[BACK]Return to help.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097

Annotation of OpenXM/src/k097/help.k, Revision 1.2

1.2     ! takayama    1: /* $OpenXM$ */
1.1       maekawa     2: if (K00_verbose)
                      3:   Println("help.k (help.ccc).  8/6, 1996 --- 8/7, 1996. 3/6, 1997 --- 12/21, 1997.");
                      4:
                      5: def help(x) {
                      6:   if (Length(Arglist) < 1) {
                      7:      ShowKeyWords(" ");
                      8:   } else {
                      9:      Help(x);
                     10:   }
                     11: }
                     12:
                     13:
                     14: def Help(key) {
                     15:   local n,i,item,m,item1,j;
                     16:   if (Length(Arglist) < 1) {
                     17:      ShowKeyWords(" ");
                     18:      return( [ ] );
                     19:   }
                     20:
                     21:   if (key == "ALL") {
                     22:     ShowKeyWords("ALL"); return(0);
                     23:   }
                     24:   n = Length(Helplist);
                     25:   PSfor (i=0; i<n; i++) {
                     26:     item = Helplist[i];
                     27:     if (item[0] == key) {
                     28:        if (IsArray(item[1])) {
                     29:          item1 = item[1];
                     30:          m = Length(item1);
                     31:          for (j=0; j<m; j++) {
                     32:            Println(item1[j]);
                     33:          }
                     34:        }else{
                     35:          Println(item[1]);
                     36:        }
                     37:        return(item);
                     38:     }
                     39:   }
                     40:   Print("The key word <<"); Print(key); Println(">> could not be found.");
                     41:   return([ ]);
                     42: }
                     43:
                     44:
                     45: def ShowKeyWords(ss) {
                     46:   local i,j,n,keys,max,width,m,k,kk,tmp0;
                     47:   Ln();
                     48:   n = Length(Helplist);
                     49:   keys = [" " ];  /* This is a gate keeper for shell. */
                     50:   PSfor (i=0; i< n; i++ ) {
                     51:     keys = Append(keys,Helplist[i,0]);
                     52:   }
                     53:   keys = sm1(keys," shell ");
                     54:   n = Length(keys);
                     55:   if (ss == "ALL") {
                     56:     PSfor (i=1; i<n; i++) {
                     57:       Print("# "); Print(keys[i]); Ln();
                     58:       Help(keys[i]); Ln();
                     59:     }
                     60:     return(0);
                     61:   }
                     62:   max = 0;
                     63:   PSfor (i=1; i<n; i++) {
                     64:      if (Length(keys[i]) > max) {
                     65:         max = Length(keys[i]);
                     66:      }
                     67:   }
                     68:   /* Println(max); */
                     69:   max = max+3;
                     70:   width = 80;
                     71:   m = 0;
                     72:   while ((m*max) < 80) {
                     73:      m = m+1;
                     74:   }
                     75:   if (m > 1) m = m-1;
                     76:   k = 0; kk = 0;
                     77:   PSfor (i=1; i<n; i++) {
                     78:     Print(keys[i]); kk = kk+1;
                     79:     k = k+Length(keys[i]);
                     80:     tmp0 = max-Length(keys[i]);
                     81:     /*for (j=0; j < tmp0 ; j++) {
                     82:        k = k+1;
                     83:        if (kk < m) {Print(" ");}
                     84:     }*/
                     85:     k = k+tmp0;
                     86:     if (kk < m) {
                     87:         sm1(" [ 0 1 ", tmp0, " (integer) dc 1 sub { pop $ $ } for ] aload length cat_n messagen ");
                     88:     }
                     89:     if (kk >= m) {
                     90:       kk = 0; k=0; Ln();
                     91:     }
                     92:   }
                     93:   Ln();
                     94:   Println("Type in Help(keyword);  to see a help message (string keyword).");
                     95:
                     96:   /* Println(keys); */
                     97: }
                     98:
                     99: def ShowKeyWordsOfSm1(ss) {
                    100:   local i,j,n,keys,max,width,m,k,kk,tmp0;
                    101:   Ln();
                    102:   sm1(" /help_Sm1Macro @.usages def ");
                    103:   n = Length(help_Sm1Macro);
                    104:   keys = [" " ];
                    105:   for (i=0; i< n; i++ ) {
