[BACK]Return to ahg2.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / debug

Annotation of OpenXM/src/k097/debug/ahg2.k, Revision 1.2

1.1       maekawa     1:
                      2: /* SSWork/yacc/debug/ahg.k
                      3: /*             cf. debug/toric0.k */
                      4: /*  toric の generator を求める関数.
                      5:     A-hypergeometric の indicial ideal を求める関数.
                      6: */
1.2     ! takayama    7: load("indexed.k");
        !             8:
1.1       maekawa     9: ShimomuraSpecial = true ; OnePath= true;
                     10: Vvv = false;
                     11: SetRingVariables_Verbose = false;
                     12: def void QuietKan() {
                     13:   sm1(" [(KanGBmessage) 0] system_variable ");
                     14: }
                     15:
                     16: def testhg1() {
                     17:   a = [[1,1,1,1,1,1],
                     18:        [0,0,0,1,1,1],
                     19:        [0,1,0,0,1,0],
                     20:        [0,0,1,0,0,1]];
                     21:   return(idhg(a));
                     22: }
                     23:
                     24: def testhg2() {
                     25:   a = [[1,1,1,1,1],
                     26:        [0,2,3,4,3],
                     27:        [0,1,1,0,2]];
                     28:   return(idhg(a));
                     29: }
                     30:
                     31: def idhg(a) {
                     32:   local a,ans,rd,i,ans2,ans3,n,ff,d,zlist;
                     33:   ans = toric(a);
                     34:   if (ShimomuraSpecial) {
                     35:     /* 先に, toric の initial part をとってしまう. */
                     36:     /* 本当は, FW の initial part をとるべきなのかも? */
                     37:     if (Vvv) {Println("-------- S-special ---------");}
                     38:     ans = Map(ans,"Init");
                     39:   }
                     40:   ans = Map(ans,"ToString");
                     41:   if (Vvv) {Println(ans);}
                     42:
                     43:   rd = RingDonIndexedVariables("z",Length(a[0])+1+Length(a));
                     44:   /* 4 秒程度かかる. */
                     45:   ans = Map(ans,"Poly");
                     46:   n = Length(a[0]); d = Length(a);
                     47:   ans2 = NewArray(Length(ans));   /* ans2 には, toric */
                     48:   PSfor (i=0; i< Length(ans); i++) {
                     49:     ans2[i] = ztoDz(ans[i],n);
                     50:   }
                     51:   if (Vvv) {Println(ans2);}
                     52:   ans3 = atolin(a);             /* ans3 には, 一次式 */
                     53:   if (Vvv) {Println(ans3);}
                     54:   ff = Map(Join(ans2,ans3),"ToString");
                     55:   ans = zindicial(ff,n,d);
                     56:   zlist = [ ];
                     57:   PSfor(i= n; i<n+d+1; i++) {
                     58:     zlist = Append(zlist,Indexed("z",i));
                     59:   }
                     60:   return([ans,zlist]);
                     61: }
                     62:
                     63: def toric0_toMonom(aa,i,offset, ring)
                     64: {
                     65:   local j,ans,m;
                     66:   m = Length(aa);
                     67:   ans = PolyR("1",ring);
                     68:   for (j=0; j<m; j++) {
                     69:     ans = ans*(z[offset+j]^(aa[j,i]));
                     70:   }
                     71:   return(ans);
                     72: }
                     73:
                     74:
                     75: def toric(aa) {
                     76:   local i,j,rz,n,d,ideal,ans,univ,rule,nn,weight,elim;
                     77:   d = Length(aa);  n = Length(aa[0]);
                     78:   if (Vvv) {Println(aa);}
                     79:
                     80:   weight = [ ]; elim = [ ];
                     81:   PSfor (i= n; i< n+d; i++) {
                     82:      weight = Join(weight,[Indexed("z",i), 1]);
                     83:      elim = Append(elim, Indexed("z",i));
                     84:   }
                     85:   weight = Append([weight],[Indexed("z",n-1),1]);
                     86:   if (Vvv) {Println(weight);  Println(elim);}
                     87:
                     88:   rz = RingPonIndexedVariables("z",n+d, weight);  /* 4 秒程度かかる. */
                     89:   /* z[0], ..., z[n-1], ... , z[n+d]*/
                     90:   ideal = [ ];
                     91:   PSfor (i=0; i< n; i++) {
                     92:      ideal = Append(ideal, z[i] - toric0_toMonom(aa,i,n,rz));
                     93:   }
                     94:   if (Vvv) {
                     95:     Println(" --------- input ideal -------------");
                     96:     Print(" z["); Print( n ); Print( "] --- z["); Print( n+d-1);
                     97:     Println("] should be eliminated.");
                     98:     Println(ideal);
                     99:   }
                    100:
                    101:   ans = Groebner(ideal);
                    102:   if (Vvv) {Println(" -------------- gb is ----------------- "); Println(ans);}
                    103:   ans = Eliminatev(ans,elim);
