[BACK]Return to ahg2.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / debug

Annotation of OpenXM/src/k097/debug/ahg2.k, Revision 1.1.1.1

1.1       maekawa     1:
                      2: /* SSWork/yacc/debug/ahg.k
                      3: /*             cf. debug/toric0.k */
                      4: /*  toric の generator を求める関数.
                      5:     A-hypergeometric の indicial ideal を求める関数.
                      6: */
                      7: ShimomuraSpecial = true ; OnePath= true;
                      8: Vvv = false;
                      9: SetRingVariables_Verbose = false;
                     10: def void QuietKan() {
                     11:   sm1(" [(KanGBmessage) 0] system_variable ");
                     12: }
                     13:
                     14: def testhg1() {
                     15:   a = [[1,1,1,1,1,1],
                     16:        [0,0,0,1,1,1],
                     17:        [0,1,0,0,1,0],
                     18:        [0,0,1,0,0,1]];
                     19:   return(idhg(a));
                     20: }
                     21:
                     22: def testhg2() {
                     23:   a = [[1,1,1,1,1],
                     24:        [0,2,3,4,3],
                     25:        [0,1,1,0,2]];
                     26:   return(idhg(a));
                     27: }
                     28:
                     29: def idhg(a) {
                     30:   local a,ans,rd,i,ans2,ans3,n,ff,d,zlist;
                     31:   ans = toric(a);
                     32:   if (ShimomuraSpecial) {
                     33:     /* 先に, toric の initial part をとってしまう. */
                     34:     /* 本当は, FW の initial part をとるべきなのかも? */
                     35:     if (Vvv) {Println("-------- S-special ---------");}
                     36:     ans = Map(ans,"Init");
                     37:   }
                     38:   ans = Map(ans,"ToString");
                     39:   if (Vvv) {Println(ans);}
                     40:
                     41:   rd = RingDonIndexedVariables("z",Length(a[0])+1+Length(a));
                     42:   /* 4 秒程度かかる. */
                     43:   ans = Map(ans,"Poly");
                     44:   n = Length(a[0]); d = Length(a);
                     45:   ans2 = NewArray(Length(ans));   /* ans2 には, toric */
                     46:   PSfor (i=0; i< Length(ans); i++) {
                     47:     ans2[i] = ztoDz(ans[i],n);
                     48:   }
                     49:   if (Vvv) {Println(ans2);}
                     50:   ans3 = atolin(a);             /* ans3 には, 一次式 */
                     51:   if (Vvv) {Println(ans3);}
                     52:   ff = Map(Join(ans2,ans3),"ToString");
                     53:   ans = zindicial(ff,n,d);
                     54:   zlist = [ ];
                     55:   PSfor(i= n; i<n+d+1; i++) {
                     56:     zlist = Append(zlist,Indexed("z",i));
                     57:   }
                     58:   return([ans,zlist]);
                     59: }
                     60:
                     61: def toric0_toMonom(aa,i,offset, ring)
                     62: {
                     63:   local j,ans,m;
                     64:   m = Length(aa);
                     65:   ans = PolyR("1",ring);
                     66:   for (j=0; j<m; j++) {
                     67:     ans = ans*(z[offset+j]^(aa[j,i]));
                     68:   }
                     69:   return(ans);
                     70: }
                     71:
                     72:
                     73: def toric(aa) {
                     74:   local i,j,rz,n,d,ideal,ans,univ,rule,nn,weight,elim;
                     75:   d = Length(aa);  n = Length(aa[0]);
                     76:   if (Vvv) {Println(aa);}
                     77:
                     78:   weight = [ ]; elim = [ ];
                     79:   PSfor (i= n; i< n+d; i++) {
                     80:      weight = Join(weight,[Indexed("z",i), 1]);
                     81:      elim = Append(elim, Indexed("z",i));
                     82:   }
                     83:   weight = Append([weight],[Indexed("z",n-1),1]);
                     84:   if (Vvv) {Println(weight);  Println(elim);}
                     85:
                     86:   rz = RingPonIndexedVariables("z",n+d, weight);  /* 4 秒程度かかる. */
                     87:   /* z[0], ..., z[n-1], ... , z[n+d]*/
                     88:   ideal = [ ];
                     89:   PSfor (i=0; i< n; i++) {
                     90:      ideal = Append(ideal, z[i] - toric0_toMonom(aa,i,n,rz));
                     91:   }
                     92:   if (Vvv) {
                     93:     Println(" --------- input ideal -------------");
                     94:     Print(" z["); Print( n ); Print( "] --- z["); Print( n+d-1);
                     95:     Println("] should be eliminated.");
                     96:     Println(ideal);
                     97:   }
                     98:
                     99:   ans = Groebner(ideal);
                    100:   if (Vvv) {Println(" -------------- gb is ----------------- "); Println(ans);}
                    101:   ans = Eliminatev(ans,elim);
                    102:   if (Vvv) {Println(" ------------ eliminated -------------- "); Println(ans);}
