[BACK]Return to debug-note.txt CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/debug-note.txt, Revision 1.2

1.2     ! takayama    1: $OpenXM: OpenXM/src/k097/lib/minimal/debug-note.txt,v 1.1 2000/05/06 07:58:37 takayama Exp $
        !             2:
        !             3: minimal.k $B$O(B V-minimal free resolution $B$r9=@.$9$k(B
        !             4: $B%W%m%0%i%`$G(B openxm version 1.1.2 $B0J>e$GF0:n(B.
        !             5: ( $BI,MW$J(B component $B$O(B  k0, ox_asir )
        !             6: openxm $B$K$D$$$F$O(B, http://www.openxm.org $B$r;2>H(B.
        !             7:
        !             8: $B8=:_(B, $B$$$A$*$&(B error $B$J$/$H$^$j(B, V-minimal free resolution
        !             9: $B$i$7$-$b$N$r9=@.$9$k$H$$$&$@$1$G(B, $B?t3XE*$J@5$7$5$N%A%'%C%/$O(B
        !            10: $B$^$@(B.
        !            11:
        !            12: $B;H$$J}(B
        !            13:
        !            14:    k0    (  k0 $B%$%s%?%W%j%?$r%9%?!<%H(B )
        !            15:   load["minimal.k"];;    (minimal.k $B$r%m!<%I(B)
        !            16:
        !            17: $BNc(B 1: Sminimal_v $B$O(B, V-minimal free resolution $B$r(B, Schreyer resolution
        !            18:       $B$rJQ7A$7$F$$$C$F5a$a$k(B. (Sminimal $B$O(B LaScala-Stillman's algorithm
        !            19:       $B$r;H$&(B: $B$^$@(B negative weight vector $B$G$-$A$s$H$&$4$+$J$$(B.)
        !            20:
        !            21:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
        !            22:           v=[[2*x*Dx + 3*y*Dy+6, 0],
        !            23:              [3*x^2*Dy + 2*y*Dx, 0],
        !            24:              [0,  x^2+y^2],
        !            25:              [0,  x*y]];
        !            26:          a=Sminimal_v(v);
        !            27:          sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:
        !            28:
        !            29: $B%N!<%H(B:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution.
        !            30:
        !            31: $BNc(B 2:
        !            32:          a=Sannfs3("x^3-y^2*z^2");
        !            33:          b=a[0]; sm1_pmat(b);
        !            34:          b[1]*b[0]: b[2]*b[1]:    ===> complex $B$G$"$k$3$H$N$?$7$+$a(B.
        !            35:
        !            36: x^3-y^2*z^2 $B$N(B annihilating ideal $B$N(B laplace $BJQ49$N(B V-minimal free resolution.
        !            37: Weight $B$O(B (-1,-1,-1,1,1,1).
        !            38:
        !            39: $B$A$J$_$K(B,
        !            40: Map(a[3],"Length"): $B$O(B  8, 17, 13, 3  (Schreyer resolution $B$N(B betti $B?t(B).
        !            41: Map(a[0],"Length"): $B$O(B  4, 6, 2  (V-minimal resolution $B$N(B betti $B?t(B).
        !            42:
        !            43:
        !            44:
        !            45: -------  $B%F%9%H%G!<%?=8(B
        !            46:
1.1       takayama   47: a=Sannfs2("x*y*(x-y)*(x+y)");
                     48:
1.2     ! takayama   49: a=testAnnfs3("x*y*z*(x+y+z-1)");
        !            50:   V-minimal $B$K$b(B 1 $B$,@.J,$H$7$F$N$3$k$b$N$"$j(B.
        !            51:
        !            52: a=testAnnfs2("x^3-y^2-x-1");
        !            53:
        !            54: a=testAnnfs3("x^3+y^3+z^3");
        !            55:   Schreyer $B$N(B betti $B$O(B max 100 $BDxEY(B.
        !            56:   incompatible ... $B$J$k(B error $B$,$G$k$1$I$$$$$+!)(B
        !            57:      Warning in order.c: mmLarger_tower3(): incompatible input and gbList.
        !            58:
        !            59:      Length of gb is 6, f is es, g is -es^6*Dy^2
        !            60:      Warning in order.c: mmLarger_tower3(): incompatible input and gbList.
        !            61:   20 $BJ,8e(B segmentation fault $B$G=*N;(B.
        !            62:
        !            63:
1.1       takayama   64:
                     65:
                     66: -------- successful construction  x^3-y^2-x
                     67: def Sannfs2_laScala(f) {
                     68:   local p,pp;
                     69:   p = Sannfs(f,"x,y");
                     70:   /*   Do not make laplace transform. */
                     71:     sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
                     72:
                     73: #define TOTAL_STRATEGY
                     74:
                     75: % k0
                     76: sm1>macro package : dr.sm1,   9/26,1995 --- Version 2/2, 2000.
                     77: sm1>macro package : module1.sm1, 1994 -- Nov 8, 1998
                     78: This is kan/k0 Version 1998,12/15
                     79: WARNING: This is an EXPERIMENTAL version
                     80: sm1>var.sm1 : Version 3/7, 1997
                     81:
                     82:
                     83: In(1)=Loading startup files (startup.k)   1997, 3/11.
