[BACK]Return to example-ja.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/example-ja.tex, Revision 1.1

1.1     ! takayama    1: % $OpenXM$
        !             2: \documentclass[12pt]{jarticle}
        !             3: \newtheorem{example}{Example}
        !             4: \def\pd#1{ \partial_{#1} }
        !             5: %% [2] should be replaced by \cite{....}
        !             6:
        !             7: \begin{document}
        !             8: \section{$BNc(B}
        !             9: $B2f!9$,(B $(u,v)$-$B6K>.<+M3J,2r$N9=@.$K6=L#$r$b$C$?F05!$N(B
        !            10: $B0l$D$O(B, $D$ $B2C72(B $M$ $B$N@)8B%3%[%b%m%8$N7W;;$N8zN(2=$G$"$k(B.
        !            11: [2] $B$G$O(B, $M$ $B$N(B Schreyer resolution $B$,(B $(-{\bf 1},{\bf 1})$
        !            12: $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$G$"$k$3$H$r>ZL@$7(B,
        !            13: $B$3$l$rMQ$$$?@)8B%3%[%b%m%8$N7W;;K!$rM?$($?(B.
        !            14: $B$3$NJ}K!$rE,MQ$9$k$K$O(B
        !            15: $(-w,w)$ $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$J$i$J$s$G$b$h$/(B,
        !            16: Schreyer resolution $B$r$H$kI,A3@-$O$J$$(B.
        !            17: [2] $B$NJ}K!$G$O(B, 1 $BE@$X$N@)8B$r7W;;$9$k$N$K<!85(B
        !            18: $$O\left( (\mbox{ $B<+M3J,2r$N(B betti $B?t(B}) \times
        !            19:   \left(\mbox{$b$$B4X?t$N:GBg@0?t:,(B}\right)^n\right)$$
        !            20: $B$N%Y%/%H%k6u4V$NJ#BN$N(B ${\rm Ker}/{\rm Im}$ $B$r(B
        !            21: $B7W;;$9$kI,MW$,@8$8$k(B.
        !            22: ( $BItJ,B?MMBN$X$N@)8B$K$O(B $D_m$, $(m < n)$ $B<+M32C72$NJ#BN(B
        !            23: $B$N%3%[%b%m%8$r7W;;$9$kI,MW$,$"$k(B.)
        !            24: $B$7$?$,$C$F(B, betti $B?t$,Bg$-$/$J$k$H(B, $B7W;;$9$Y$-(B $B%Y%/%H%k6u4V$N<!85$,(B
        !            25: $BBg$-$/$J$j(B, $B%a%b%jITB-$r$^$M$$$F$$$?(B.
        !            26: $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$O(B Schreyer resolution $B$N(B betti $B?t$K(B
        !            27: $BHf3S$7$F$+$J$j>.$5$/$$$^$^$G@)8B$,7W;;$G$-$J$+$C$?Nc$b7W;;$G$-$k$h$&$K(B
        !            28: $B$J$C$?(B.
        !            29:
        !            30: Schreyer resolution $B$N(B betti $B?t$H(B $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$r(B
        !            31: $B$$$/$D$+$NNc$K$D$$$FHf3S$7$F$_$h$&(B.
        !            32:
        !            33: $BHf3S$NA0$K$$$/$D$+5-9f$HM=HwCN<1$rF3F~$9$k(B.
        !            34: \begin{enumerate}
        !            35: \item Schreyer resolution $B$N(B betti $B?t$O(B $(-w,w)$ $B$@$1$G$J$/(B
        !            36: tie-breaking order $B$K$b0MB8$9$k(B.
        !            37: $B0J2<(B tie-breaking order $B$H$7$F(B, graded reverse lexicographic order
        !            38: $B$rMQ$$$k(B.
        !            39: \item $BB?9`<0(B $f$ $B$N(B $b$-$B4X?t$N:G>.@0?t:,$r(B $-r$ $B$H$9$k$H$-(B
        !            40: ${\rm Ann}(D f^{-1})$ $B$G(B
        !            41: $1/f^r$ $B$rNm2=$9$k(B $D$ $B$N%$%G%"%k$N$"$k@8@.85$N=89g$r$"$i$o$9(B.
        !            42: $B2<$N<BNc$G$O4X?t(B {\tt Sannfs(f,v)} $B$N=PNO$r$"$i$o$9(B.
        !            43: \item $F(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r$"$i$o$9(B.
        !            44: \item $F^h(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r(B homogenize $B$7$?$b$N$r$"$i$o$9(B.
        !            45: \item Grothendieck $B$NHf3SDjM}$K$h$l$P(B
        !            46: $I = F({\rm Ann} D f^{-1})$ $B$H$*$/$H$-(B $D/I$ $B$N86E@$X$N@)8B%3%[%b%m%8(B
        !            47: $B$,6u4V(B $ {\bf C}^n \setminus V(f)$ $B$N(B ${\bf C}$-$B78?t%3%[%b%m%872$K0lCW$9$k(B.
