                    847:   pListHS([0,4,2,1],3);
                    848: */
                    849: /*
1.12      takayama  850:   main() {
1.1       takayama  851:   int Kap[3]={4,2,1};
                    852:   HS_hsExec = hsExec_0;
                    853:   pListHS(Kap,3);
1.12      takayama  854:   }
1.1       takayama  855: */
                    856:
                    857: /* The number of partitions <= M, with N parts.
1.12      takayama  858:    (0,0,...,0) is excluded.
1.1       takayama  859: */
                    860: #define aP_pki(i,j) P_pki[(i)*(M+1)+(j)]
1.2       takayama  861: static int pmn(int M,int N) {
1.1       takayama  862:   int Min_m_n,I,K,S,T,i,j;
                    863:   extern int P_pmn;
                    864:   extern int *P_pki;
                    865:   Min_m_n = (M>N?N:M);
                    866:   /* P_pki=newmat(Min_m_n+1,M+1); */
                    867:   P_pki = (int *) mymalloc(sizeof(int)*(Min_m_n+1)*(M+1));
                    868:   for (i=0; i<Min_m_n+1; i++) for (j=0; j<M+1; j++) aP_pki(i,j) = 0;
                    869:   for (I=1; I<=M; I++) aP_pki(1,I) = 1;
                    870:   for (K=1; K<=Min_m_n; K++) aP_pki(K,0) = 0;
                    871:   S = M;
                    872:   for (K=2; K<=Min_m_n; K++) {
                    873:     for (I=1; I<=M; I++) {
                    874:       if (I-K < 0) T=0; else T=aP_pki(K,I-K);
                    875:       aP_pki(K,I) = aP_pki(K-1,I-1)+T;
                    876:       S += aP_pki(K,I);
                    877:     }
                    878:   }
                    879:   P_pmn=S;
                    880:   if (Debug) {
                    881:     printf("P_pmn=%d\n",P_pmn);
                    882:     for (i=0; i<=Min_m_n; i++) {
                    883:       for (j=0; j<=M; j++) printf("%d,",aP_pki(i,j));
                    884:       printf("\n");
                    885:     }
                    886:   }
                    887:   myfree(P_pki); P_pki=NULL;
                    888:   return(S);
                    889: }
                    890:
                    891: /*
1.12      takayama  892:   main() {pmn(4,3); printf("P_pmn=%d\n",P_pmn);}
1.1       takayama  893: */
                    894:
1.2       takayama  895: static int *cloneP(int a[]) {
1.1       takayama  896:   int *p;
                    897:   int i;
                    898:   p = (int *) mymalloc(sizeof(int)*M_n);
                    899:   for (i=0; i<M_n; i++) p[i] = a[i];
                    900:   return(p);
                    901: }
1.10      takayama  902: static int copyP(int p[],int a[]) {
1.1       takayama  903:   int i;
                    904:   for (i=0; i<M_n; i++) p[i] = a[i];
1.13      takayama  905:   return(0);
1.1       takayama  906: }
                    907:
1.2       takayama  908: static void pExec_darray(void) {
1.1       takayama  909:   extern int DR_parray;
                    910:   extern int M_kap[];
                    911:   extern int **Parray;
                    912:   extern int *ParraySize;
                    913:   int *K;
                    914:   pExec_0();
                    915:   K = cloneP(M_kap);
                    916:   Parray[DR_parray] = K;
                    917:   ParraySize[DR_parray] = mysum(K);
                    918:   DR_parray++;
                    919: }
1.10      takayama  920: static int genDarray2(int M,int N) {
1.1       takayama  921:   extern int *Darray;
                    922:   extern int **Parray;
                    923:   extern int DR_parray;
                    924:   extern int M_m;
                    925:   int Pmn,I,J,Ksize,i;
                    926:   int **L;
                    927:   int *Nk;
                    928:   int *K;
1.3       takayama  929:   int Kone[M_nmx];
1.1       takayama  930:
                    931:   M_m = M;
                    932:   Pmn = pmn(M,N)+1;
                    933:   if (Debug) printf("Degree M = %d, N of vars N = %d, Pmn+1=%d\n",M,N,Pmn);
                    934:   Darray=(int *) mymalloc(sizeof(int)*Pmn);
                    935:   for (i=0; i<Pmn; i++) Darray[i] = 0;
                    936:   Parray=(int **) mymalloc(sizeof(int *)*Pmn);
                    937:   for (i=0; i<Pmn; i++) Parray[i] = NULL;
                    938:   ParraySize=(int *) mymalloc(sizeof(int *)*Pmn);
                    939:   for (i=0; i<Pmn; i++) ParraySize[i] = 0;
                    940:   DR_parray=0;
                    941:   M_pExec = pExec_darray;
                    942:   pListPartition(M,N);  /* pExec_darray() is executed for all partitions */
                    943:   L = Parray;
                    944:
                    945:   Nk = (int *) mymalloc(sizeof(int)*(Pmn+1));
                    946:   for (I=0; I<Pmn; I++) Nk[I] = I;
                    947:   for (I=0; I<Pmn; I++) {
1.11      takayama  948:     mh_check_intr(100);
1.12      takayama  949:     K = L[I]; /* N_K = I; D[N_K] = N_(K,1) */
                    950:     Ksize = plength(K);
                    951:     if (Ksize >= M_n) {
                    952:       if (Debug) {fprintf(stderr,"Ksize >= M_n\n");}
                    953:       continue;
                    954:     }
                    955:     for (i=0; i<M_n; i++) Kone[i] = 0;
                    956:     for(J=0; J<Ksize; J++) Kone[J]=K[J]; Kone[Ksize] = 1;
                    957:     for (J=0; J<Pmn; J++) {
                    958:       if (myeq(L[J],Kone)) Darray[I] = J; /* J is the next of I */
                    959:     }
1.1       takayama  960:   }
                    961:   if (Debug) {
1.12      takayama  962:     printf("Darray=\n");
                    963:     for (i=0; i<Pmn; i++) printf("%d\n",Darray[i]);
                    964:     printf("-----------\n");
1.1       takayama  965:   }
1.13      takayama  966:   return(0);
1.1       takayama  967: }
                    968:
                    969:
                    970: /* main() {  genDarray2(4,3);}  */
                    971:
                    972: /* M_beta_0[*] value of beta_{kappa,mu}, M_beta_1[*] N_mu */
1.10      takayama  973: static int isHStrip(int Kap[],int Nu[]) {
1.1       takayama  974:   int N1,N2,I,P;
                    975:   N1 = plength(Kap); N2 = plength(Nu);
                    976:   if (N2 > N1) return(0);
                    977:   for (I=0; I<N2; I++) {
                    978:     if (I >= N1-1) P = 0; else P=Kap[I+1];
                    979:     if (Kap[I] < Nu[I]) return(0);
                    980:     if (Nu[I]  < P) return(0);
                    981:   }
                    982:   return(1);
                    983: }
                    984:
1.2       takayama  985: static void hsExec_beta(void) {
1.1       takayama  986:   int *Mu;
                    987:   int N,Nmu,Nnu,Done,J,K,OK,I,RR;
                    988:   int Kapt[M_m_MAX];
                    989:   int Nut[M_m_MAX];
1.3       takayama  990:   int Nu[M_nmx];
1.1       takayama  991:   int rrMax;
                    992:   hsExec_0();
                    993:   /* printf("M_beta_pt=%a\n",M_beta_pt); */
                    994:   /* Mu = cdr(vtol(HS_mu)); */
                    995:   Mu = HS_mu; /* buggy? need cloneP */
                    996:   if (M_beta_pt == 0) {