                     84: sm1 version = 3.000320
                     85: Default ring is Z[x,h].
                     86: WARNING(sm): You rewrited the protected symbol pushVariables.
                     87: WARNING(sm): You rewrited the protected symbol popVariables.
                     88: In(2)=a=Sannfs2_laScala("x^3-y^2-x");
                     89:
                     90: %Warning: The identifier <<Sannfs2_laScala>> is not in the system dictionary
                     91: %   nor in the user dictionaries. Push NullObject.
                     92: ERROR(sm): Warning: identifier is not in the dictionaries
                     93: --- Engine error or interrupt : The error occured on the top level.
                     94: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
                     95: In(3)=load["minimal.k"];;
                     96: cpp: -lang-c++: linker input file unused since linking not done
                     97: --- Engine error or interrupt : The error occured on the top level.
                     98: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
                     99: --- Engine error or interrupt : The error occured on the top level.
                    100: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
                    101: cohom.sm1 is the top of an experimental package to compute restrictions
                    102: of all degrees based on restall.sm1 and restall_s.sm1
                    103: See, http://www.math.kobe-u.ac.jp to get these files of the latest version.
                    104: Note that the package b-function.sm1 cannot be used with this package.
                    105: r-interface.sm1 (C) N.Takayama,  restriction, deRham
                    106:
                    107: oxasir.sm1, --- open asir protocol module 3/1 1998, 6/5 1999
                    108:    asirconnect, asir, fctr, primadec, (C) M.Noro, N.Takayama
                    109: ox.sm1, --- open sm1 protocol module 11/11,1999  (C) N.Takayama. oxhelp for help
                    110: hol.sm1, basic package for holonomic systems (C) N.Takayama, 1999, 12/07
                    111: rank characteristic ch rrank gb pgb syz  genericAnn  annfs
                    112: sm1>gkz.sm1 generates gkz systems (C) N.Takayama, 1998, 11/8, cf. rrank in hol.sm1
                    113: gkz
                    114: sm1>appell.sm1 generates Appell hypergeometric differential equations (C) N.Takayama, 1998, 11/8, cf. rank in hol.sm1
                    115: appell1 appell4
                    116: sm1>resol0.sm1, package to construct schreyer resolutions -- not minimal
                    117:                                (C) N.Takayama, 1999, 5/18. resol0, resol1
                    118: complex.sm1 : 1999, 9/28, res-div, res-solv, res-kernel-image, res-dual
                    119: In this package, complex is expressed in terms of matrices.
                    120: restall.sm1 ... compute all the cohomology groups of the restriction
                    121:                 of a D-module to tt = (t_1,...,t_d) = (0,...,0).
                    122: non-Schreyer Version: 19980415 by T.Oaku
                    123: usage: [(P1)...] [(t1)...] bfm --> the b-function
                    124:        [(P1)...] [(t1)...] k0 k1 deg restall --> cohomologies of restriction
                    125:        [(P1)...] [(t1)...] intbfm --> the b-function for integration
                    126:        [(P1)...] [(t1)...] k0 k1 deg intall --> cohomologies of integration
                    127: restall_s.sm1...compute all the cohomology groups of the restriction
                    128:                 of a D-module to tt = (t_1,...,t_d) = (0,...,0).
                    129: Schreyer Version: 19990521 by N.Takayama & T.Oaku
                    130: usage: [(P1)...] [(t1)...] k0 k1 deg restall_s -> cohomologies of restriction
                    131:        [(P1)...] [(t1)...] k0 k1 deg intall_s --> cohomologies of integration
                    132: No truncation from below in restall
                    133: The variable Schreyer is set to 2.
                    134: Loading tower.sm1 in the standard context. You cannot use Schyrer 1. It is controlled from cohom.sm1
                    135:
                    136: /e_ $e_$. def /x $x$. def /y $y$. def /H $H$. def /E $E$. def /Dx $Dx$. def /Dy $Dy$. def /h $h$. def
                    137: /e_ $e_$. def /es $es$. def /x $x$. def /y $y$. def /z $z$. def /H $H$. def /E $E$. def /ES $ES$. def /Dx $Dx$. def /Dy $Dy$. def /Dz $Dz$. def /h $h$. def
                    138: In(4)=a=Sannfs2_laScala("x^3-y^2-x");
                    139: Starting ox_asir server.
                    140: Hello from open. serverName is localhost and portnumber is 0
                    141: Done the initialization. port =1146
                    142: Hello from open. serverName is localhost and portnumber is 0
                    143: Done the initialization. port =1147
                    144: [    7 , 1147 , 6 , 1146 ]
                    145: [1] 6699
                    146: Trying to accept from localhost... len= 16
                    147:  4  7c  7f  0  0  1  0  0  0  0  0  0  0  0  8  0
                    148: Authentification: localhost is allowed to be accepted.
                    149: Accepted.
                    150: Trying to accept from localhost... len= 16
                    151:  4  7d  7f  0  0  1  0  0  0  0  0  0  0  0  6  0
                    152: Authentification: localhost is allowed to be accepted.
                    153: Accepted.
                    154:
                    155: Control port 1146 : Connected.
                    156:
                    157: Stream port 1147 : Connected.
                    158: Byte order for control process is network byte order.
                    159: Byte order for engine process is network byte order.