                    106:     keys = Append(keys,help_Sm1Macro[i,0]);
                    107:   }
                    108:   keys = sm1(keys," shell ");
                    109:   n = Length(keys);
                    110:   if (ss == "ALL") {
                    111:     for (i=1; i<n; i++) {
                    112:       tmp0 = keys[i];
                    113:       Print("# "); Print(tmp0); Ln();
                    114:       sm1(tmp0," usage "); Ln();
                    115:     }
                    116:     return(0);
                    117:   }
                    118:
                    119:   max = 0;
                    120:   for (i=1; i<n; i++) {
                    121:      if (Length(keys[i]) > max) {
                    122:         max = Length(keys[i]);
                    123:      }
                    124:   }
                    125:   /* Println(max); */
                    126:   max = max+3;
                    127:   width = 80;
                    128:   m = 0;
                    129:   while ((m*max) < 80) {
                    130:      m = m+1;
                    131:   }
                    132:   k = 0; kk = 0;
                    133:   for (i=1; i<n; i++) {
                    134:     Print(keys[i]); kk = kk+1;
                    135:     k = k+Length(keys[i]);
                    136:     tmp0 = max-Length(keys[i]);
                    137:     if (kk >= m) {
                    138:     }else {
                    139:       for (j=0; j < tmp0 ; j++) {
                    140:          k = k+1;
                    141:          Print(" ");
                    142:       }
                    143:     }
                    144:     if (kk >= m) {
                    145:       kk = 0; k=0; Ln();
                    146:     }
                    147:   }
                    148:   Ln();
                    149:   Ln();
                    150:   Println("Type in (keyword) usage ;  to see a help message.");
                    151:
                    152:   /* Println(keys); */
                    153: }
                    154:
                    155: HelpAdd(["Help", "Help(key) shows an explanation on the key (string key)."]);
                    156: HelpAdd(["HelpAdd",
                    157:  ["HelpAdd([key,explanation]) (string key, string explanation)",
                    158:   " or (string key, array explanation)."]]);
                    159: HelpAdd(["load",
                    160:  ["load(fname) loads the file << fname >>(string fname).",
                    161:   "load fname  loads the file << fname >>.",
                    162:   "load[fname] loads the file << fname >> with the preprocessing by /lib/cpp."
                    163: ]]);
                    164: HelpAdd(["Ln","Ln() newline."]);
                    165: HelpAdd(["Println","Println(f) prints f and goes to the new line."]);
                    166: HelpAdd(["Print","Print(f) prints f."]);
                    167: HelpAdd(["Poly",
                    168:  "Poly(name) returns the polynomial name in the current ring
                    169:   (string name)."]);
                    170: HelpAdd(["PolyR",
                    171:  "PolyR(name,r) returns the polynomial name in the ring r
                    172:  (string name, ring r).
                    173:  Ex. r = RingD(\"x,y\"); y = PolyR(\"y\",r); "]);
                    174: HelpAdd(["RingD",
                    175:  ["RingD(names) defines a new ring (string names).",
                    176:   "RingD(names,weight_vector) defines a new ring with the weight vector",
                    177:   "(string names, array weight_vector).",
                    178:   "RingD(names,weight_vector,characteristic)",
                    179:   " Ex. RingD(\"x,y\",[[\"x\",2,\"y\",1]]) "]]);
                    180: HelpAdd(["Reduction","Reduction(f,G) returns the remainder and sygygies when
                    181: f is devided by G (polynomial f, array G)."]);
                    182: HelpAdd(["AddString","AddString(list) returns the concatnated string (array list)."]);
                    183: HelpAdd(["AsciiToString","AsciiToString(ascii_code) returns the string of which
                    184: ascii code is ascii_code (integer ascii_code)."]);
                    185: HelpAdd(["ToString","ToString(obj) transforms the <<obj>> to a string."]);
                    186: HelpAdd(["Numerator","Numerator(f) returns the numerator of <<f>> (rational f)."]);
                    187: HelpAdd(["Denominator","Denominator(f) returns the denominator of <<f>> (rational f)."]);
                    188: HelpAdd(["Replace","Replace(f,rule) (polynomial f, array rule).
                    189:            Ex. Replace( (x+y)^3, [[x,Poly(\"1\")]])"]);
                    190: HelpAdd(["SetRingVariables",
                    191:  "SetRingVariables()
                    192:   Set the generators of the current ring as global variables.