                    103:
                    104:   rule = [[h, PolyR("1",rz) ] ];
                    105:   nn = Length(ans); univ = [ ];
                    106:   PSfor (i=0; i<nn; i++) {
                    107:     univ = Append(univ,Replace(ans[i],rule));
                    108:   }
                    109:   ans = ReducedBase(univ);
                    110:   if (Vvv) {
                    111:     Println(" ----------- removed redundant elements ----------- ");
                    112:     Println(" ---------- generators of the toric ideal are ----- ");
                    113:     Println(ans);
                    114:     Println(" ");
                    115:   }
                    116:   return(ans);
                    117: }
                    118:
                    119: def zindicial0(input,n,m) {
                    120:   local rz,weight, ww,i,rule,zinverse,m,d,ans,elim,tmp;
                    121:   if (!OnePath) {
                    122:     ww = [ ]; elim = [ ];
                    123:     weight = [[Indexed("z",n),1]];
                    124:     if (Vvv) {Print("-------- weight ---------: "); Println(weight);}
                    125:     rz = RingDonIndexedVariables("z",n+1+m, weight);
                    126:     z = NewArray(n+1+m); Dz = NewArray(n+1+m);
                    127:     PSfor(i=0; i<n+1+m; i++) {
                    128:       z[i] = PolyR(Indexed("z",i),rz);
                    129:       Dz[i] = PolyR(Indexed("Dz",i),rz);
                    130:     }
                    131:     input = Mapto(input,rz);
                    132:     if (Vvv) {Println("------------ input ------------"); Println(input);}
                    133:
                    134:     /* F-homogenization. z[0], ..., z[n-1],
                    135:        z[n] is the homogenization variable*/
                    136:     /* z[n]^(-1) とは書けないのはつらい. 1 を戻すので bug ともいえる. */
                    137:     zinverse = PolyR(AddString([Indexed("z",n),"^(-1)"]),rz);
                    138:     rule = [[Dz[n-1], Dz[n-1]*z[n]], [z[n-1],z[n-1]*zinverse]];
                    139:     input = Replace(input,rule);
                    140:     m = Length(input);
                    141:     PSfor (i=0; i<m; i++) {
                    142:       d = -Degree(Replace(input[i],[[z[n],zinverse]]),z[n]);
                    143:       if (d < 0) {
                    144:            input[i] = z[n]^(-d)*input[i];
                    145:       }
                    146:     }
                    147:     if (Vvv) {Print("------ input : "); Println(input);}
                    148:     ans = GroebnerTime(input);
                    149:     m = Length(ans);
                    150:     PSfor (i=0; i<m; i++)  {
                    151:       /* FW principal part をとる. */
                    152:       /* ans[i] = Init_w(ans[i],[z[n]],[1]);  この関数は遅い. */
                    153:       tmp = Coefficients(ans[i],z[n]);
                    154:       ans[i] = tmp[1,0];
                    155:     }
                    156:     if (Vvv) {Print("--------FW principal parts : ");Println(ans);}
                    157:     /* もう一回, GB の計算. */
                    158:     input = Map(ans,"ToString");
                    159:   }
                    160:
                    161:   /* もう一回, GB の計算. */
                    162:   ww = [ ]; elim = [ ];
                    163:   /*  z[n+1], ..., z[n+m] がパラメータ変数 */
                    164:   /*  Dz[0] --- Dz[n-2], z[0] --- z[n-2] を消去する. */
                    165:   PSfor (i=0; i<n-1; i++) {
                    166:     ww = Join(ww,[Indexed("Dz",i), 1]);
                    167:     /* ww = Join(ww,[Indexed("z",i), 1]); */
                    168:     if (i != n-1) {
                    169:        elim = Append(elim,Indexed("Dz",i));
                    170:        /* elim = Append(elim,Indexed("z",i)); */
                    171:     }
                    172:   }
                    173:   weight = [[Indexed("z",n),1] , ww];
                    174:   if (Vvv) {Print("-------- weight ---------: "); Println(weight);}
                    175:   rz = RingDonIndexedVariables("z",n+1+m, weight);
                    176:   z = NewArray(n+1+m); Dz = NewArray(n+1+m);
                    177:   PSfor(i=0; i<n+1+m; i++) {  /* これをもう一度やらないと, mklib で sm1 に
                    178:                                したときのみ z が undefined
                    179:                               になる. どうしてか? */
                    180:     z[i] = PolyR(Indexed("z",i),rz);
                    181:     Dz[i] = PolyR(Indexed("Dz",i),rz);
                    182:   }
                    183:   input = Mapto(input,rz);
                    184:   if (OnePath) {
                    185:     /* F-homogenization. z[0], ..., z[n-1],
                    186:        z[n] is the homogenization variable*/
                    187:     /* z[n]^(-1) とは書けないのはつらい. 1 を戻すので bug ともいえる. */
                    188:     zinverse = PolyR(AddString([Indexed("z",n),"^(-1)"]),rz);
                    189:     rule = [[Dz[n-1], Dz[n-1]*z[n]], [z[n-1],z[n-1]*zinverse]];
                    190:     input = Replace(input,rule);