                    160: /e_ $e_$. def /es $es$. def /x $x$. def /y $y$. def /H $H$. def /E $E$. def /ES $ES$. def /Dx $Dx$. def /Dy $Dy$. def /h $h$. def
                    161: WeightOfSweyl=[    x , -1 , y , -1 , Dx , 1 , Dy , 1 ]
                    162: [    3*y*Dx^2 , -2*x*Dx*Dy , -6*x*Dx^3 , 9*y^2*Dx*Dy^2 , 27*y^3*Dy^3 ]
                    163: Warning: Homogenization and ReduceLowerTerms options are automatically turned off.
                    164: .......Done. betti=7
                    165: Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.
                    166: Warning: Homogenization and ReduceLowerTerms options are automatically turned off.
                    167: ....Done. betti=4
                    168: Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.
                    169: Warning: Homogenization and ReduceLowerTerms options are automatically turned off.
                    170: .Done. betti=1
                    171: Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.
                    172: Warning: Homogenization and ReduceLowerTerms options are automatically turned off.
                    173: Done. betti=0
                    174: Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.
                    175: [    0 , 0 ]
                    176: Processing [    0 , 0 ]    Strategy = 2
                    177: [    0 , 1 ]
                    178: Processing [    0 , 1 ]    Strategy = 2
                    179: [    0 , 2 ]
                    180: Processing [    0 , 2 ]    Strategy = 3
                    181: [    1 , 2 ]
                    182: Processing [    1 , 2 ]    Strategy = 3
                    183: SpairAndReduction:
                    184: [    p and bases  , [    [    0 , 1 ]  , [    -2*x*Dy , -3*y*Dx ]  ]  , [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , %[null] , %[null] ]  ]
                    185: [    -2*x*Dy , -3*es*y*Dx ]
                    186: [gi, gj] = [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h ]
                    187: 1
                    188: Reduce the element 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2-6*y^2*Dx^2*h+4*x^2*Dy^2*h+2*x*y*Dy*h^2+2*x*h^4
                    189: by  [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , %[null] , %[null] ]
                    190: result is [    9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , 1 , [    2*y*h , 0 , 0 , 0 , 0 ]  ]
                    191: vdegree of the original = 1
                    192: vdegree of the remainder = 1
                    193: [    9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , [    -2*x*Dy+2*y*h , -3*y*Dx , 0 , 0 , 0 ]  , 2 , 3 , 1 , 1 ]
                    194: [    1 , 3 ]
                    195: Processing [    1 , 3 ]    Strategy = 3
                    196: SpairAndReduction:
                    197: [    p and bases  , [    [    0 , 2 ]  , [    -2*x*Dx , -y ]  ]  , [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]  ]
                    198: [    -2*x*Dx , -es^2*y ]
                    199: [gi, gj] = [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 ]
                    200: 1
                    201: Reduce the element 4*x^2*Dx*Dy*h+6*x*y*Dy^2*h+4*x*Dy*h^3-4*x*y*Dx*h^2
                    202: by  [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]
                    203: result is [    0 , -1 , [    0 , -2*x*h , 0 , 0 , 0 ]  ]
                    204: vdegree of the original = 1
                    205: vdegree of the remainder = %[null]
                    206: [    0 , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , 3 , -1 , 1 , %[null] ]
                    207: [    1 , 6 ]
                    208: Processing [    1 , 6 ]    Strategy = 3
                    209: SpairAndReduction:
                    210: [    p and bases  , [    [    1 , 2 ]  , [    -3*Dx^2 , Dy ]  ]  , [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]  ]
                    211: [    -3*es*Dx^2 , es^2*Dy ]
                    212: [gi, gj] = [    -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 ]
                    213: 1
                    214: Reduce the element 9*y*Dx^2*Dy^2+18*Dx^2*Dy*h^2-6*y*Dx^3*h-6*x*Dy^3*h+6*x*Dx*Dy*h^2
                    215: by  [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]
                    216: result is [    0 , -1 , [    3*Dy^2-2*Dx*h , -h^2 , 0 , 0 , 0 ]  ]
                    217: vdegree of the original = 3
                    218: vdegree of the remainder = %[null]