                    997:     M_beta_0[0] = 1; M_beta_1[0] = nk(Mu);
                    998:     M_beta_pt++; return;
                    999:   }
                   1000:
                   1001:   N = HS_n;
                   1002:   Nmu = nk(Mu);
                   1003:   M_beta_1[M_beta_pt] = Nmu;
                   1004:   ptrans(M_beta_kap,Kapt);
                   1005:   /* Mu, Nu is exchanged in this code. cf. the K-E paper  */
                   1006:   copyP(Nu,Mu); /* buggy need clone? */
                   1007:   for (I=0; I<N; I++) {
                   1008:     Nu[I]++;
                   1009:     if (!isHStrip(M_beta_kap,Nu)) {Nu[I]--; continue;}
                   1010:     Nnu = nk(Nu);
                   1011:     ptrans(Nu,Nut);
                   1012:     Done=0;
                   1013:     for (J=M_beta_pt-1; J>=0; J--) {
                   1014:       if (M_beta_1[J] == Nnu) {
1.12      takayama 1015:         K=I+1;
                   1016:         if (Debug) {
                   1017:           printf("Found at J=%d, K=%d, q3_10(Kap,Nu,K)=%lf,Nu,Mu= \n",
                   1018:                  J,K,q3_10(M_beta_kap,Nu,K));
                   1019:           printp(Nu); printf("\n");
                   1020:           printp(Mu); printf("\n");
                   1021:         }
                   1022:         /* Check other conditions. See Numata's mail on Dec 24, 2011. */
                   1023:         rrMax = Nu[I]-1;
                   1024:         if ((plength_t(Kapt) < rrMax) || (plength_t(Nut) < rrMax)) {
                   1025:           if (Debug) printf(" is not taken (length). \n");
                   1026:           break;
                   1027:         }
                   1028:         OK=1;
                   1029:         for (RR=0; RR<rrMax; RR++) {
                   1030:           if (Kapt[RR] != Nut[RR]) { OK=0; break;}
                   1031:         }
                   1032:         if (!OK) { if (Debug) printf(" is not taken.\n"); break; }
                   1033:         /* check done. */
                   1034:         M_beta_0[M_beta_pt]=M_beta_0[J]*q3_10(M_beta_kap,Nu,K);
                   1035:         Done = 1; break;
1.1       takayama 1036:       }
                   1037:     }
                   1038:     if (Done) break; else Nu[I]--;
                   1039:   }
                   1040:   if (!Done) {
                   1041:     if (Debug) printf("BUG: not found M_beta_pt=%d.\n",M_beta_pt);
1.13      takayama 1042:     /* M_beta_0[M_beta_pt] = NAN;  error("Not found."); */
1.1       takayama 1043:     M_beta_0[M_beta_pt] = beta(M_beta_kap,Mu);
                   1044:   }
                   1045:   /* Fix the bug of mh.rr */
                   1046:   M_beta_pt++;
                   1047: }
1.10      takayama 1048: static int genBeta(int Kap[]) {
1.1       takayama 1049:   extern double *M_beta_0;
                   1050:   extern int *M_beta_1;
                   1051:   extern int M_beta_pt;
                   1052:   extern int M_beta_kap[];
                   1053:   extern int P_pmn;
                   1054:   int I,J,N;
                   1055:   if (Debug) {printp(Kap); printf("<-Kappa, P_pmn=%d\n",P_pmn);}
                   1056:   /* M_beta = newmat(2,P_pmn+1); */
                   1057:   M_beta_0 = (double *)mymalloc(sizeof(double)*(P_pmn+1));
1.8       takayama 1058:   M_beta_1 = (int *)mymalloc(sizeof(int)*(P_pmn+1));
1.1       takayama 1059:   M_beta_pt = 0;
                   1060:   for (I=0; I<=P_pmn; I++) {M_beta_0[I] = NAN; M_beta_1[I] = -1;}
                   1061:   N = plength(Kap);
                   1062:   HS_hsExec = hsExec_beta;
                   1063:   copyP(M_beta_kap,Kap);
                   1064:   pListHS(Kap,N);
                   1065: }
                   1066: /*
                   1067:   genDarray2(4,3);
                   1068:   genBeta([2,2,0]);
                   1069:   genBeta([2,1,1]);
                   1070: */
                   1071:
1.10      takayama 1072: static int checkBeta1() {
1.1       takayama 1073:   int Kap[3] = {2,2,0};
                   1074:   int Kap2[3] = {2,1,0};
                   1075:   int I;
                   1076:   int *Mu;
                   1077:   double Beta_km;
                   1078:   genDarray2(4,3);
                   1079:   genBeta(Kap);
                   1080:   for (I=0; I<M_beta_pt; I++) {
                   1081:     Mu = Parray[M_beta_1[I]];
                   1082:     Beta_km = M_beta_0[I];
1.12      takayama 1083:     if (Debug) {
                   1084:       printp(Kap); printf("<--Kap, ");
                   1085:       printp(Mu); printf("<--Mu,");
                   1086:       printf("Beta_km(by table)=%lf, beta(Kap,Mu)=%lf\n",Beta_km,beta(Kap,Mu));
                   1087:     }
1.1       takayama 1088:   }
                   1089:   if (Debug) printf("-------------------------------------\n");
                   1090:   genBeta(Kap2);
                   1091:   for (I=0; I<M_beta_pt; I++) {
                   1092:     Mu = Parray[M_beta_1[I]];
                   1093:     Beta_km = M_beta_0[I];
1.12      takayama 1094:     if (Debug) {
                   1095:       printp(Kap2); printf("<--Kap, ");
                   1096:       printp(Mu); printf("<--Mu,");
                   1097:       printf("Beta_km(by table)=%lf, beta(Kap,Mu)=%lf\n",Beta_km,beta(Kap2,Mu));
                   1098:     }
1.1       takayama 1099:   }
1.13      takayama 1100:   return(0);
1.1       takayama 1101: }
                   1102:
                   1103: /*
1.12      takayama 1104:   def checkBeta2() {
1.1       takayama 1105:   genDarray2(3,3);
                   1106:   Kap = [2,1,0];
                   1107:   printf("Kap=%a\n",Kap);
                   1108:   genBeta(Kap);
                   1109:   for (I=0; I<M_beta_pt; I++) {
1.12      takayama 1110:   Mu = Parray[M_beta[1][I]];
                   1111:   Beta_km = M_beta[0][I];
                   1112:   printf("Mu=%a,",Mu);
                   1113:   printf("Beta_km(by table)=%a, beta(Kap,Mu)=%a\n",Beta_km,beta(Kap,Mu));
                   1114:   }
1.1       takayama 1115:   }
                   1116: */
                   1117:
                   1118: /* main() { checkBeta1(); } */
                   1119:
1.2       takayama 1120: static int psublen(int Kap[],int Mu[]) {
1.1       takayama 1121:   int L1,L2,A,I;
                   1122:   L1 = plength(Kap);
                   1123:   L2 = plength(Mu);
                   1124:   if (L2 > L1) myerror("psub, length mismatches.");
                   1125:   A = 0;
                   1126:   for (I=0; I<L2; I++) {
                   1127:     if (Kap[I] < Mu[I]) myerror("psub, not Kap >= Mu");
                   1128:     A += Kap[I]-Mu[I];
                   1129:   }
                   1130:   for (I=L2; I<L1; I++) A += Kap[I];
                   1131:   return(A);
                   1132: }
                   1133:
                   1134:
                   1135: /* Table of Jack polynomials
1.12      takayama 1136:    Jack[1]* one variable.
                   1137:    Jack[2]* two variables.
1.1       takayama 1138:    ...
1.12      takayama 1139:    Jack[M_n]* n variables.