                    193:   cf. RingD(), Poly(), PolyR()"]);
                    194: HelpAdd(["Append","Append([f1,...,fn],g) returns the list [f1,...,fn,g]"]);
                    195: HelpAdd(["Join",
                    196:  "Join([f1,...,fn],[g1,...,gm]) returns the list
                    197:   [f1,...,fn,g1,...,gm]"]);
                    198: HelpAdd(["Indexed",
                    199:  "Indexed(name,i) returns the string name[i]
                    200:   (string name, integer i)"]);
                    201:
                    202: HelpAdd(["-ReservedName1",
                    203:  ["The names k00*, K00*, sm1* , arg1,arg2,arg3,arg4,....," ,
                    204:   "Helplist, Arglist, FunctionValue,",
                    205:   "@@@*, db.*, k.*, tmp002*, tmp00* are used for system functions."]]);
                    206:
                    207: HelpAdd(["IntegerToSm1Integer",
                    208:  "IntegerToSm1Integer(i) translates integer i
                    209:   to sm1.integer (integer i)."]);
                    210: HelpAdd(["true","true returns sm1.integer 1."]);
                    211: HelpAdd(["false","false returns sm1.integer 0."]);
                    212: HelpAdd(["IsArray",
                    213:  ["If f is the array object, then IsArray(f) returns true,",
                    214:   "else IsArray(f) returns false."]]);
                    215:
                    216:
                    217:
                    218: HelpAdd(["Init_w",
                    219:  ["Init_w(f,vars,w) returns the initial terms with respect to the",
                    220:   "weight vector <<w>> (array of integer) of the polynomial <<f>>",
                    221:   "(polynomial).  Here, <<f>> is regarded as a polynomial with respect",
                    222:   "to the variables <<vars>> (array of polynomials).",
                    223:   "Example: Init_w(x^2+y^2+x,[x,y],[1,1]):"]]);
                    224:
                    225: HelpAdd(["RingDonIndexedVariables",
                    226:  ["RingDonIndexedVariables(name,n) defines and returns the ring of",
                    227:   "homogenized differential operators",
                    228:   "Q<h, name[0], ..., name[n-1], Dname[0], ..., Dname[n-1]>",
                    229:   "where <<name>> is a string and <<n>> is an integer.",
                    230:   "Note that this function defines global variables",
                    231:   "h, name[0], ..., name[n-1], Dname[0], ..., Dname[n-1].",
                    232:   "Example: RingDonIndexedVariables(\"x\",3).",
                    233:   "RingDonIndexedVariables(name,n,w) defines and returns the ring of",
                    234:   "homogenized differential operators with the ordering defined by ",
                    235:   "the weight vector <<w>> (array)",
                    236:   "Example: RingDonIndexedVariables(\"x\",3,[[\"x[0]\",1,\"x[2]\",3]])."]]);
                    237:
                    238: HelpAdd(["Groebner",
                    239:  ["Groebner(input) returns Groebner basis of the left module (or ideal)",
                    240:   "defined by <<input>> (array of polynomials)",
                    241:   "The order is that of the ring to which each element of <<input>>",
                    242:   "belongs.",
                    243:   "The input is automatically homogenized.",
                    244:   "Example: RingD(\"x,y\",[[\"x\", 10, \"y\", 1]]);",
                    245:   "         Groebner([Poly(\" x^2+y^2-4\"),Poly(\" x*y-1 \")]):",
                    246:   "cf. RingD, Homogenize"]]);
                    247:
                    248:
                    249: HelpAdd(["RingPoly",
                    250:  ["RingPoly(names) defines a Ring of Polyomials (string names).",
                    251:   "The names of variables of that ring are <<names>>  and ",
                    252:   "the homogenization variable h.",
                    253:   "cf. SetRingVariables, RingD",
                    254:   "Example: R=RingPoly(\"x,y\");",
                    255:   "  ",
                    256:   "RingPoly(names,weight_vector) defines a Ring of Polynomials",
                    257:   "with the order defined by the << weight_vector >>",
                    258:   "(string names, array of array weight_vector).",
                    259:   "RingPoly(names,weight_vector,characteristic)",
                    260:   "Example: R=RingPoly(\"x,y\",[[\"x\",10,\"y\",1]]);",
                    261:   "         (x+y)^10: "]]);
                    262:
                    263:
                    264: HelpAdd(["CancelNumber",
                    265: ["CancelNumber(rn) reduces the rational number <<rn>>",
                    266:  "(rational rn).",
                    267:  "Example: CancelNumber( 2/6 ) : "]]);
                    268:
                    269: HelpAdd(["IsString",
                    270: ["IsString(obj) returns true if << obj >> is a string (object obj).",
                    271:  "Example:  if (IsString(\"abc\")) Println(\"Hello\"); ;"]]);
                    272:
                    273:
                    274: HelpAdd(["IsSm1Integer",