                    219: [    0 , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  , 6 , -1 , 3 , %[null] ]
                    220: [    2 , 1 ]
                    221: Processing [    2 , 1 ]    Strategy = 3
                    222: SpairAndReduction:
                    223: [    p and bases  , [    [    2 , 3 ]  , [    -Dx , Dy ]  ]  , [    %[null] , %[null] , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , %[null] , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]  ]
                    224: [    es^2*Dx , -es^3*Dy ]
                    225: [gi, gj] = [    2*x*Dy+3*es*y*Dx+es^3-2*y*h , 2*x*Dx+es^2*y-2*es*x*h ]
                    226: 1
                    227: Reduce the element 3*es*y*Dx^2-es^2*y*Dy+es^3*Dx-es^2*h^2+2*Dy*h^2-2*y*Dx*h+2*es*x*Dy*h
                    228: by  [    %[null] , %[null] , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , %[null] , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]
                    229: result is [    -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , 1 , [    0 , 0 , 0 , 0 , 0 , 0 , -y ]  ]
                    230: vdegree of the original = 2
                    231: vdegree of the remainder = 2
                    232: [    -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , [    0 , 0 , Dx , -Dy , 0 , 0 , -y ]  , 1 , 5 , 2 , 2 ]
                    233: [    0 , 3 ]
                    234: Processing [    0 , 3 ]    Strategy = 4
                    235: [    1 , 0 ]
                    236: Processing [    1 , 0 ]    Strategy = 4
                    237: SpairAndReduction:
                    238: [    p and bases  , [    [    1 , 3 ]  , [    9*y^2*Dy , 2*x ]  ]  , [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]  ]
                    239: [    9*es*y^2*Dy , 2*es^3*x ]
                    240: [gi, gj] = [    -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 ]
                    241: 1
                    242: Reduce the element -27*y^3*Dy^3-12*x^2*Dx^2*h^2+24*x*y*Dx*Dy*h^2-45*y^2*Dy^2*h^2+18*y^3*Dx*Dy*h+8*x^3*Dy^2*h+18*y^2*Dx*h^3-4*x^2*y*Dy*h^2+4*x^2*h^4-4*x*y^2*h^3
                    243: by  [    3*y*Dx^2-2*x*Dy*h-y*h^2 , -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h , -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 , 9*y^2*Dx*Dy^2-6*x*Dx^2*h^2+12*y*Dx*Dy*h^2+4*x^2*Dy^2*h-2*x*y*Dy*h^2+2*x*h^4-2*y^2*h^3 , %[null] ]
                    244: result is [    27*y^3*Dy^3+12*x^2*Dx^2*h^2+81*y^2*Dy^2*h^2+24*y*Dy*h^4-18*y^3*Dx*Dy*h-8*x^3*Dy^2*h-42*y^2*Dx*h^3+4*x^2*y*Dy*h^2-4*x^2*h^4+4*x*y^2*h^3 , -1 , [    0 , -12*y*h^2 , 0 , 0 , 0 ]  ]
                    245: vdegree of the original = 0
                    246: vdegree of the remainder = 0
                    247: [    27*y^3*Dy^3+12*x^2*Dx^2*h^2+81*y^2*Dy^2*h^2+24*y*Dy*h^4-18*y^3*Dx*Dy*h-8*x^3*Dy^2*h-42*y^2*Dx*h^3+4*x^2*y*Dy*h^2-4*x^2*h^4+4*x*y^2*h^3 , [    0 , -9*y^2*Dy-12*y*h^2 , 0 , -2*x , 0 ]  , 0 , 4 , 0 , 0 ]
                    248: [    1 , 5 ]
                    249: Processing [    1 , 5 ]    Strategy = 4
                    250: [    2 , 0 ]
                    251: Processing [    2 , 0 ]    Strategy = 4
                    252: SpairAndReduction:
                    253: [    p and bases  , [    [    2 , 5 ]  , [    3*y*Dy , 2*x ]  ]  , [    [    0 , 9*y^2*Dy+12*y*h^2 , 0 , 2*x , 1 ]  , %[null] , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]  ]
                    254: [    -3*es^2*y*Dy , -2*es^5*x ]
                    255: [gi, gj] = [    2*x*Dy+3*es*y*Dx+es^3-2*y*h , -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 ]
                    256: 1
                    257: Reduce the element -9*es*y^2*Dx*Dy-2*es^3*x*Dx-3*es^3*y*Dy+2*es^2*x*h^2-4*x*Dy*h^2-9*es*y*Dx*h^2+6*y^2*Dy*h-4*es*x^2*Dy*h+6*y*h^3-2*es*x*y*h^2
                    258: by  [    [    0 , 9*y^2*Dy+12*y*h^2 , 0 , 2*x , 1 ]  , %[null] , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]
                    259: result is [    -3*es^3*y*Dy+es^4*Dx+2*es^2*x*h^2+9*es*y*Dx*h^2+4*es^3*h^2+6*y^2*Dy*h-4*es*x^2*Dy*h+2*y*h^3-2*es*x*y*h^2 , 1 , [    Dx , 0 , 2*h^2 , 0 , 0 , 0 , 0 ]  ]
                    260: vdegree of the original = 1
                    261: vdegree of the remainder = 1
                    262: [    -3*es^3*y*Dy+es^4*Dx+2*es^2*x*h^2+9*es*y*Dx*h^2+4*es^3*h^2+6*y^2*Dy*h-4*es*x^2*Dy*h+2*y*h^3-2*es*x*y*h^2 , [    Dx , 0 , -3*y*Dy+2*h^2 , 0 , 0 , -2*x , 0 ]  , 0 , 1 , 1 , 1 ]
                    263: [    3 , 0 ]
                    264: Processing [    3 , 0 ]    Strategy = 4
                    265: SpairAndReduction:
                    266: [    p and bases  , [    [    0 , 1 ]  , [    -Dx , -3*y*Dy ]  ]  , [    [    -Dx , 1 , 3*y*Dy-2*h^2 , 0 , 0 , 2*x , 0 ]  , [    0 , 0 , -Dx , Dy , 0 , 1 , y ]  , %[null] , %[null] ]  ]
                    267: [    -Dx , -3*es*y*Dy ]
                    268: [gi, gj] = [    3*es^2*y*Dy+2*es^5*x-Dx+es-2*es^2*h^2 , -es^2*Dx+es^3*Dy+es^6*y+es^5 ]
                    269: 1
                    270: Reduce the element -3*es^3*y*Dy^2-2*es^5*x*Dx+Dx^2-3*es^6*y^2*Dy-3*es^5*y*Dy-es*Dx+2*es^2*Dx*h^2-3*es^6*y*h^2-2*es^5*h^2
                    271: by  [    [    -Dx , 1 , 3*y*Dy-2*h^2 , 0 , 0 , 2*x , 0 ]  , [    0 , 0 , -Dx , Dy , 0 , 1 , y ]  , %[null] , %[null] ]
                    272: result is [    3*es^3*y*Dy^2+2*es^5*x*Dx-Dx^2+3*es^6*y^2*Dy+3*es^5*y*Dy+es*Dx-2*es^3*Dy*h^2+es^6*y*h^2 , -1 , [    0 , -2*h^2 , 0 , 0 ]  ]
                    273: vdegree of the original = 2
                    274: vdegree of the remainder = 2
                    275: [    3*es^3*y*Dy^2+2*es^5*x*Dx-Dx^2+3*es^6*y^2*Dy+3*es^5*y*Dy+es*Dx-2*es^3*Dy*h^2+es^6*y*h^2 , [    Dx , 3*y*Dy-2*h^2 , 0 , 0 ]  , 0 , 2 , 2 , 2 ]
                    276: [    0 , 4 ]
                    277: Processing [    0 , 4 ]    Strategy = 5
                    278: [    1 , 1 ]
                    279: Processing [    1 , 1 ]    Strategy = 5
                    280: [    2 , 2 ]
                    281: Processing [    2 , 2 ]    Strategy = 5
                    282: [    2 , 3 ]
                    283: Processing [    2 , 3 ]    Strategy = 5
                    284: SpairAndReduction:
                    285: [    p and bases  , [    [    0 , 6 ]  , [    -Dx^2 , -3*y^2*Dy ]  ]  , [    [    0 , 9*y^2*Dy+12*y*h^2 , 0 , 2*x , 1 ]  , -3*es^3*y*Dy+es^4*Dx+2*es^2*x*h^2+9*es*y*Dx*h^2+4*es^3*h^2+6*y^2*Dy*h-4*es*x^2*Dy*h+2*y*h^3-2*es*x*y*h^2 , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]  ]
                    286: [    Dx^2 , -3*es^6*y^2*Dy ]
                    287: [gi, gj] = [    9*es*y^2*Dy+2*es^3*x+es^4+12*es*y*h^2 , 3*es*Dx^2-es^2*Dy+3*Dy^2-2*Dx*h-es*h^2 ]
                    288: 1
                    289: Reduce the element 3*es^2*y^2*Dy^2+2*es^3*x*Dx^2-9*y^2*Dy^3+es^4*Dx^2+12*es*y*Dx^2*h^2+4*es^3*Dx*h^2+6*y^2*Dx*Dy*h+3*es*y^2*Dy*h^2
                    290: by  [    [    0 , 9*y^2*Dy+12*y*h^2 , 0 , 2*x , 1 ]  , -3*es^3*y*Dy+es^4*Dx+2*es^2*x*h^2+9*es*y*Dx*h^2+4*es^3*h^2+6*y^2*Dy*h-4*es*x^2*Dy*h+2*y*h^3-2*es*x*y*h^2 , [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]  , [    2*x*Dx , -2*x*h , y , 0 , 0 ]  , %[null] , -3*y*Dy^2+es^3*Dx-es^2*h^2+2*Dy*h^2+2*es*x*Dy*h+es*y*h^2 , [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]  ]
                    291: result is [    9*es^2*y^2*Dy^2+6*es^3*x*Dx^2-6*es^2*x*Dx*h^2+12*es^2*y*Dy*h^2-6*es^2*h^4+12*es*x^2*Dx*Dy*h-18*es*x*y*Dy^2*h+24*es*x*Dy*h^3+6*es*x*y*Dx*h^2 , 3 , [    0 , -3*Dx , 0 , 0 , 0 , -9*y*Dy , -3*y*h^2 ]  ]
                    292: vdegree of the original = 2
                    293: vdegree of the remainder = 2
                    294: [    9*es^2*y^2*Dy^2+6*es^3*x*Dx^2-6*es^2*x*Dx*h^2+12*es^2*y*Dy*h^2-6*es^2*h^4+12*es*x^2*Dx*Dy*h-18*es*x*y*Dy^2*h+24*es*x*Dy*h^3+6*es*x*y*Dx*h^2 , [    3*Dx^2 , -3*Dx , 0 , 0 , 0 , -9*y*Dy , -9*y^2*Dy-3*y*h^2 ]  , 3 , 4 , 2 , 2 ]
                    295: [    1 , 4 ]
                    296: Processing [    1 , 4 ]    Strategy = 6
                    297: [seq,level,q]=[    6 , 1 , 4 ]
                    298: [    level, q = , 1 , 4 ]
                    299: bases=
                    300:  [
                    301:    [    -Dx , 1 , 3*y*Dy-2*h^2 , 0 , 0 , 2*x , 0 ]
                    302:    [    0 , 0 , -Dx , Dy , 0 , 1 , y ]
                    303:    [    -Dx^2 , Dx , 0 , 3*y*Dy^2-2*Dy*h^2 , 0 , 2*x*Dx+3*y*Dy , 3*y^2*Dy+y*h^2 ]
                    304:    [    -3*Dx^2 , 3*Dx , 0 , 0 , 1 , 9*y*Dy , 9*y^2*Dy+3*y*h^2 ]
                    305:  ]
                    306: dr=
                    307:   [    3*Dx^2 , -3*Dx , 0 , 0 , -1 , -9*y*Dy , -9*y^2*Dy-3*y*h^2 ]
                    308: newbases=
                    309:  [
                    310:    [    -Dx , 1 , 3*y*Dy-2*h^2 , 0 , 0 , 2*x , 0 ]
                    311:    [    0 , 0 , -Dx , Dy , 0 , 1 , y ]
                    312:    [    -Dx^2 , Dx , 0 , 3*y*Dy^2-2*Dy*h^2 , 0 , 2*x*Dx+3*y*Dy , 3*y^2*Dy+y*h^2 ]
                    313:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    314:  ]
                    315: [seq,level,q]=[    5 , 2 , 2 ]
                    316: [    level, q = , 2 , 2 ]
                    317: bases=