                   1140:    Jack[P][J]*
                   1141:    D^J(P variables jack of p variables). Example. J=001 d_1, 010 d_2, 100 d_3
                   1142:    0<=J<=2^{M_n}-1
                   1143:    Jack[P][J][nk(Kappa)]  Jack_Kappa, Kappa is a partition.
                   1144:    0<=nk(Kappa)<=pmn(M_m,M_n)
1.1       takayama 1145: */
                   1146:
                   1147: #define aM_jack(i,j,k) ((M_jack[i])[(j)*(Pmn+1)+(k)])
1.10      takayama 1148: static int genJack(int M,int N) {
1.1       takayama 1149:   extern double **M_jack;
                   1150:   extern int M_2n;
                   1151:   extern int P_pmn;
                   1152:   extern int *M_beta_1;
                   1153:   int Pmn,I,J,K,L,Nv,H,P;
                   1154:   int *Kap,*Mu;
                   1155:   double Jack,Beta_km;
                   1156:   int Nk,JJ;
1.5       takayama 1157:   if (Debug) printf("genJack(%d,%d)\n",M,N);
1.3       takayama 1158:   M_jack = (double **) mymalloc(sizeof(double *)*(N+2));
1.1       takayama 1159:   M_2n = imypower(2,N);
                   1160:   Pmn = pmn(M,N);  /*P_pmn is initializeded.
                   1161:                      Warning. It is reset when pmn is called.*/
                   1162:   for (I=0; I<=N; I++) M_jack[I] = (double *)mymalloc(sizeof(double)*(M_2n*(Pmn+1))); /* newmat(M_2n,Pmn+1); */
1.3       takayama 1163:   M_jack[N+1] = NULL;
1.1       takayama 1164:   genDarray2(M,N); /* Darray, Parray is initialized */
                   1165:   for (I=1; I<=N; I++) aM_jack(I,0,0) = 1;
                   1166:   if (M_df) {
                   1167:     for (I=1; I<=N; I++) {
                   1168:       for (J=1; J<M_2n; J++) aM_jack(I,J,0) = 0;
                   1169:     }
                   1170:   }
                   1171:
1.3       takayama 1172:   /* N must satisfies N > 0 */
1.1       takayama 1173:   for (K=1; K<=M; K++) {
                   1174:     aM_jack(1,0,K) = jack1(K);
                   1175:     if (M_df) {
                   1176:       aM_jack(1,1,K) = jack1diff(K); /* diff(jack([K],1),x_1); */
                   1177:       for (J=2; J<M_2n; J++) aM_jack(1,J,K) = 0;
                   1178:     }
                   1179:   }
                   1180:   for (I=1; I<=N; I++) {
                   1181:     for (K=M+1; K<Pmn+1; K++) {
                   1182:       aM_jack(I,0,K) = NAN;
                   1183:       if (M_df) {
                   1184:         for (J=1; J<M_2n; J++) {
                   1185:           if (J >= 2^I) aM_jack(I,J,K) = 0;
1.12      takayama 1186:           else aM_jack(I,J,K) = NAN;
1.1       takayama 1187:         }
                   1188:       }
                   1189:     }
                   1190:   }
                   1191:
                   1192:   /* Start to evaluate the entries of the table */
                   1193:   for (K=1; K<=Pmn; K++) {
                   1194:     Kap = Parray[K]; /* bug. need copy? */
                   1195:     L = plength(Kap);
                   1196:     for (I=1; I<=L-1; I++) {
                   1197:       aM_jack(I,0,K) = 0;
                   1198:       if (M_df) {
                   1199:         for (J=1; J<M_2n; J++) aM_jack(I,J,K) = 0;
                   1200:       }
                   1201:     }
                   1202:     if (Debug) {printf("Kappa="); printp(Kap);}
                   1203:     /* Enumerate horizontal strip of Kappa */
                   1204:     genBeta(Kap);  /* M_beta_pt stores the number of hs */
                   1205:     /* Nv is the number of variables */
                   1206:     for (Nv = (L==1?2:L); Nv <= N; Nv++) {
                   1207:       Jack = 0;
                   1208:       for (H=0; H<M_beta_pt; H++) {
                   1209:         Nk = M_beta_1[H];
                   1210:         Mu = Parray[Nk];
1.12      takayama 1211:         if (UseTable) {
                   1212:           Beta_km = M_beta_0[H];
                   1213:         }else{
                   1214:           Beta_km = beta(Kap,Mu);
                   1215:           /* do not use the M_beta table. It's buggy. UseTable is experimental.*/
                   1216:         }
1.1       takayama 1217:         if (Debug) {printf("Nv(number of variables)=%d, Beta_km=%lf, Mu=",Nv,Beta_km);
1.12      takayama 1218:           printp(Mu); printf("\n");}
1.1       takayama 1219:         P = psublen(Kap,Mu);
                   1220:         Jack += aM_jack(Nv-1,0,Nk)*Beta_km*xval(Nv,P); /* util_v(x,[Nv])^P;*/
1.12      takayama 1221:         if (Debug) printf("xval(%d,%d)=%lf\n",Nv,P,xval(Nv,P));
1.1       takayama 1222:       }
                   1223:       aM_jack(Nv,0,K) = Jack;
                   1224:       if (M_df) {
                   1225:         /* The case of M_df > 0. */
                   1226:         for (J=1; J<M_2n; J++) {
1.12      takayama 1227:           mh_check_intr(100);
                   1228:           Jack = 0;
                   1229:           for (H=0; H<M_beta_pt; H++) {
                   1230:             Nk = M_beta_1[H];
                   1231:             Mu = Parray[Nk];
                   1232:             if (UseTable) {
                   1233:               Beta_km = M_beta_0[H];
                   1234:             }else{
                   1235:               Beta_km = beta(Kap,Mu); /* do not use the M_beta table. It's buggy. */
                   1236:             }
                   1237:             if (Debug) {printf("M_df: Nv(number of variables)=%d, Beta_km=%lf, Mu= ",Nv,Beta_km);
                   1238:               printp(Mu); printf("\n"); }
                   1239:             P = psublen(Kap,Mu);
                   1240:             if (J & (1 << (Nv-1))) {
                   1241:               JJ = J & ((1 << (Nv-1)) ^ 0xffff);  /* NOTE!! Up to 16 bits. mh-15 */
                   1242:               if (P != 0) {
                   1243:                 Jack += aM_jack(Nv-1,JJ,Nk)*Beta_km*P*xval(Nv,P-1);
                   1244:               }
                   1245:             }else{
                   1246:               Jack += aM_jack(Nv-1,J,Nk)*Beta_km*xval(Nv,P);
                   1247:             }
                   1248:           }
                   1249:           aM_jack(Nv,J,K) = Jack;
                   1250:           if (Debug) printf("aM_jack(%d,%d,%d) = %lf\n",Nv,J,K,Jack);
1.1       takayama 1251:         } /* end of J loop */
                   1252:       }
                   1253:     }
                   1254:   }
                   1255: }
                   1256:
                   1257:
                   1258: /* checkJack1(3,3)
1.12      takayama 1259:  */
1.10      takayama 1260: static int checkJack1(int M,int N) {
1.1       takayama 1261:   int I,K;
                   1262:   extern int P_pmn;
                   1263:   extern double M_x[];
                   1264:   int Pmn; /* used in aM_jack */
                   1265:   /* initialize x vars. */
                   1266:   for (I=1; I<=N; I++) {
                   1267:     M_x[I-1] = ((double)I)/10.0;
                   1268:   }
                   1269:   genJack(M,N);
                   1270:   Pmn = P_pmn;