                    275: ["IsSm1Integer(obj) returns true if << obj >> is an integer of sm1(object obj)."]]);
                    276:
                    277: HelpAdd(["sm1",
                    278: ["sm1(arg1,arg2,...) is used to embed sm1 native code in the kxx program.",
                    279:  "Example: sm1( 2, 2, \" add print \"); ",
                    280:  "Example: def myadd(a,b) { sm1(a,b,\" add /FunctionValue set \"); }" ]]);
                    281:
                    282: HelpAdd(["DC",
                    283: ["DC(obj,key) converts << obj >> to a new object in the primitive",
                    284:  "class << key >> (object obj, string key)",
                    285:  "Example:  DC(\" (x+1)^10 \", \"polynomial\"): "]]);
                    286:
                    287: HelpAdd(["Length",
                    288: ["Length(vec) returns the length of the array << vec >>",
                    289:  "(array vec)"]]);
                    290:
                    291: HelpAdd(["Transpose",
                    292: ["Transpose(m) return the transpose of the matrix << m >>",
                    293:  "(array of array m)."]]);
                    294:
                    295: HelpAdd(["Save",
                    296: ["Save(obj) appends << obj >> to the file sm1out.txt (object obj)."]]);
                    297:
                    298: HelpAdd(["Coefficients",
                    299: ["Coefficients(f,v) returns [exponents, coefficients] of << f >>",
                    300:  "with respect to the variable << v >>",
                    301:  "(polynomial f,v).",
                    302:  "Example: Coefficients(Poly(\"(x+1)^2\"),Poly(\"x\")): "]]);
                    303:
                    304: HelpAdd(["System",
                    305: ["System(comm) executes the unix system command << comm >>",
                    306:  "(string comm)",
                    307:  "Example: System(\"ls\");"]]);
                    308:
                    309: HelpAdd(["Exponent",
                    310:  ["Expoent(f,vars) returns the vector of exponents of the polynomial f",
                    311:   "Ex. Exponent( x^2*y-1,[x,y])"]]);
                    312:
                    313: HelpAdd(["Protect",
                    314:  ["Protect(name) protects the symbol <<name>> (string)",
                    315:   "Protect(name,level) protects the symbol <<name>> (string) with ",
                    316:   "<<level>> "]]);
                    317:
                    318: HelpAdd(["IsPolynomial",
                    319:  ["IsPolynomial(f) returns true if <<f>> (object) is a polynomial."]]);
                    320:
                    321:
                    322:
                    323: /* -----------------------------------------------
                    324:    functions on tests.    */
                    325: /* ------------  Developping functions  --------------------- */
                    326:
                    327: def RingPoly(vList,weightMatrix,pp) {
                    328:   local new0,tmp,size,n,i,j,newtmp,ringpp,argsize;
                    329:   argsize = Length(Arglist);
                    330:   if (argsize == 1) {
                    331:     sm1("[", vList,
                    332:         "ring_of_polynomials ( ) elimination_order 0 ] define_ring
                    333:          /tmp set ");
                    334:     return(tmp);
                    335:   } else ;
                    336:   if (argsize == 2) {
                    337:     pp = 0;
                    338:   }
                    339:   pp = IntegerToSm1Integer(pp);
                    340:   size = Length(weightMatrix);
                    341:   new0 = NewVector(size);
                    342:   sm1(" /@@@.indexMode.flag.save @@@.indexMode.flag def ");
                    343:   sm1(" 0 @@@.indexMode ");
                    344:   for (i=0; i<size; i++) {
                    345:     tmp = weightMatrix[i];
                    346:     n = Length(tmp);
                    347:     newtmp = NewVector(n);
                    348:     for (j=1; j<n; j = j+2) {
                    349:        newtmp[j-1] = tmp[j-1];
                    350:        newtmp[j] = IntegerToSm1Integer( tmp[j] );
                    351:     }
                    352:     new0[i] = newtmp;
                    353:   }
                    354:   ringpp =
                    355:   sm1("[", vList,
                    356:       "ring_of_polynomials ", new0, " weight_vector", pp, " ] define_ring");
                    357:   sm1(" @@@.indexMode.flag.save @@@.indexMode ");
                    358:   return( ringpp );
                    359: }
                    360:
                    361: def IsString(ob) {
                    362:   sm1(ob , " isString /FunctionValue set ");
                    363: }
                    364:
                    365: def IsSm1Integer(ob) {
                    366:   sm1(ob , " isInteger /FunctionValue set ");
                    367: }
                    368:
                    369:
                    370: def CancelNumber(rn) {
                    371:   local tmp;
                    372:   sm1(" [(cancel) ",rn," ] mpzext /tmp set ");