                    318:  [
                    319:    [    -Dx , -3*y*Dy+2*h^2 , 1 , 0 ]
                    320:  ]
                    321: dr=
                    322:   [    Dx , 3*y*Dy-2*h^2 , -1 , 0 ]
                    323: newbases=
                    324:  [
                    325:    [    0 , 0 , 0 , 0 ]
                    326:  ]
                    327: [seq,level,q]=[    4 , 1 , 1 ]
                    328: [    level, q = , 1 , 1 ]
                    329: bases=
                    330:  [
                    331:    [    -Dx , 1 , 3*y*Dy-2*h^2 , 0 , 0 , 2*x , 0 ]
                    332:    [    0 , 0 , -Dx , Dy , 0 , 1 , y ]
                    333:    [    -Dx^2 , Dx , 0 , 3*y*Dy^2-2*Dy*h^2 , 0 , 2*x*Dx+3*y*Dy , 3*y^2*Dy+y*h^2 ]
                    334:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    335:  ]
                    336: dr=
                    337:   [    Dx , -1 , -3*y*Dy+2*h^2 , 0 , 0 , -2*x , 0 ]
                    338: newbases=
                    339:  [
                    340:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    341:    [    0 , 0 , -Dx , Dy , 0 , 1 , y ]
                    342:    [    0 , 0 , -3*y*Dx*Dy+2*Dx*h^2 , 3*y*Dy^2-2*Dy*h^2 , 0 , 3*y*Dy-2*h^2 , 3*y^2*Dy+y*h^2 ]
                    343:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    344:  ]
                    345: [seq,level,q]=[    3 , 0 , 4 ]
                    346: [    level, q = , 0 , 4 ]
                    347: bases=
                    348:  [
                    349:    [    0 , 9*y^2*Dy+12*y*h^2 , 0 , 2*x , 1 ]
                    350:    [    6*y^2*Dy*h+2*y*h^3 , 9*y*Dx*h^2-4*x^2*Dy*h-2*x*y*h^2 , 2*x*h^2 , -3*y*Dy+4*h^2 , Dx ]
                    351:    [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]
                    352:    [    2*x*Dx , -2*x*h , y , 0 , 0 ]
                    353:    [    0 , 12*x^2*Dx*Dy*h-18*x*y*Dy^2*h+24*x*Dy*h^3+6*x*y*Dx*h^2 , 9*y^2*Dy^2-6*x*Dx*h^2+12*y*Dy*h^2-6*h^4 , 6*x*Dx^2 , 0 ]
                    354:    [    -3*y*Dy^2+2*Dy*h^2 , 2*x*Dy*h+y*h^2 , -h^2 , Dx , 0 ]
                    355:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]
                    356:  ]
                    357: dr=
                    358:   [    0 , -9*y^2*Dy-12*y*h^2 , 0 , -2*x , -1 ]
                    359: newbases=
                    360:  [
                    361:    [    0 , 0 , 0 , 0 , 0 ]
                    362:    [    6*y^2*Dy*h+2*y*h^3 , -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h-2*x*y*h^2 , 2*x*h^2 , -2*x*Dx-3*y*Dy+2*h^2 , 0 ]
                    363:    [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]
                    364:    [    2*x*Dx , -2*x*h , y , 0 , 0 ]
                    365:    [    0 , 12*x^2*Dx*Dy*h-18*x*y*Dy^2*h+24*x*Dy*h^3+6*x*y*Dx*h^2 , 9*y^2*Dy^2-6*x*Dx*h^2+12*y*Dy*h^2-6*h^4 , 6*x*Dx^2 , 0 ]
                    366:    [    -3*y*Dy^2+2*Dy*h^2 , 2*x*Dy*h+y*h^2 , -h^2 , Dx , 0 ]
                    367:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]
                    368:  ]
                    369: [seq,level,q]=[    2 , 1 , 5 ]
                    370: [    level, q = , 1 , 5 ]
                    371: bases=
                    372:  [
                    373:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    374:    [    0 , 0 , -Dx , Dy , 0 , 1 , y ]
                    375:    [    0 , 0 , -3*y*Dx*Dy+2*Dx*h^2 , 3*y*Dy^2-2*Dy*h^2 , 0 , 3*y*Dy-2*h^2 , 3*y^2*Dy+y*h^2 ]
                    376:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    377:  ]
                    378: dr=
                    379:   [    0 , 0 , Dx , -Dy , 0 , -1 , -y ]
                    380: newbases=
                    381:  [
                    382:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    383:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    384:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    385:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    386:  ]
                    387: [seq,level,q]=[    1 , 0 , 3 ]
                    388: [    level, q = , 0 , 3 ]
                    389: bases=
                    390:  [
                    391:    [    0 , 0 , 0 , 0 , 0 ]
                    392:    [    6*y^2*Dy*h+2*y*h^3 , -9*y^2*Dx*Dy-3*y*Dx*h^2-4*x^2*Dy*h-2*x*y*h^2 , 2*x*h^2 , -2*x*Dx-3*y*Dy+2*h^2 , 0 ]
                    393:    [    2*x*Dy-2*y*h , 3*y*Dx , 0 , 1 , 0 ]
                    394:    [    2*x*Dx , -2*x*h , y , 0 , 0 ]