                   1271:   for (I=1; I<=N; I++) {
                   1272:     for (K=0; K<=P_pmn; K++) {
                   1273:       printp(Parray[K]);
                   1274:       printf("<--Kap, Nv=%d, TableJack=%lf\n",I,aM_jack(I,0,K));
                   1275:     }
                   1276:   }
                   1277:   for (I=1; I<=N; I++) printf("%lf, ",M_x[I-1]);
                   1278:   printf("<--x\n");
1.13      takayama 1279:   return(0);
1.1       takayama 1280: }
                   1281: /*main() {  checkJack1(3,3);  }*/
                   1282:
                   1283:
1.10      takayama 1284: static int checkJack2(int M,int N) {
1.1       takayama 1285:   int I,K,J;
                   1286:   extern int P_pmn;
                   1287:   extern double M_x[];
1.10      takayama 1288:   extern int M_df;
1.1       takayama 1289:   int Pmn; /* used in aM_jack */
                   1290:   M_df=1;
                   1291:   /* initialize x vars. */
                   1292:   for (I=1; I<=N; I++) {
                   1293:     M_x[I-1] = ((double)I)/10.0;
                   1294:   }
                   1295:   genJack(M,N);
                   1296:   Pmn = P_pmn;
                   1297:   for (I=1; I<=N; I++) {
                   1298:     for (K=0; K<=P_pmn; K++) {
                   1299:       printp(Parray[K]);
                   1300:       printf("<--Kap, Nv=%d, TableJack=%lf\n",I,aM_jack(I,0,K));
                   1301:     }
                   1302:   }
                   1303:   for (I=1; I<=N; I++) printf("%lf, ",M_x[I-1]);
                   1304:   printf("<--x\n");
                   1305:
                   1306:   for (I=1; I<=N; I++) {
                   1307:     for (K=0; K<=P_pmn; K++) {
                   1308:       for (J=0; J<M_2n; J++) {
1.12      takayama 1309:         printp(Parray[K]);
                   1310:         printf("<--Kap, Nv=%d,J(diff)=%d, D^J Jack=%lf\n",
                   1311:                I,J,aM_jack(I,J,K));
                   1312:       }
                   1313:     }
1.1       takayama 1314:   }
1.13      takayama 1315:   return(0);
1.1       takayama 1316: }
                   1317:
                   1318: /* main() { checkJack2(3,3); } */
                   1319:
                   1320: double mh_t(double A[A_LEN],double B[B_LEN],int N,int M) {
                   1321:   double F,F2;
                   1322:   extern int M_df;
                   1323:   extern int P_pmn;
                   1324:   extern double *M_qk;
                   1325:   extern double M_rel_error;
1.15      takayama 1326:   extern int M_m;
1.16      takayama 1327:   extern int M_m_estimated_approx_deg;
                   1328:   extern double M_assigned_series_error;
1.1       takayama 1329:   int Pmn;
                   1330:   int K;
                   1331:   int *Kap;
                   1332:   int size;
1.15      takayama 1333:   int i;
                   1334:   double partial_sum[M_m_MAX+1];
1.16      takayama 1335:   double iv;
                   1336:   double serror;
1.1       takayama 1337:   F = 0; F2=0;
                   1338:   M_df=1;
                   1339:   genJack(M,N);
1.8       takayama 1340:   M_qk = (double *)mymalloc(sizeof(double)*(P_pmn+1)); /* found a bug. */
1.1       takayama 1341:   Pmn = P_pmn;
                   1342:   size = ParraySize[P_pmn];
                   1343:   for (K=0; K<=P_pmn; K++) {
1.11      takayama 1344:     mh_check_intr(100);
1.12      takayama 1345:     Kap = Parray[K];
                   1346:     M_qk[K] = qk(Kap,A,B);
                   1347:     F += M_qk[K]*aM_jack(N,0,K);
                   1348:     if (ParraySize[K] < size) F2 += M_qk[K]*aM_jack(N,0,K);
                   1349:     if (Debug) printf("ParraySize[K] = %d, size=%d\n",ParraySize[K],size);
                   1350:     if (Debug && (ParraySize[K] == size)) printf("M_qk[K]=%lg, aM_jack=%lg\n",M_qk[K],aM_jack(N,0,K));
1.1       takayama 1351:   }
                   1352:   M_rel_error = F-F2;
1.15      takayama 1353:
1.16      takayama 1354:   M_m_estimated_approx_deg = -1; serror=1;
1.15      takayama 1355:   for (i=0; i<=M_m; i++) {
                   1356:     partial_sum[i] = 0.0; partial_sum[i+1] = 0.0;
                   1357:     for (K=0; K<=P_pmn; K++) {
                   1358:       if (ParraySize[K] == i) partial_sum[i] += M_qk[K]*aM_jack(N,0,K);
                   1359:     }
                   1360:     if (i>0) partial_sum[i] += partial_sum[i-1];
1.16      takayama 1361:     serror = myabs((partial_sum[i]-partial_sum[i-1])/partial_sum[i-1]);
                   1362:     if ((i>0)&&(M_m_estimated_approx_deg < 0)&&(serror<M_assigned_series_error)) {
                   1363:       M_m_estimated_approx_deg = i; break;
                   1364:     }
                   1365:   }
                   1366:   if (M_m_estimated_approx_deg < 0) {
                   1367:     M_m_estimated_approx_deg = M_m+mymin(5,mymax(1,(int)log(serror/M_assigned_series_error))); /* Heuristic */
1.15      takayama 1368:   }
                   1369:   /*
                   1370:   for (K=0; K<=P_pmn; K++) {
                   1371:     printf("Kappa="); for (i=0; i<N; i++) printf("%d ",Parray[K][i]); printf("\n");
                   1372:     printf("ParraySize(%d)=%d (|kappa|),   M_m=%d\n",K,ParraySize[K],M_m);
                   1373:   }
                   1374:   for (i=0; i<=M_m; i++) {
                   1375:     printf("partial_sum[%d]=%lg\n",i,partial_sum[i]);
                   1376:   }
                   1377:   */
1.16      takayama 1378:   M_estimated_X0g = X0g;
                   1379:   iv=myabs(F*iv_factor());
                   1380:   if (iv < M_x0value_min) M_estimated_X0g = X0g*mymax(2,log(log(1/iv)));   /* This is heuristic */
1.19      takayama 1381:   M_estimated_X0g = mymin(M_estimated_X0g,M_X0g_bound);
1.16      takayama 1382:   M_mh_t_success = 1;
1.19      takayama 1383:   if (M_estimated_X0g != X0g) M_mh_t_success=0;
                   1384:   if (M_m_estimated_approx_deg > M_m) M_mh_t_success=0;
1.16      takayama 1385:
1.19      takayama 1386:   M_series_error = serror;
                   1387:   M_recommended_abserr = iv*M_assigned_series_error;
1.27      takayama 1388:   M_recommended_relerr = M_series_error;
1.25      takayama 1389:
                   1390:   if (M_show_autosteps) {
                   1391:     printf("%%%%serror=%lg, M_assigned_series_error=%lg, M_m_estimated_approx_deg=%d,M_m=%d\n",serror,M_assigned_series_error,M_m_estimated_approx_deg,M_m);
                   1392:     printf("%%%%x0value_min=%lg, x0g_bound=%lg\n",M_x0value_min, M_X0g_bound);
                   1393:     printf("%%%%F=%lg,Ef=%lg,M_estimated_X0g=%lg, X0g=%lg\n",F,iv_factor(),M_estimated_X0g,X0g);
                   1394:     fprintf(stderr,"%%%%(stderr) serror=%lg, M_assigned_series_error=%lg, M_m_estimated_approx_deg=%d,M_m=%d\n",serror,M_assigned_series_error,M_m_estimated_approx_deg,M_m);
                   1395:     fprintf(stderr,"%%%%(stderr) x0value_min=%lg, x0g_bound=%lg\n",M_x0value_min, M_X0g_bound);
                   1396:     fprintf(stderr,"%%%%(stderr) F=%lg,Ef=%lg,M_estimated_X0g=%lg, X0g=%lg\n",F,iv_factor(),M_estimated_X0g,X0g);
                   1397:   }
1.16      takayama 1398:
1.19      takayama 1399:   M_mh_t_value=F;
1.1       takayama 1400:   return(F);
                   1401: }
                   1402: double mh_t2(int J) {
                   1403:   extern double *M_qk;
                   1404:   double F;
                   1405:   int K;
                   1406:   int Pmn;
                   1407:   extern int P_pmn;
1.3       takayama 1408:   if (M_qk == NULL) {myerror("Call mh_t first."); mh_exit(-1); }
1.1       takayama 1409:   F = 0;
                   1410:   Pmn = P_pmn;
                   1411:   for (K=0; K<P_pmn; K++) {
1.12      takayama 1412:     F += M_qk[K]*aM_jack(M_n,J,K);
1.1       takayama 1413:   }
                   1414:   return(F);
                   1415: }
                   1416:
1.10      takayama 1417: static int mtest1b() {
1.1       takayama 1418:   double A[1] = {1.5};
                   1419:   double B[1] = {1.5+5};
                   1420:   int I,N,M,J;
                   1421:   double F;
                   1422:   N=3; M=6;
                   1423:   for (I=1; I<=N; I++) {
                   1424:     M_x[I-1] = ((double)I)/10.0;
                   1425:   }
                   1426:   mh_t(A,B,N,M);
                   1427:   for (J=0; J<M_2n; J++) {
1.12      takayama 1428:     F=mh_t2(J);
                   1429:     printf("J=%d, D^J mh_t=%lf\n",J,F);
1.1       takayama 1430:   }
                   1431: }
                   1432:
                   1433: /* main() { mtest1b(); }*/
                   1434:
                   1435:
                   1436:
                   1437:
                   1438: #define TEST 1
                   1439: #ifndef TEST
                   1440:
                   1441: #endif
                   1442:
                   1443: /****** from mh-n.c *****/
                   1444:
                   1445: #define SMAX 4096
1.3       takayama 1446: #define inci(i) { i++; if (i >= argc) { fprintf(stderr,"Option argument is not given.\n"); return(NULL); }}
1.1       takayama 1447:
1.2       takayama 1448: static int imypower(int x,int n) {
1.1       takayama 1449:   int i;
                   1450:   int v;
1.3       takayama 1451:   if (n < 0) {myerror("imypower"); mh_exit(-1);}
1.1       takayama 1452:   v = 1;
                   1453:   for (i=0; i<n; i++) v *= x;
                   1454:   return(v);
                   1455: }
                   1456:
1.11      takayama 1457: #ifdef STANDALONE2
1.1       takayama 1458: main(int argc,char *argv[]) {
1.3       takayama 1459:   mh_exit(MH_RESET_EXIT);
1.12      takayama 1460:   /*  jk_main(argc,argv);
                   1461:       printf("second run.\n"); */
1.2       takayama 1462:   jk_main(argc,argv);
1.17      takayama 1463:   return(0);
1.2       takayama 1464: }
1.3       takayama 1465: #endif
                   1466:
                   1467: struct MH_RESULT *jk_main(int argc,char *argv[]) {
1.16      takayama 1468:   int i;
                   1469:   struct MH_RESULT *ans;
                   1470:   extern int M_automatic;
                   1471:   extern int M_mh_t_success;
                   1472:   extern double M_estimated_X0g;
                   1473:   extern int M_m_estimated_approx_deg;
                   1474:   for (i=1; i<argc; i++) {
                   1475:     if (strcmp(argv[i],"--automatic")==0) {
                   1476:       inci(i);
                   1477:       sscanf(argv[i],"%d",&M_automatic);
                   1478:       break;
                   1479:     }
                   1480:   }
                   1481:   ans=jk_main2(argc,argv,0,0.0,0);
                   1482:   if (!M_automatic) return(ans);
                   1483:   if (M_mh_t_success) return(ans);
                   1484:   while (!M_mh_t_success) {
                   1485:     ans=jk_main2(argc,argv,1,M_estimated_X0g,M_m_estimated_approx_deg);
                   1486:   }
                   1487:   return(ans);
                   1488: }
                   1489:
                   1490: struct MH_RESULT *jk_main2(int argc,char *argv[],int automode,double newX0g,int newDegree) {
1.1       takayama 1491:   double *y0;
                   1492:   double x0,xn;
                   1493:   double ef;
                   1494:   int i,j,rank;
                   1495:   double a[1]; double b[1];
                   1496:   extern double M_x[];
                   1497:   extern double *Beta;
                   1498:   extern int M_2n;
1.16      takayama 1499:   extern int M_mh_t_success;
1.3       takayama 1500:   char swork[1024];
                   1501:   struct MH_RESULT *ans=NULL;
                   1502:   struct SFILE *ofp = NULL;
                   1503:   int idata=0;
                   1504:   JK_byFile = 1;
                   1505:   jk_initializeWorkArea();
1.1       takayama 1506:   UseTable = 1;
1.3       takayama 1507:   Mapprox=6;
1.1       takayama 1508:   for (i=1; i<argc; i++) {
1.12      takayama 1509:     if (strcmp(argv[i],"--idata")==0) {
                   1510:       inci(i);
                   1511:       setParam(argv[i]); idata=1;
                   1512:     }else if (strcmp(argv[i],"--degree")==0) {
                   1513:       inci(i);
                   1514:       sscanf(argv[i],"%d",&Mapprox);
                   1515:     }else if (strcmp(argv[i],"--x0")==0) {
                   1516:       inci(i);
                   1517:       sscanf(argv[i],"%lg",&X0g);
                   1518:     }else if (strcmp(argv[i],"--notable")==0) {
                   1519:       UseTable = 0;
                   1520:     }else if (strcmp(argv[i],"--debug")==0) {
                   1521:       Debug = 1;
                   1522:     }else if (strcmp(argv[i],"--help")==0) {
                   1523:       usage(); return(0);
                   1524:     }else if (strcmp(argv[i],"--bystring")==0) {
                   1525:       if (idata) {fprintf(stderr,"--bystring must come before --idata option.\n"); mh_exit(-1);}
                   1526:       JK_byFile = 0;
1.16      takayama 1527:     }else if (strcmp(argv[i],"--automatic")==0) {
                   1528:       inci(i); /* ignore, in this function */
1.23      takayama 1529:     }else if (strcmp(argv[i],"--assigned_series_error")==0) {
1.16      takayama 1530:       inci(i);
                   1531:       sscanf(argv[i],"%lg",&M_assigned_series_error);
                   1532:     }else if (strcmp(argv[i],"--x0value_min")==0) {
                   1533:       inci(i);
                   1534:       sscanf(argv[i],"%lg",&M_x0value_min);
1.12      takayama 1535:     }else {
                   1536:       fprintf(stderr,"Unknown option %s\n",argv[i]);
                   1537:       usage();
                   1538:       return(NULL);
                   1539:     }
1.1       takayama 1540:   }
1.16      takayama 1541:   if (!idata) setParam(NULL);
                   1542:   if (automode) {
                   1543:     Mapprox = newDegree;
                   1544:     X0g = newX0g;
                   1545:   }
1.3       takayama 1546:
                   1547:   /* Initialize global variables */
                   1548:   M_n = Mg;
                   1549:   HS_n=M_n;
1.16      takayama 1550:   if (!JK_byFile) {