                    373:   if (IsInteger(tmp)) return(tmp);
                    374:   sm1(" tmp (denominator) dc (1).. eq { /FunctionValue tmp (numerator) dc def} { /FunctionValue tmp def } ifelse ");
                    375: }
                    376:
                    377: def DC(obj,key) {
                    378:   if (key == "string") { return(ToString(obj)); }
                    379:   else if (key == "integer") { key = "universalNumber"; }
                    380:   else if (key == "sm1integer") { key = "integer"; }
                    381:   else if (key == "polynomial") { key = "poly"; }
                    382:   else ;
                    383:   sm1( obj , key, " data_conversion /FunctionValue set ");
                    384: }
                    385:
                    386: def Transpose(m) {
                    387:   sm1(m, " transpose /FunctionValue set ");
                    388: }
                    389:
                    390: def Save(obj) {
                    391:   sm1(obj, " output ");
                    392: }
                    393:
                    394:
                    395: def void System(comm) {
                    396:   sm1(comm, " system ");
                    397: }
                    398:
                    399:
                    400: def IsReducible(f,g) {
                    401:   sm1("[ (isReducible) ",f,g," ] gbext /FunctionValue set ");
                    402: }
                    403:
                    404: def IsPolynomial(f) {
                    405:   sm1(" f isPolynomial /FunctionValue set ");
                    406: }
                    407: sm1(" /k00.toric0.mydegree {2 1 roll degree} def ");
                    408: def Exponent(f,vars) {
                    409:   local n,i,ans;
                    410:   if (f == Poly("0")) return([ ] );
                    411:   sm1(f," /ff.tmp set ", vars ,
                    412:       " {ff.tmp k00.toric0.mydegree (universalNumber) dc }map /FunctionValue set ");
                    413: }
                    414: def void Protect(name,level) {
                    415:   local n,str;
                    416:   n = Length(Arglist);
                    417:   if (n == 1) {
                    418:     level = 1;
                    419:     str = AddString(["[(chattr) ",ToString(level)," /",name," ",
                    420:                      " ] extension pop "]);
                    421:     /* Println(str); */
                    422:     sm1(" [(parse) ",str ," ] extension pop ");
                    423:   } else if (n ==2) {
                    424:     str = AddString(["[(chattr) ",ToString(level)," /",name," ",
                    425:                      " ] extension pop "]);
                    426:     /* Println(str); */
                    427:     sm1(" [(parse) ",str ," ] extension pop ");
                    428:   } else {
                    429:      k00_error("Protect","Arguments must be one or two. ");sm1(" error ");
                    430:   }
                    431: }
                    432:
                    433: def void k00_error(name,msg) {
                    434:   Print("Error in "); Print(name); Print(". ");
                    435:   Println(msg);
                    436: }
                    437:
                    438: def Init(f) {
                    439:   if (IsArray(f)) {
                    440:      return(Map(f,"Init"));
                    441:   } else if (IsPolynomial(f)) {
                    442:      sm1(f,"  init  /FunctionValue set ");
                    443:   } else {
                    444:      k00_error("Init","Argment must be polynomial or an array of polynomials");
                    445:      sm1(" error ");
                    446:   }
                    447: }
                    448: HelpAdd(["Init",
                    449:  ["Init(f) returns the initial term of the polynomial <<f>> (polynomial)",
                    450:   "Init(list) returns the array of initial terms of the array of polynomials",
                    451:   "<< list >> (array)"]]);
                    452:
                    453: HelpAdd(["NewMatrix",
                    454:  ["NewMatrix(m,n) returns the (m,n)-matrix (array) with the entries 0."]]);
                    455:
                    456: def Eliminatev(list,var)  /* [(x-y). (y-z).] [(z) ] */
                    457: {
                    458:    sm1(list, var, " eliminatev /FunctionValue set ");
                    459: }
                    460: HelpAdd(["Eliminatev",
                    461: ["Eliminatev(list,var) prunes polynomials in << list >>(array of polynomials)",
                    462:  "which contains the variables in << var >> ( array of strings )",
                    463:  "Example: Eliminatev([Poly(\" x+h \"),Poly(\" x \")],[ \"h\" ]): "]]);
                    464:
                    465: def ReducedBase(base) {
                    466:   sm1( base, " reducedBase /FunctionValue set ");
                    467: }
                    468: HelpAdd(["ReducedBase",
                    469:  ["ReducedBase[base] prunes redundant elements in the Grobner basis <<base>> (array)."