                    191:     m = Length(input);
                    192:     PSfor (i=0; i<m; i++) {
                    193:       d = -Degree(Replace(input[i],[[z[n],zinverse]]),z[n]);
                    194:       if (d < 0) {
                    195:            input[i] = z[n]^(-d)*input[i];
                    196:       }
                    197:     }
                    198:   }
                    199:   if (Vvv) {Print("------ input : "); Println(input);}
                    200:   ans = GroebnerTime(input);
                    201:   m = Length(ans);
                    202:   PSfor (i=0; i<m; i++)  {
                    203:     /* FW principal part をとる. */
                    204:     /* ans[i] = Init_w(ans[i],[PolyR(Indexed("z",n),rz)],[1]); */
                    205:     tmp = Coefficients(ans[i],z[n]);
                    206:     ans[i] = tmp[1,0];
                    207:   }
                    208:   if (Vvv) {Print("--------FW principal parts : ");Println(ans);}
                    209:
                    210:
                    211:
                    212:   ans = Eliminatev(ans,elim);
                    213:   m = Length(ans);
                    214:   /* h,  z[n] を 1 にする. */
                    215:   for (i=0; i<m; i++) {
                    216:     ans[i] = Replace(ans[i],[[h,PolyR("1",rz)],[PolyR(Indexed("z",n),rz),PolyR("1",rz)]]);
                    217:   }
                    218:   if (Vvv) {Println(" "); Println(" ");}
                    219:   return(ans);
                    220: }
                    221:
                    222: def zrho(f,n) {
                    223:   local ans,i,top,w,rz;
                    224:   ans = 0;
                    225:   rz = Ringp(f);
                    226:   while(true) {
                    227:     if ( f == Poly("0")) sm1(" exit ");
                    228:     top = Init(f);
                    229:     f = f-top;
                    230:     w = Exponent(top,[PolyR(Indexed("Dz",n-1),rz)]);
                    231:     top = Replace(top,[[PolyR(Indexed("Dz",n-1),rz),PolyR("1",rz)]])*zipoch(z[n],w[0]);
                    232:     ans = ans + top;
                    233:   }
                    234:   return(ans);
                    235: }
                    236:
                    237: def zipoch(f,w) {
                    238:   local ans,i;
                    239:   ans = 1;
                    240:   PSfor  (i=0; i<w; i++) {
                    241:     ans = ans*(f-i);
                    242:   }
                    243:   return(ans);
                    244: }
                    245:
                    246:
                    247:
                    248:
                    249: def zindicial(fff,n,mm) {
                    250:   local ans,n,i,m,r,tmp;
                    251:   ans = zindicial0(fff,n,mm);
                    252:   if (Vvv) {Println(ans);}
                    253:   m = Length(ans);
                    254:   r = [ ];
                    255:   if (Vvv) {
                    256:     Println(AddString(["------ The generic indicial polynomial  along z[",
                    257:                        ToString(n-1),
                    258:                        "] = 0 is the minimal degree polynomial of the following",
                    259:                        "polynomials."]));
                    260:     Println(AddString(["z[",ToString(n),"] is equal to s."]));
                    261:   }
                    262:   PSfor (i=0; i<m; i++) {
                    263:      tmp = ans[i];
                    264:      tmp = Replace(tmp,[[Poly(Indexed("z",n-1)),Poly("1")]]);
                    265:      tmp = zrho(tmp,n);
                    266:      if (Vvv) {Print(i); Print(" :  ");Println(tmp);}
                    267:      r = Append(r,tmp);
                    268:   }
                    269:   if (Vvv) {Println(" ");}
                    270:   return(r);
                    271: }
                    272:
                    273: def ztoDz(f,n) {
                    274:   local rule,i;
                    275:   rule = NewArray(n);
                    276:   PSfor(i=0; i<n; i++) {
                    277:     rule[i] = [z[i],Dz[i]];
                    278:   }
                    279:   return(Replace(f,rule));
                    280: }
                    281:
                    282: /* 行列より A-HG の線形方程式をだす. */
                    283: def atolin(a) {
                    284:   local d,n,eqs,ans,i,j;
                    285:   d = Length(a);
                    286:   n = Length(a[0]);
                    287:   eqs = NewArray(d);
                    288:   PSfor (i=0; i<d; i++) {
                    289:     ans = 0;
                    290:     PSfor (j=0; j<n; j++) {
                    291:       ans = ans + a[i,j]*z[j]*Dz[j];
                    292:     }
                    293:     ans = ans - z[n+1+i];
                    294:     eqs[i] = ans;
                    295:   }
                    296:   return(eqs);
                    297: }
                    298:
                    299:
                    300:
                    301:
                    302: sm1(" ; ");

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>