                   1551:     ans = (struct MH_RESULT *)mymalloc(sizeof(struct MH_RESULT));
                   1552:     ans->message = NULL;
1.19      takayama 1553:     ans->t_success = 0;
                   1554:     ans->series_error = 1.0e+10;
                   1555:     ans->recommended_abserr = 1.0e-10;
1.16      takayama 1556:   }
1.3       takayama 1557:   else ans = NULL;
1.26      takayama 1558:   if (M_automatic) {
                   1559:     /* Differentiation can be M_m in the bit pattern in the M_n variable case.*/
                   1560:     if (M_n > Mapprox) Mapprox=M_n;
                   1561:   }
1.3       takayama 1562:   /* Output by a file=stdout */
                   1563:   ofp = mh_fopen("stdout","w",JK_byFile);
1.1       takayama 1564:
1.3       takayama 1565:   sprintf(swork,"%%%%Use --help option to see the help.\n"); mh_fputs(swork,ofp);
                   1566:   sprintf(swork,"%%%%Mapprox=%d\n",Mapprox); mh_fputs(swork,ofp);
1.1       takayama 1567:   if (M_n != Mg) {
1.12      takayama 1568:     myerror("Mg must be equal to M_n\n"); mh_exit(-1);
1.1       takayama 1569:   }
1.8       takayama 1570:   if (Debug) showParam(NULL,1);
1.1       takayama 1571:   for (i=0; i<M_n; i++) {
1.12      takayama 1572:     M_x[i] = Beta[i]*X0g;
1.1       takayama 1573:   }
1.19      takayama 1574:
                   1575:   M_beta_i_x_o2_max=myabs(M_x[0]/2);
                   1576:   if (M_n <= 1) M_beta_i_beta_j_min = myabs(Beta[0]);
                   1577:   else M_beta_i_beta_j_min = myabs(Beta[1]-Beta[0]);
                   1578:   for (i=0; i<M_n; i++) {
                   1579:     if (myabs(M_x[i]/2) > M_beta_i_x_o2_max) M_beta_i_x_o2_max = myabs(M_x[i]/2);
                   1580:     for (j=i+1; j<M_n; j++) {
                   1581:       if (myabs(Beta[i]-Beta[j]) < M_beta_i_beta_j_min)
                   1582:         M_beta_i_beta_j_min = myabs(Beta[i]-Beta[j]);
                   1583:     }
                   1584:   }
                   1585:
1.1       takayama 1586:   a[0] = ((double)Mg+1.0)/2.0;
                   1587:   b[0] = ((double)Mg+1.0)/2.0 + ((double) (*Ng))/2.0; /* bug, double check */
                   1588:   if (Debug) printf("Calling mh_t with ([%lf],[%lf],%d,%d)\n",a[0],b[0],M_n,Mapprox);
                   1589:   mh_t(a,b,M_n,Mapprox);
1.19      takayama 1590:   if ((!M_mh_t_success) && M_automatic) {
1.16      takayama 1591:     jk_freeWorkArea();
                   1592:     return NULL;
                   1593:   }
1.1       takayama 1594:   if (imypower(2,M_n) != M_2n) {
1.12      takayama 1595:     sprintf(swork,"M_n=%d,M_2n=%d\n",M_n,M_2n); mh_fputs(swork,ofp);
                   1596:     myerror("2^M_n != M_2n\n"); mh_exit(-1);
1.1       takayama 1597:   }
1.3       takayama 1598:   sprintf(swork,"%%%%M_rel_error=%lg\n",M_rel_error); mh_fputs(swork,ofp);
1.1       takayama 1599:   for (j=0; j<M_2n; j++) {
1.12      takayama 1600:     Iv[j] = mh_t2(j);
1.1       takayama 1601:   }
                   1602:   Ef = iv_factor();
1.8       takayama 1603:   showParam(ofp,0);
1.3       takayama 1604:
                   1605:   /* return the result */
1.16      takayama 1606:   if (!JK_byFile) {
1.12      takayama 1607:     ans->x = X0g;
                   1608:     ans->rank = imypower(2,Mg);
                   1609:     ans->y = (double *)mymalloc(sizeof(double)*(ans->rank));
                   1610:     for (i=0; i<ans->rank; i++) (ans->y)[i] = Iv[i];
                   1611:     ans->size=1;
                   1612:     ans->sfpp = (struct SFILE **)mymalloc(sizeof(struct SFILE *)*(ans->size));
                   1613:     (ans->sfpp)[0] = ofp;
1.19      takayama 1614:
                   1615:     ans->t_success = M_mh_t_success;
                   1616:     ans->series_error = M_series_error;
                   1617:     ans->recommended_abserr = M_recommended_abserr;
1.3       takayama 1618:   }
1.7       takayama 1619:   if (Debug) printf("jk_freeWorkArea() starts\n");
1.3       takayama 1620:   jk_freeWorkArea();
1.7       takayama 1621:   if (Debug) printf("jk_freeWorkArea() has finished.\n");
1.3       takayama 1622:   return(ans);
1.1       takayama 1623: }
                   1624:
1.10      takayama 1625: static int usage() {
1.1       takayama 1626:   fprintf(stderr,"Usages:\n");
1.14      takayama 1627:   fprintf(stderr,"hgm_jack-n [--idata input_data_file --x0 x0 --degree approxm]\n");
1.23      takayama 1628:   fprintf(stderr,"           [--automatic n --assigned_series_error e --x0value_min e2]\n");
1.28    ! takayama 1629:   fprintf(stderr,"\nThe command hgm_jack-n [options] generates an input for hgm_w-n, Pr({y | y<xmax}), which is the cumulative distribution function of the largest root of the m by m Wishart matrices with n degrees of freedom and the covariantce matrix sigma.\n");
1.14      takayama 1630:   fprintf(stderr,"The hgm_jack-n uses the Koev-Edelman algorithm to evalute the matrix hypergeometric function.\n");
1.1       takayama 1631:   fprintf(stderr,"The degree of the approximation (Mapprox) is given by the --degree option.\n");
1.28    ! takayama 1632:   fprintf(stderr,"Parameters are specified by the input_data_file. Otherwise, default values are used.\n\n");
        !          1633:   fprintf(stderr,"The format of the input_data_file: (The orders of the input data must be kept.)\n");
1.1       takayama 1634:   fprintf(stderr," Mg: m(the number of variables), Beta: beta=sigma^(-1)/2 (diagonized), Ng: n,\n");
1.24      takayama 1635:   fprintf(stderr," (Add a comment line %%Ng= before the data Ng to check the number of beta.)\n");
1.14      takayama 1636:   fprintf(stderr," X0g: starting value of x(when --x0 option is used, this value is used)\n");
                   1637:   fprintf(stderr," Iv: initial values at X0g*Beta (see our paper how to order them), are evaluated in this program. Give zeros or the symbol * to skip rank many inputs.\n");
1.1       takayama 1638:   fprintf(stderr," Ef: a scalar factor to the initial value. It is calculated by this program. Give the zero.\n");
1.14      takayama 1639:   fprintf(stderr," Hg: h (step size) which is for hgm_w-n, \n");
1.28    ! takayama 1640:   fprintf(stderr," Dp: output data is stored in every Dp steps when output_data_file is specified. This is for hgm_w-n.\n");
        !          1641:   fprintf(stderr," Xng: terminating value of x. This is for hgm_w-n.\n");
        !          1642:   fprintf(stderr,"Optional parameters automatic, ... are interpreted by a parser. See setParam() in jack-n.c and Testdata/tmp-idata2.txt as an example. Optional paramters are given as %%parameter_name=value  Lines starting with %%%% or # are comment lines.\n");
        !          1643:   fprintf(stderr,"Parameters are redefined when they appear more than once in the idata file and the command line options.\n\n");
        !          1644:   fprintf(stderr,"With the --notable option, it does not use the Lemma 3.2 of Koev-Edelman (there is a typo: kappa'_r = mu'_r for 1<=r<=mu_k).\n");
        !          1645:   fprintf(stderr,"An example format of the input_data_file can be obtained by executing hgm_jack-n with no option. When there is no --idata file, all options are ignored.\n");