                    470: ]]);
                    471:
                    472: def IndexedVariables(name,size) {
                    473:   local result,i,result2;
                    474:   result = [ ];
                    475:   for (i=0; i<size-1; i++) {
                    476:     result = Append(result,Indexed(name,i));
                    477:     result = Append(result,",");
                    478:   }
                    479:   if (size-1 >= 0) {
                    480:     result = Append(result,Indexed(name,size-1));
                    481:   }
                    482:   result2 = Join(["{"],result);
                    483:   result2 = Join(result2,["}"]);
                    484:   return(AddString(result2));
                    485: }
                    486: HelpAdd(["IndexedVariables",
                    487: ["IndexedVariables(name,size) returns the string ",
                    488:  " {name[0],name[1],...,name[size-1]} which can be used as inputs to ",
                    489:  " the function RingD  (string name, integer size).",
                    490:  " cf. RingDonIndexedVariables.",
                    491:  " Ex. R = RingD(IndexedVariables(\"a\",3)); ",
                    492:  "     h = Poly(\"h\");",
                    493:  "     a = NewArray(3);",
                    494:  "     for (i=0; i<3; i++) {a[i] = Poly(Indexed(\"a\",i));} ;"]]);
                    495:
                    496:
                    497: def RingDonIndexedVariables(vList, size, weightMatrix,pp) {
                    498:   local myring,tmp,k00_i,argsize,vListD;
                    499:   /* You cannot use these local varialbes as a name of global ring
                    500:      variables. Change these names to names that start with k00_ */
                    501:   argsize = Length(Arglist);
                    502:   if (argsize == 1) {
                    503:     Println("Error (IndexedRingD): ");
                    504:     return(null);
                    505:   }
                    506:   if (argsize == 2) {
                    507:     vListD = AddString(["D",vList]);
                    508:     myring = RingD(IndexedVariables(vList,size));
                    509:     SetRingVariables();
                    510:     tmp = NewArray(size);
                    511:     for (k00_i=0; k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vList,k00_i));}
                    512:     sm1(vList, " (literal) dc ", tmp, " def ");
                    513:     tmp = NewArray(size);
                    514:     for (k00_i=0; k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vListD,k00_i));}
                    515:     sm1(vListD, " (literal) dc ", tmp, " def ");
                    516:     if (SetRingVariables_Verbose) {
                    517:       Print("Set the global variables ");
                    518:       sm1("[(parse) ",vList," ] extension pop print ");
                    519:       sm1("[(parse) ",vListD," ] extension pop print "); Ln();
                    520:     }else {
                    521:       sm1("[(parse) ",vList," ] extension pop  ");
                    522:       sm1("[(parse) ",vListD," ] extension pop ");
                    523:     }
                    524:     return( myring );
                    525:   }
                    526:   if (argsize == 3 || argsize == 4) {
                    527:    if (argsize == 3) { pp = 0; }
                    528:    vListD = AddString(["D",vList]);
                    529:    myring = RingD(IndexedVariables(vList,size),weightMatrix,pp);
                    530:     SetRingVariables();
                    531:     tmp = NewArray(size);
                    532:     for (k00_i=0;k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vList,k00_i));}
                    533:     sm1(vList, " (literal) dc ", tmp, " def ");
                    534:     tmp = NewArray(size);
                    535:     for (k00_i=0;k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vListD,k00_i));}
                    536:     sm1(vListD, " (literal) dc ", tmp, " def ");
                    537:     if (SetRingVariables_Verbose) {
                    538:       Print("Set the global variables ");
                    539:       sm1("[(parse) ",vList," ] extension pop print ");
                    540:       sm1("[(parse) ",vListD," ] extension pop print "); Ln();
                    541:     } else {
                    542:       sm1("[(parse) ",vList," ] extension pop  ");
                    543:       sm1("[(parse) ",vListD," ] extension pop ");
                    544:     }
                    545:     return( myring );
                    546:   }
                    547:   return(-1);
                    548: }
                    549:
                    550: def Ringp(f) {
                    551:   sm1(f, " (ring) dc /FunctionValue set ");
                    552: }
                    553: HelpAdd(["Ringp",
                    554:  ["Ringp(f) ( polynomial f ) returns the ring to which the polynomial << f >>",
                    555:   "belongs."]]);
                    556:
                    557: def Coefficients(f,v) {
                    558:   local ans,exp;
                    559:   ans = sm1(f,v, " coefficients ");
                    560:   exp = ans[0];
                    561:   exp = sm1(exp," { (universalNumber) dc } map ");
                    562:   return([exp,ans[1]]);
                    563: }
                    564:
                    565: def IsInteger(a) {