                    104:   if (Vvv) {Println(" ------------ eliminated -------------- "); Println(ans);}
                    105:
                    106:   rule = [[h, PolyR("1",rz) ] ];
                    107:   nn = Length(ans); univ = [ ];
                    108:   PSfor (i=0; i<nn; i++) {
                    109:     univ = Append(univ,Replace(ans[i],rule));
                    110:   }
                    111:   ans = ReducedBase(univ);
                    112:   if (Vvv) {
                    113:     Println(" ----------- removed redundant elements ----------- ");
                    114:     Println(" ---------- generators of the toric ideal are ----- ");
                    115:     Println(ans);
                    116:     Println(" ");
                    117:   }
                    118:   return(ans);
                    119: }
                    120:
                    121: def zindicial0(input,n,m) {
                    122:   local rz,weight, ww,i,rule,zinverse,m,d,ans,elim,tmp;
                    123:   if (!OnePath) {
                    124:     ww = [ ]; elim = [ ];
                    125:     weight = [[Indexed("z",n),1]];
                    126:     if (Vvv) {Print("-------- weight ---------: "); Println(weight);}
                    127:     rz = RingDonIndexedVariables("z",n+1+m, weight);
                    128:     z = NewArray(n+1+m); Dz = NewArray(n+1+m);
                    129:     PSfor(i=0; i<n+1+m; i++) {
                    130:       z[i] = PolyR(Indexed("z",i),rz);
                    131:       Dz[i] = PolyR(Indexed("Dz",i),rz);
                    132:     }
                    133:     input = Mapto(input,rz);
                    134:     if (Vvv) {Println("------------ input ------------"); Println(input);}
                    135:
                    136:     /* F-homogenization. z[0], ..., z[n-1],
                    137:        z[n] is the homogenization variable*/
                    138:     /* z[n]^(-1) とは書けないのはつらい. 1 を戻すので bug ともいえる. */
                    139:     zinverse = PolyR(AddString([Indexed("z",n),"^(-1)"]),rz);
                    140:     rule = [[Dz[n-1], Dz[n-1]*z[n]], [z[n-1],z[n-1]*zinverse]];
                    141:     input = Replace(input,rule);
                    142:     m = Length(input);
                    143:     PSfor (i=0; i<m; i++) {
                    144:       d = -Degree(Replace(input[i],[[z[n],zinverse]]),z[n]);
                    145:       if (d < 0) {
                    146:            input[i] = z[n]^(-d)*input[i];
                    147:       }
                    148:     }
                    149:     if (Vvv) {Print("------ input : "); Println(input);}
                    150:     ans = GroebnerTime(input);
                    151:     m = Length(ans);
                    152:     PSfor (i=0; i<m; i++)  {
                    153:       /* FW principal part をとる. */
                    154:       /* ans[i] = Init_w(ans[i],[z[n]],[1]);  この関数は遅い. */
                    155:       tmp = Coefficients(ans[i],z[n]);
                    156:       ans[i] = tmp[1,0];
                    157:     }
                    158:     if (Vvv) {Print("--------FW principal parts : ");Println(ans);}
                    159:     /* もう一回, GB の計算. */
                    160:     input = Map(ans,"ToString");
                    161:   }
                    162:
                    163:   /* もう一回, GB の計算. */
                    164:   ww = [ ]; elim = [ ];
                    165:   /*  z[n+1], ..., z[n+m] がパラメータ変数 */
                    166:   /*  Dz[0] --- Dz[n-2], z[0] --- z[n-2] を消去する. */
                    167:   PSfor (i=0; i<n-1; i++) {
                    168:     ww = Join(ww,[Indexed("Dz",i), 1]);
                    169:     /* ww = Join(ww,[Indexed("z",i), 1]); */
                    170:     if (i != n-1) {
                    171:        elim = Append(elim,Indexed("Dz",i));
                    172:        /* elim = Append(elim,Indexed("z",i)); */
                    173:     }
                    174:   }
                    175:   weight = [[Indexed("z",n),1] , ww];
                    176:   if (Vvv) {Print("-------- weight ---------: "); Println(weight);}
                    177:   rz = RingDonIndexedVariables("z",n+1+m, weight);
                    178:   z = NewArray(n+1+m); Dz = NewArray(n+1+m);
                    179:   PSfor(i=0; i<n+1+m; i++) {  /* これをもう一度やらないと, mklib で sm1 に
                    180:                                したときのみ z が undefined
                    181:                               になる. どうしてか? */
                    182:     z[i] = PolyR(Indexed("z",i),rz);
                    183:     Dz[i] = PolyR(Indexed("Dz",i),rz);
                    184:   }
                    185:   input = Mapto(input,rz);
                    186:   if (OnePath) {
                    187:     /* F-homogenization. z[0], ..., z[n-1],
                    188:        z[n] is the homogenization variable*/
                    189:     /* z[n]^(-1) とは書けないのはつらい. 1 を戻すので bug ともいえる. */
                    190:     zinverse = PolyR(AddString([Indexed("z",n),"^(-1)"]),rz);
                    191:     rule = [[Dz[n-1], Dz[n-1]*z[n]], [z[n-1],z[n-1]*zinverse]];
                    192:     input = Replace(input,rule);