        !          1646:   fprintf(stderr,"By --automatic option, X0g and degree are automatically determined from assigend_series_error. The current strategy is described in mh_t in jack-n.c\n");
1.26      takayama 1647:   fprintf(stderr,"Default values for the papameters of the automatic mode: automatic=%d, assigned_series_error=%lg, x0value_min=%lg\n",M_automatic,M_assigned_series_error,M_x0value_min);
1.20      takayama 1648:   fprintf(stderr,"Todo: automatic mode throws away the table of Jack polynomials of the previous degrees and reevaluate them. They should be kept.\n");
1.1       takayama 1649:   fprintf(stderr,"\nExamples:\n");
1.14      takayama 1650:   fprintf(stderr,"[1] ./hgm_jack-n \n");
1.28    ! takayama 1651:   fprintf(stderr,"[2] ./hgm_jack-n --idata Testdata/tmp-idata3.txt --degree 15  --automatic 0\n");
        !          1652:   fprintf(stderr,"[3] ./hgm_jack-n --idata Testdata/tmp-idata2.txt --degree 15 >test2.txt\n");
1.14      takayama 1653:   fprintf(stderr,"    ./hgm_w-n --idata test2.txt --gnuplotf test-g\n");
1.1       takayama 1654:   fprintf(stderr,"    gnuplot -persist <test-g-gp.txt\n");
1.28    ! takayama 1655:   fprintf(stderr,"[4] ./hgm_jack-n --idata Testdata/tmp-idata3.txt --automatic 1 --assigned_series_error=1e-12\n");
        !          1656:   fprintf(stderr,"[5] ./hgm_jack-n --idata Testdata/tmp-idata4.txt\n");
1.13      takayama 1657:   return(0);
1.1       takayama 1658: }
                   1659:
1.10      takayama 1660: static int setParamDefault() {
1.1       takayama 1661:   int rank;
                   1662:   int i;
1.3       takayama 1663:   Mg = M_n_default ;
1.1       takayama 1664:   rank = imypower(2,Mg);
                   1665:   Beta = (double *)mymalloc(sizeof(double)*Mg);
                   1666:   for (i=0; i<Mg; i++) Beta[i] = 1.0+i;
                   1667:   Ng = (double *)mymalloc(sizeof(double)); *Ng = 3.0;
                   1668:   Iv = (double *)mymalloc(sizeof(double)*rank);
                   1669:   Iv2 = (double *)mymalloc(sizeof(double)*rank);
                   1670:   for (i=0; i<rank; i++) Iv[i] = 0;
                   1671:   Ef = 0;
                   1672:   Ef2 = 0.01034957388338225707;
                   1673:   if (M_n == 2) {
                   1674:     Iv2[0] = 1.58693;
                   1675:     Iv2[1] = 0.811369;
                   1676:     Iv2[2] = 0.846874;
                   1677:     Iv2[3] = 0.413438;
                   1678:   }
                   1679:   X0g = (Beta[0]/Beta[Mg-1])*0.5;
                   1680:   Hg = 0.001;
                   1681:   Dp = 1;
                   1682:   Xng = 10.0;
1.13      takayama 1683:   return(0);
1.1       takayama 1684: }
                   1685:
1.10      takayama 1686: static int next(struct SFILE *sfp,char *s,char *msg) {
1.14      takayama 1687:   static int check=1;
                   1688:   char *ng="%Ng=";
                   1689:   int i;
1.1       takayama 1690:   s[0] = '%';
                   1691:   while (s[0] == '%') {
1.12      takayama 1692:     if (!mh_fgets(s,SMAX,sfp)) {
                   1693:       fprintf(stderr,"Data format error at %s\n",msg);
                   1694:       mh_exit(-1);
                   1695:     }
1.14      takayama 1696:     if (check && (strncmp(msg,ng,4)==0)) {
                   1697:       if (strncmp(s,ng,4) != 0) {
                   1698:         fprintf(stderr,"Warning, there is no %%Ng= at the border of Beta's and Ng, s=%s\n",s);
                   1699:       }
                   1700:       check=0;
                   1701:     }
1.12      takayama 1702:     if (s[0] != '%') return(0);
1.1       takayama 1703:   }
1.13      takayama 1704:   return(0);
1.1       takayama 1705: }
1.10      takayama 1706: static int setParam(char *fname) {
1.1       takayama 1707:   int rank;
                   1708:   char s[SMAX];
1.3       takayama 1709:   struct SFILE *fp;
1.1       takayama 1710:   int i;
1.19      takayama 1711:   struct mh_token tk;
1.1       takayama 1712:   if (fname == NULL) return(setParamDefault());
                   1713:
                   1714:   Sample = 0;
1.3       takayama 1715:   if ((fp=mh_fopen(fname,"r",JK_byFile)) == NULL) {
1.12      takayama 1716:     if (JK_byFile) fprintf(stderr,"File %s is not found.\n",fp->s);
                   1717:     mh_exit(-1);
1.1       takayama 1718:   }
                   1719:   next(fp,s,"Mg(m)");
                   1720:   sscanf(s,"%d",&Mg);
                   1721:   rank = imypower(2,Mg);
                   1722:
                   1723:   Beta = (double *)mymalloc(sizeof(double)*Mg);
                   1724:   for (i=0; i<Mg; i++) {
                   1725:     next(fp,s,"Beta");
1.12      takayama 1726:     sscanf(s,"%lf",&(Beta[i]));
1.1       takayama 1727:   }
                   1728:
                   1729:   Ng = (double *)mymalloc(sizeof(double));
1.14      takayama 1730:   next(fp,s,"%Ng= (freedom parameter n)");
1.1       takayama 1731:   sscanf(s,"%lf",Ng);
                   1732:
                   1733:   next(fp,s,"X0g(initial point)");
                   1734:   sscanf(s,"%lf",&X0g);
1.14      takayama 1735:
1.1       takayama 1736:   Iv = (double *)mymalloc(sizeof(double)*rank);
                   1737:   for (i=0; i<rank; i++) {
1.12      takayama 1738:     next(fp,s,"Iv(initial values)");
1.14      takayama 1739:        if (strncmp(s,"*",1)==0) {
                   1740:          for (i=0; i<rank; i++) Iv[i] = 0.0;
                   1741:          break;
                   1742:        }
1.12      takayama 1743:     sscanf(s,"%lg",&(Iv[i]));
1.1       takayama 1744:   }
                   1745:
                   1746:   next(fp,s,"Ef(exponential factor)");
1.14      takayama 1747:   if (strncmp(s,"*",1)==0) Ef=0.0;
                   1748:   else sscanf(s,"%lg",&Ef);
1.1       takayama 1749:
                   1750:   next(fp,s,"Hg (step size of rk)");
                   1751:   sscanf(s,"%lf",&Hg);
                   1752:
                   1753:   next(fp,s,"Dp (data sampling period)");
                   1754:   sscanf(s,"%d",&Dp);
                   1755:
                   1756:   next(fp,s,"Xng (the last point, cf. --xmax)");
                   1757:   sscanf(s,"%lf",&Xng);
1.19      takayama 1758:
                   1759:   /* Reading the optional parameters */
                   1760:   while ((tk = mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_EOF) {
                   1761:     /* expect ID */
                   1762:     if (tk.type != MH_TOKEN_ID) {
                   1763:       fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1764:     }
                   1765:     if (strcmp(s,"automatic")==0) {
                   1766:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1767:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1768:       }
                   1769:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_INT) {
                   1770:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1771:       }
                   1772:       M_automatic = tk.ival;
                   1773:       continue;
                   1774:     }
                   1775:     if (strcmp(s,"assigned_series_error")==0) {
                   1776:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1777:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1778:       }