                    395:    [    0 , 12*x^2*Dx*Dy*h-18*x*y*Dy^2*h+24*x*Dy*h^3+6*x*y*Dx*h^2 , 9*y^2*Dy^2-6*x*Dx*h^2+12*y*Dy*h^2-6*h^4 , 6*x*Dx^2 , 0 ]
                    396:    [    -3*y*Dy^2+2*Dy*h^2 , 2*x*Dy*h+y*h^2 , -h^2 , Dx , 0 ]
                    397:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]
                    398:  ]
                    399: dr=
                    400:   [    -2*x*Dy+2*y*h , -3*y*Dx , 0 , -1 , 0 ]
                    401: newbases=
                    402:  [
                    403:    [    0 , 0 , 0 , 0 , 0 ]
                    404:    [    4*x^2*Dx*Dy+6*x*y*Dy^2-4*x*y*Dx*h , 6*x*y*Dx^2-4*x^2*Dy*h-2*x*y*h^2 , 2*x*h^2 , 0 , 0 ]
                    405:    [    0 , 0 , 0 , 0 , 0 ]
                    406:    [    2*x*Dx , -2*x*h , y , 0 , 0 ]
                    407:    [    -12*x^2*Dx^2*Dy-24*x*Dx*Dy*h^2+12*x*y*Dx^2*h , -18*x*y*Dx^3+12*x^2*Dx*Dy*h-18*x*y*Dy^2*h+24*x*Dy*h^3+6*x*y*Dx*h^2 , 9*y^2*Dy^2-6*x*Dx*h^2+12*y*Dy*h^2-6*h^4 , 0 , 0 ]
                    408:    [    -2*x*Dx*Dy-3*y*Dy^2+2*y*Dx*h , -3*y*Dx^2+2*x*Dy*h+y*h^2 , -h^2 , 0 , 0 ]
                    409:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]
                    410:  ]
                    411: [    level= , 0 ]
                    412:  [
                    413:    [    3*y*Dx^2-2*x*Dy*h-y*h^2 ]
                    414:    [    -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h ]
                    415:    [    -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 ]
                    416:  ]
                    417:  [
                    418:    [    3*y*Dx^2-2*x*Dy*h-y*h^2 ]
                    419:    [    -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h ]
                    420:    [    -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 ]
                    421:  ]
                    422: [    level= , 1 ]
                    423:  [
                    424:    [    0 , 0 , 0 , 0 , 0 ]
                    425:    [    0 , 0 , 0 , 0 , 0 ]
                    426:    [    2*x*Dx , -2*x*h , y , 0 , 0 ]
                    427:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy , 0 , 0 ]
                    428:  ]
                    429:  [
                    430:    [    0 , 0 , 0 ]
                    431:    [    0 , 0 , 0 ]
                    432:    [    2*x*Dx , -2*x*h , y ]
                    433:    [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy ]
                    434:  ]
                    435: [    level= , 2 ]
                    436:  [
                    437:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    438:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    439:    [    0 , 0 , 0 , 0 , 0 , 0 , 0 ]
                    440:  ]
                    441:  [
                    442:    [    0 , 0 , 0 , 0 ]
                    443:    [    0 , 0 , 0 , 0 ]
                    444:    [    0 , 0 , 0 , 0 ]
                    445:  ]
                    446: [    level= , 3 ]
                    447:  [
                    448:    [    0 , 0 , 0 , 0 ]
                    449:  ]
                    450:  [
                    451:    [    0 , 0 , 0 ]
                    452:  ]
                    453: In(5)=b=a[0];
                    454: In(6)=b[1]*b[0]:
                    455: [    [    0 ]  , [    0 ]  , [    0 ]  , [    0 ]  ]
                    456: In(7)=b[2]*b[1]:
                    457: [    [    0 , 0 , 0 ]  , [    0 , 0 , 0 ]  , [    0 , 0 , 0 ]  ]
                    458: In(8)=sm1_pmat(b);
                    459:  [
                    460:   [
                    461:     [    3*y*Dx^2-2*x*Dy*h-y*h^2 ]
                    462:     [    -2*x*Dx*Dy-3*y*Dy^2-2*Dy*h^2+2*y*Dx*h ]
                    463:     [    -6*x*Dx^3-6*x*Dy^2*h+6*x*Dx*h^2 ]
                    464:   ]
                    465:   [
                    466:     [    0 , 0 , 0 ]
                    467:     [    0 , 0 , 0 ]
                    468:     [    2*x*Dx , -2*x*h , y ]
                    469:     [    3*Dy^2-2*Dx*h , 3*Dx^2-h^2 , -Dy ]
                    470:   ]
                    471:   [
                    472:     [    0 , 0 , 0 , 0 ]
                    473:     [    0 , 0 , 0 , 0 ]
                    474:     [    0 , 0 , 0 , 0 ]
                    475:   ]
                    476:   [
                    477:     [    0 , 0 , 0 ]
                    478:   ]
                    479:  ]
                    480: In(9)=
                    481:
                    482:
                    483: ------- failed example.