                    193:     m = Length(input);
                    194:     PSfor (i=0; i<m; i++) {
                    195:       d = -Degree(Replace(input[i],[[z[n],zinverse]]),z[n]);
                    196:       if (d < 0) {
                    197:            input[i] = z[n]^(-d)*input[i];
                    198:       }
                    199:     }
                    200:   }
                    201:   if (Vvv) {Print("------ input : "); Println(input);}
                    202:   ans = GroebnerTime(input);
                    203:   m = Length(ans);
                    204:   PSfor (i=0; i<m; i++)  {
                    205:     /* FW principal part をとる. */
                    206:     /* ans[i] = Init_w(ans[i],[PolyR(Indexed("z",n),rz)],[1]); */
                    207:     tmp = Coefficients(ans[i],z[n]);
                    208:     ans[i] = tmp[1,0];
                    209:   }
                    210:   if (Vvv) {Print("--------FW principal parts : ");Println(ans);}
                    211:
                    212:
                    213:
                    214:   ans = Eliminatev(ans,elim);
                    215:   m = Length(ans);
                    216:   /* h,  z[n] を 1 にする. */
                    217:   for (i=0; i<m; i++) {
                    218:     ans[i] = Replace(ans[i],[[h,PolyR("1",rz)],[PolyR(Indexed("z",n),rz),PolyR("1",rz)]]);
                    219:   }
                    220:   if (Vvv) {Println(" "); Println(" ");}
                    221:   return(ans);
                    222: }
                    223:
                    224: def zrho(f,n) {
                    225:   local ans,i,top,w,rz;
                    226:   ans = 0;
                    227:   rz = Ringp(f);
                    228:   while(true) {
                    229:     if ( f == Poly("0")) sm1(" exit ");
                    230:     top = Init(f);
                    231:     f = f-top;
                    232:     w = Exponent(top,[PolyR(Indexed("Dz",n-1),rz)]);
                    233:     top = Replace(top,[[PolyR(Indexed("Dz",n-1),rz),PolyR("1",rz)]])*zipoch(z[n],w[0]);
                    234:     ans = ans + top;
                    235:   }
                    236:   return(ans);
                    237: }
                    238:
                    239: def zipoch(f,w) {
                    240:   local ans,i;
                    241:   ans = 1;
                    242:   PSfor  (i=0; i<w; i++) {
                    243:     ans = ans*(f-i);
                    244:   }
                    245:   return(ans);
                    246: }
                    247:
                    248:
                    249:
                    250:
                    251: def zindicial(fff,n,mm) {
                    252:   local ans,n,i,m,r,tmp;
                    253:   ans = zindicial0(fff,n,mm);
                    254:   if (Vvv) {Println(ans);}
                    255:   m = Length(ans);
                    256:   r = [ ];
                    257:   if (Vvv) {
                    258:     Println(AddString(["------ The generic indicial polynomial  along z[",
                    259:                        ToString(n-1),
                    260:                        "] = 0 is the minimal degree polynomial of the following",
                    261:                        "polynomials."]));
                    262:     Println(AddString(["z[",ToString(n),"] is equal to s."]));
                    263:   }
                    264:   PSfor (i=0; i<m; i++) {
                    265:      tmp = ans[i];
                    266:      tmp = Replace(tmp,[[Poly(Indexed("z",n-1)),Poly("1")]]);
                    267:      tmp = zrho(tmp,n);
                    268:      if (Vvv) {Print(i); Print(" :  ");Println(tmp);}
                    269:      r = Append(r,tmp);
                    270:   }
                    271:   if (Vvv) {Println(" ");}
                    272:   return(r);
                    273: }
                    274:
                    275: def ztoDz(f,n) {
                    276:   local rule,i;
                    277:   rule = NewArray(n);
                    278:   PSfor(i=0; i<n; i++) {
                    279:     rule[i] = [z[i],Dz[i]];
                    280:   }
                    281:   return(Replace(f,rule));
                    282: }
                    283:
                    284: /* 行列より A-HG の線形方程式をだす. */
                    285: def atolin(a) {
                    286:   local d,n,eqs,ans,i,j;
                    287:   d = Length(a);
                    288:   n = Length(a[0]);
                    289:   eqs = NewArray(d);
                    290:   PSfor (i=0; i<d; i++) {
                    291:     ans = 0;
                    292:     PSfor (j=0; j<n; j++) {
                    293:       ans = ans + a[i,j]*z[j]*Dz[j];
                    294:     }
                    295:     ans = ans - z[n+1+i];
                    296:     eqs[i] = ans;
                    297:   }
                    298:   return(eqs);
                    299: }
                    300:
                    301:
                    302:
                    303:
                    304: sm1(" ; ");

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>