                   1779:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_DOUBLE) {
                   1780:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1781:       }
                   1782:       M_assigned_series_error = tk.dval;
                   1783:       continue;
                   1784:     }
                   1785:     if (strcmp(s,"x0value_min")==0) {
                   1786:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1787:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1788:       }
                   1789:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_DOUBLE) {
                   1790:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1791:       }
                   1792:       M_x0value_min = tk.dval;
                   1793:       continue;
                   1794:     }
                   1795:     if ((strcmp(s,"Mapprox")==0) || (strcmp(s,"degree")==0)) {
                   1796:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1797:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1798:       }
                   1799:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_INT) {
                   1800:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1801:       }
                   1802:       Mapprox = tk.ival;
                   1803:       continue;
                   1804:     }
                   1805:     if (strcmp(s,"X0g_bound")==0) {
                   1806:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1807:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1808:       }
                   1809:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_DOUBLE) {
                   1810:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1811:       }
                   1812:       M_X0g_bound = tk.dval;
                   1813:       continue;
                   1814:     }
1.25      takayama 1815:     if (strcmp(s,"show_autosteps")==0) {
                   1816:       if (mh_getoken(s,SMAX-1,fp).type != MH_TOKEN_EQ) {
                   1817:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1818:       }
                   1819:       if ((tk=mh_getoken(s,SMAX-1,fp)).type != MH_TOKEN_INT) {
                   1820:         fprintf(stderr,"Syntax error at %s\n",s); mh_exit(-1);
                   1821:       }
                   1822:       M_show_autosteps = tk.ival;
                   1823:       continue;
                   1824:     }
1.19      takayama 1825:     fprintf(stderr,"Unknown ID at %s\n",s); mh_exit(-1);
                   1826:   }
1.3       takayama 1827:   mh_fclose(fp);
1.13      takayama 1828:   return(0);
1.1       takayama 1829: }
                   1830:
1.10      takayama 1831: static int showParam(struct SFILE *fp,int fd) {
1.1       takayama 1832:   int rank,i;
1.3       takayama 1833:   char swork[1024];
1.8       takayama 1834:   if (fd) {
                   1835:     fp = mh_fopen("stdout","w",1);
                   1836:   }
1.1       takayama 1837:   rank = imypower(2,Mg);
1.3       takayama 1838:   sprintf(swork,"%%Mg=\n%d\n",Mg); mh_fputs(swork,fp);
1.1       takayama 1839:   for (i=0; i<Mg; i++) {
1.12      takayama 1840:     sprintf(swork,"%%Beta[%d]=\n%lf\n",i,Beta[i]); mh_fputs(swork,fp);
1.1       takayama 1841:   }
1.3       takayama 1842:   sprintf(swork,"%%Ng=\n%lf\n",*Ng); mh_fputs(swork,fp);
                   1843:   sprintf(swork,"%%X0g=\n%lf\n",X0g); mh_fputs(swork,fp);
1.1       takayama 1844:   for (i=0; i<rank; i++) {
1.12      takayama 1845:     sprintf(swork,"%%Iv[%d]=\n%lg\n",i,Iv[i]); mh_fputs(swork,fp);
                   1846:     if (Sample && (M_n == 2) && (X0g == 0.3)) {
                   1847:       sprintf(swork,"%%Iv[%d]-Iv2[%d]=%lg\n",i,i,Iv[i]-Iv2[i]); mh_fputs(swork,fp);
                   1848:     }
1.3       takayama 1849:   }
                   1850:   sprintf(swork,"%%Ef=\n%lg\n",Ef); mh_fputs(swork,fp);
                   1851:   sprintf(swork,"%%Hg=\n%lf\n",Hg); mh_fputs(swork,fp);
                   1852:   sprintf(swork,"%%Dp=\n%d\n",Dp);  mh_fputs(swork,fp);
                   1853:   sprintf(swork,"%%Xng=\n%lf\n",Xng);mh_fputs(swork,fp);
1.19      takayama 1854:
                   1855:   sprintf(swork,"%%%% Optional paramters\n"); mh_fputs(swork,fp);
                   1856:   sprintf(swork,"#success=%d\n",M_mh_t_success); mh_fputs(swork,fp);
                   1857:   sprintf(swork,"#automatic=%d\n",M_automatic); mh_fputs(swork,fp);
                   1858:   sprintf(swork,"#series_error=%lg\n",M_series_error); mh_fputs(swork,fp);
                   1859:   sprintf(swork,"#recommended_abserr\n"); mh_fputs(swork,fp);
                   1860:   sprintf(swork,"%%abserror=%lg\n",M_recommended_abserr); mh_fputs(swork,fp);
1.27      takayama 1861:   if (M_recommended_relerr < MH_RELERR_DEFAULT) {
                   1862:     sprintf(swork,"%%relerror=%lg\n",M_recommended_relerr); mh_fputs(swork,fp);
                   1863:   }
1.19      takayama 1864:   sprintf(swork,"#mh_t_value=%lg # Value of matrix hg at X0g.\n",M_mh_t_value); mh_fputs(swork,fp);
                   1865:   sprintf(swork,"# M_m=%d  # Approximation degree of matrix hg.\n",M_m); mh_fputs(swork,fp);
                   1866:   sprintf(swork,"#beta_i_x_o2_max=%lg #max(|beta[i]*x|/2)\n",M_beta_i_x_o2_max); mh_fputs(swork,fp);
                   1867:   sprintf(swork,"#beta_i_beta_j_min=%lg #min(|beta[i]-beta[j]|)\n",M_beta_i_beta_j_min); mh_fputs(swork,fp);
1.13      takayama 1868:   return(0);
1.1       takayama 1869: }
                   1870:
1.2       takayama 1871: static double gammam(double a,int n) {
1.1       takayama 1872:   double v,v2;
                   1873:   int i;
                   1874:   v=mypower(sqrt(M_PI),(n*(n-1))/2);
                   1875:   v2=0;
                   1876:   for (i=1; i<=n; i++) {
                   1877:     v2 += lgamma(a-((double)(i-1))/2.0); /* not for big n */
                   1878:   }
                   1879:   if (Debug) printf("gammam(%lg,%d)=%lg\n",a,n,v*exp(v2));
                   1880:   return(v*exp(v2));
                   1881: }
                   1882:
1.2       takayama 1883: static double iv_factor(void) {
1.1       takayama 1884:   double v1;
                   1885:   double t;
                   1886:   double b;
                   1887:   double detSigma;
                   1888:   double c;
                   1889:   int i,n;
                   1890:   n = (int) (*Ng);
                   1891:   v1= mypower(sqrt(X0g),n*M_n);
                   1892:   t = 0.0;
                   1893:   for (i=0; i<M_n; i++)  t += -X0g*Beta[i];
                   1894:   v1 = v1*exp(t);
                   1895:
                   1896:   b = 1; for (i=0; i<M_n; i++) b *= Beta[i];
                   1897:   detSigma = 1.0/(b*mypower(2.0,M_n));
                   1898:
                   1899:   c = gammam(((double)(M_n+1))/2.0, M_n)/
1.12      takayama 1900:     ( mypower(sqrt(2), M_n*n)*mypower(sqrt(detSigma),n)*gammam(((double)(M_n+n+1))/2.0,M_n) );
1.1       takayama 1901:   return( c*v1);
                   1902: }
                   1903:
                   1904:
                   1905:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>