                    484: def Sannfs2_laScala(f) {
                    485:   local p,pp;
                    486:   p = Sannfs(f,"x,y");
                    487:   /*   Do not make laplace transform.
                    488:     sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
                    489:     p = [p]
                    490:   */
                    491: ;
                    492:
                    493: xy(x-y) $B$N(B annihilating ideal $B$N(B V-minimal free resolution.
                    494: In(6)=a=Sannfs2_laScala("x*y*(x-y)");
                    495:
                    496: SpairAndReduction:
                    497: [    p and bases  , [    [    0 , 1 ]  , [    -3*y*Dy , Dx ]  ]  , [    -4*x*Dx-4*y*Dy-12*h^2 , -12*x*y*Dy+12*y^2*Dy-12*x*h^2+24*y*h^2 , %[null] ]  ]
                    498: [    -3*y*Dy , es*Dx ]
                    499: [gi, gj] = [    -4*x*Dx-4*y*Dy-12*h^2 , -12*x*y*Dy+12*y^2*Dy-12*x*h^2+24*y*h^2 ]
                    500: 1
                    501: Reduce the element 12*y^2*Dx*Dy+12*y^2*Dy^2-12*x*Dx*h^2+24*y*Dx*h^2+36*y*Dy*h^2-12*h^4
                    502: by  [    -4*x*Dx-4*y*Dy-12*h^2 , -12*x*y*Dy+12*y^2*Dy-12*x*h^2+24*y*h^2 , %[null] ]
                    503: result is [    -12*y^2*Dx*Dy-12*y^2*Dy^2-24*y*Dx*h^2-48*y*Dy*h^2-24*h^4 , -1 , [    3*h^2 , 0 , 0 ]  ]
                    504: vdegree of the original = 0
                    505: vdegree of the remainder = 0
                    506: [    -12*y^2*Dx*Dy-12*y^2*Dy^2-24*y*Dx*h^2-48*y*Dy*h^2-24*h^4 , [    3*y*Dy+3*h^2 , -Dx , 0 ]  , 1 , 2 , 0 , 0 ]
                    507: reductionTable_tmp=[    2 ]
                    508: See also reductionTable, strategy, level,i
                    509: ERROR(sm): error operator : SnextI: bases[i] or bases[j] is null for all combinations.
                    510: --- Engine error or interrupt : In function : Error of class PrimitiveObject
                    511:
                    512: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
                    513:
                    514: In(7)=bases:
                    515: [    %[null] , [    -3*y*Dy-3*h^2 , Dx , 1 ]  , %[null] ]
                    516: In(8)=reductionTable:
                    517: [    [    1 , 2 , 3 ]  , [    3 , 2 , 3 ]  , [    2 ]  ]
                    518: In(9)=freeRes:
                    519: [    [    -4*x*Dx-4*y*Dy-12*h^2 , -12*x*y*Dy+12*y^2*Dy-12*x*h^2+24*y*h^2 , -12*y^2*Dx*Dy-12*y^2*Dy^2-24*y*Dx*h^2-48*y*Dy*h^2-24*h^4 ]  , [    %[null] , [    -3*y*Dy-3*h^2 , Dx , 1 ]  , %[null] ]  , [    %[null] ]  ]
                    520: In(10)=
                    521:
                    522: [    [    -4*x*Dx-4*y*Dy-12*h^2 , -12*x*y*Dy+12*y^2*Dy-12*x*h^2+24*y*h^2 , -12*y^2*Dx*Dy-12*y^2*Dy^2-24*y*Dx*h^2-48*y*Dy*h^2-24*h^4 ]  ,
                    523:  [    %[null] , [    -3*y*Dy-3*h^2 , Dx , 1 ]  , %[null] ]  ,
                    524:      $B$3$l$H(B      $B$3$l$N(B spair $B$r7W;;$7$h$&$H$7$F;_$^$k(B.
                    525:  [    %[null] ]  ]
                    526:
                    527: $B$3$l$,(B, strategy $B$N(B table.
                    528:
                    529: In(8)=reductionTable:
                    530: [    [    1 , 2 , 3 ]  , [    3 , 2 , 3 ]  , [    2 ]  ]
                    531:                                             $B$3$N85$r=hM}Cf(B.
                    532:
                    533:
                    534:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>