                    566:   sm1(a , " isUniversalNumber /FunctionValue set ");
                    567: }
                    568: HelpAdd(["IsInteger",
                    569: ["IsInteger(a) returns true if << a >> is an integer (object a).",
                    570:  "It returns false if << a >> is not.",
                    571:  "cf. IsSm1Integer"]]);
                    572:
                    573: def IsRational(a) {
                    574:   sm1(a , " isRational /FunctionValue set ");
                    575: }
                    576: HelpAdd(["IsRational",
                    577: ["IsRational(a) returns true if << a >> is a rational (object a).",
                    578:  "It returns false if << a >> is not."]]);
                    579:
                    580:
                    581: def IsDouble(a) {
                    582:   sm1(a , " isDouble /FunctionValue set ");
                    583: }
                    584: HelpAdd(["IsDouble",
                    585: ["IsDouble(a) returns true if << a >> is a double (object a).",
                    586:  "It returns false if << a >> is not."]]);
                    587:
                    588:
                    589: sm1(" /cs { this  [ ] Cleards  } def ");
                    590:
                    591:
                    592: def Init_w(f,vars,weight) {
                    593:   local w,w2,w3,ans,i,n;
                    594:   if (f == Poly("0")) return( Poly("0") );
                    595:   w = Map(vars,"ToString");
                    596:   w2 = sm1(weight," {$integer$ data_conversion} map ");
                    597:   n = Length(w);
                    598:   w3 = NewArray(n*2);
                    599:   for (i=0; i<n ; i++) {
                    600:     w3[2*i] = w[i]; w3[2*i+1] = w2[i];
                    601:   }
                    602:   ans = sm1(f,w3, " weightv init ");
                    603:   return(ans);
                    604: }
                    605:
                    606: HelpAdd(["Mapto",
                    607:  ["Mapto(obj,ring) parses << obj >> as elements of the << ring >>.",
                    608:   "(ring << ring >>, polynomial << obj >> or array of polynomial << obj >>).",
                    609:   "Ex. R = RingD(\"x,y\"); SetRingVariables();",
                    610:   "    f = (x+y)^2; R2 = RingD(\"x,y,z\",[[\"y\",1]]); ",
                    611:   "    f2 = Mapto(f,R2); f2: "]]);
                    612:
                    613: def Mapto(obj,ring) {
                    614:    local ans,i,n;
                    615:    if (IsArray(obj)) {
                    616:       n = Length(obj);
                    617:       ans = Map(obj,"ToString");
                    618:       for (i=0; i<n; i++) {
                    619:          ans[i] = PolyR(ans[i],ring);
                    620:       }
                    621:    }else{
                    622:       ans = ToString(obj);
                    623:       ans = PolyR(ans,ring);
                    624:    }
                    625:    return(ans);
                    626: }
                    627:
                    628:
                    629: HelpAdd(["ToDouble",
                    630:  ["ToDouble(f) translates << f >> into double when it is possible",
                    631:   "object << f >>.",
                    632:   "Example: ToDouble([1,1/2,[5]]): "]]);
                    633: def k00_toDouble(f) {   return(DC(f,"double")); }
                    634: def ToDouble(f) {
                    635:   if (IsArray(f)) return(Map(f,"ToDouble"));
                    636:   if (IsDouble(f)) return(f);
                    637:   return(k00_toDouble(f));
                    638: }
                    639:
                    640:
                    641: def RingPonIndexedVariables(vList, size, weightMatrix) {
                    642:   local myring,tmp,k00_i,argsize,vListD;
                    643:   /* You cannot use these local varialbes as a name of global ring
                    644:      variables. Change these names to names that start with k00_ */
                    645:   argsize = Length(Arglist);
                    646:   if (argsize == 1) {
                    647:     Println("Error (RingPonIndexedVariables): ");
                    648:     return(null);
                    649:   }
                    650:   if (argsize == 2) {
                    651:     myring = RingPoly(IndexedVariables(vList,size));
                    652:     SetRingVariables();
                    653:     tmp = NewArray(size);
                    654:     for (k00_i=0; k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vList,k00_i));}
                    655:     sm1(vList, " (literal) dc ", tmp, " def ");
                    656:     if (SetRingVariables_Verbose) {
                    657:      Print("Set the global variables ");
                    658:      sm1("[(parse) ",vList," ] extension pop print "); Ln();
                    659:     }else {
                    660:      sm1("[(parse) ",vList," ] extension pop  ");
                    661:     }
                    662:     return( myring );
                    663:   }
                    664:   if (argsize == 3) {
                    665:     myring = RingPoly(IndexedVariables(vList,size),weightMatrix);
                    666:     SetRingVariables();
                    667:     tmp = NewArray(size);
                    668:     for (k00_i=0;k00_i<size; k00_i++) {tmp[k00_i]=Poly(Indexed(vList,k00_i));}
                    669:     sm1(vList, " (literal) dc ", tmp, " def ");
                    670:     if (SetRingVariables_Verbose) {
                    671:       Print("Set the global variables ");
                    672:       sm1("[(parse) ",vList," ] extension pop print "); Ln();
                    673:     } else {
                    674:       sm1("[(parse) ",vList," ] extension pop ");
                    675:     }
                    676:     return( myring );
                    677:   }
                    678:   return(-1);
                    679: }
                    680:
                    681: HelpAdd(["RingPonIndexedVariables",
                    682:  ["RingPonIndexedVariables(name,n) defines and returns the ring of",
                    683:   "polynomials",
                    684:   "Q<h, name[0], ..., name[n-1] >",
                    685:   "where <<name>> is a string and <<n>> is an integer.",
                    686:   "Note that this function defines global variables",
                    687:   "h, name[0], ..., name[n-1].",
                    688:   "Example: RingPonIndexedVariables(\"x\",3).",
                    689:   "RingPonIndexedVariables(name,n,w) defines and returns the ring of",
                    690:   "polynomials with the ordering defined by ",
                    691:   "the weight vector <<w>> (array)",
                    692:   "Example: RingPonIndexedVariables(\"x\",3,[[\"x[0]\",1,\"x[2]\",3]])."]]);
                    693:
                    694:
                    695: def Mod(f,n) {
                    696:    if (IsPolynomial(f)) {
                    697:      sm1("[(mod) ",f,n,"] gbext  /FunctionValue set ");
                    698:    } else if (IsInteger(f)) { return( Gmp.Mod(f,n) ); }
                    699: }
                    700: HelpAdd(["Mod",
                    701:  ["Mod(f,p) returns f modulo n  where << f >> (polynomial) and",
                    702:   " << p >> (integer). "]]);
                    703:
                    704:
                    705:
                    706:
                    707: def Characteristic(ringp) {
                    708:   local r,p;
                    709:   r = sm1(" [(CurrentRingp)] system_variable ");
                    710:   sm1("[(CurrentRingp) ",ringp, " ] system_variable ");
                    711:   p = sm1("[(P)] system_variable (universalNumber) dc ");
                    712:   sm1("[(CurrentRingp) ",r, " ] system_variable ");
                    713:   return(p);
                    714: }
                    715: HelpAdd(["Characteristic",
                    716: ["Characteristic(ring) returns the characteristic of the << ring >>."
                    717: ]]);
                    718:
                    719: def IsConstant(f) {
                    720:   if (Length(f) > 1) return(false);
                    721:   sm1("[(isConstant) ", f," ] gbext /FunctionValue set ");
                    722: }
                    723: HelpAdd(["IsConstant",
                    724: ["IsConstant(f) returns true if the polynomial << f >> is a constant."
                    725: ]]);
                    726:
                    727: Println("Default ring is Z[x,h]."); x = Poly("x"); h = Poly("h");
                    728:
                    729: def Substitute(f,xx,g) {
                    730:   local tmp, coeff0,ex,i,n,newex;
                    731:   if (IsInteger(f)) return(f);
                    732:   if (! IsPolynomial(f)) {
                    733:     k00_error("Substitute","The first argument must be polynomial.");
                    734:   }
                    735:   tmp = Coefficients(f,xx);
                    736:   coeff0 = tmp[1];
                    737:   ex = tmp[0];   /* [3, 2, 0] */
                    738:   n = Length(ex);
                    739:   newex = NewVector(n);
                    740:   if (n>0) { newex[n-1] = g^ex[n-1]; }
                    741:   for (i=n-2; i>=0; i--) {
                    742:     newex[i] = newex[i+1]*(g^(ex[i]-ex[i+1]));
                    743:   }
                    744:   return(Cancel(coeff0*newex));
                    745: }
                    746: HelpAdd(["Substitute",
                    747: ["Substitute(f,xx,g) replaces << xx >> in << f >> by << g >>.",
                    748:   "This function takes coeffients of << f >> with respect to << xx >>",
                    749:   "and returns the inner product of the vector of coefficients and the vector",
                    750:   "of which elements are g^(corresponding exponent).",
                    751:   "Note that it may cause an unexpected result in non-commutative rings."
                    752: ]]);
                    753:
                    754: def Tag(f) {
                    755:   local ans;
                    756:   if (IsArray(f)) {
                    757:     return(Map(f,"Tag"));
                    758:   }else {
                    759:     ans = sm1(f," tag (universalNumber) dc ");
                    760:     return(ans);
                    761:   }
                    762: }
                    763: HelpAdd(["Tag",
                    764: ["Tag(f) returns the datatype tags of f where",
                    765:  "5: string,  9: polynomial, 15: integer(big-num), 16: rational, ",
                    766:  "17: object, 18:double.",
                    767:  "Ex. Tag([Poly(\"0\"), 0]):"
                    768: ]]);
                    769:
                    770:
                    771:
                    772:
                    773: OutputPrompt ;

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>