        !            48: ( "An algorithm for de Rham cohomology groups of the
        !            49: complement of an affine variety via D-module computation",
        !            50: Journal of pure and applied algebra, 139 (1999), 201--233. $B$r;2>H(B)
        !            51: \end{enumerate}
        !            52:
        !            53: \begin{example} \rm
        !            54: %Prog: minimal-test.k    test18()
        !            55: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2} \right) \right]$
        !            56: $B$N>l9g(B.
        !            57: $B%$%G%"%k(B $I$ $B$O(B
        !            58: $$ -2x\pd{x}-3y\pd{y}+h^2 ,  -3y\pd{x}^2+2x\pd{y}h $$
        !            59: $B$G@8@.$5$l$k(B.
        !            60:
        !            61: \begin{tabular}{|l|l|}
        !            62: \hline
        !            63: Resolution type &  Betti numbers          \\ \hline
        !            64: Schreyer &                        2, 1    \\ \hline
        !            65: $(-{\bf 1},{\bf 1})$-minimal &    4, 4, 1 \\ \hline
        !            66: minimal &                         2, 1    \\
        !            67: \hline
        !            68: \end{tabular}
        !            69:
        !            70: \noindent
        !            71: $(-{\bf 1},{\bf 1})$-minimal resolution
        !            72: {\footnotesize \begin{verbatim}
        !            73:  [
        !            74:   [
        !            75:     [    -2*x*Dx-3*y*Dy+h^2 ]
        !            76:     [    -3*y*Dx^2+2*x*Dy*h ]
        !            77:   ]
        !            78:   [
        !            79:     [    -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ]
        !            80:   ]
        !            81:  ]
        !            82: Degree shifts
        !            83: [    [    0 ]  , [    0 , 1 ]  ]
        !            84: \end{verbatim}}
        !            85: Schreyer Resolution  %%Prog: a=test18();  sm1_pmat(a[3]);
        !            86: {\footnotesize \begin{verbatim}
        !            87:  [
        !            88:   [
        !            89:     [    -2*x*Dx-3*y*Dy+h^2 ]
        !            90:     [    -3*y*Dx^2+2*x*Dy*h ]
        !            91:     [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ]
        !            92:     [    27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ]
        !            93:   ]
        !            94:   [
        !            95:     [    9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ]
        !            96:     [    -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ]
        !            97:     [    2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ]
        !            98:     [    3*y*Dx , -2*x , 1 , 0 ]
        !            99:   ]
        !           100:   [
        !           101:     [    -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ]
        !           102:   ]
        !           103:  ]
        !           104: \end{verbatim}}
        !           105: \end{example}
        !           106:
        !           107: \begin{example} \rm
        !           108: %Prog: minimal-test.k    test17b()
        !           109: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2} \right) \right]$
        !           110: $B$N>l9g(B.
        !           111:
        !           112: \begin{tabular}{|l|l|}
        !           113: \hline
        !           114: Resolution type &  Betti numbers          \\ \hline
        !           115: Schreyer &                        4, 5, 2    \\ \hline
        !           116: $(-{\bf 1},{\bf 1})$-minimal &    8, 16, 11, 2 \\ \hline
        !           117: minimal &                         4, 5,  2    \\
        !           118: \hline
        !           119: \end{tabular}
        !           120:
        !           121: \noindent
        !           122: $(-{\bf 1},{\bf 1})$-minimal resolution
        !           123: {\footnotesize \begin{verbatim}
        !           124:  [
        !           125:   [
        !           126:     [    y*Dy-z*Dz ]
        !           127:     [    -2*x*Dx-3*z*Dz+h^2 ]
        !           128:     [    2*x*Dy*Dz^2-3*y*Dx^2*h ]
        !           129:     [    2*x*Dy^2*Dz-3*z*Dx^2*h ]
        !           130:   ]
        !           131:   [
        !           132:     [    0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz ]
        !           133:     [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
        !           134:     [    3*Dx^2*h , 0 , Dy , -Dz ]
        !           135:     [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0 ]
        !           136:     [    2*x*Dy*Dz , 0 , z , -y ]
        !           137:   ]
        !           138:   [
        !           139:     [    y , -2*x*Dy*Dz , 3*y*z , z , 2*x*Dx ]
        !           140:     [    Dz , -3*Dx^2*h , 2*x*Dx+3*y*Dy+3*z*Dz+6*h^2 , Dy , -3*Dy*Dz ]
        !           141:   ]
        !           142:  ]
        !           143: Degree shifts
        !           144: [    [    0 ]  , [    0 , 0 , 2 , 2 ]  , [    2 , 0 , 3 , 2 , 1 ]  ]
        !           145: \end{verbatim}}
        !           146: \end{example}
        !           147:
        !           148: \begin{example} \rm
        !           149: %Prog: minimal-test.k    test22();
        !           150: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3+y^3+z^3} \right) \right]$
        !           151: $B$N>l9g(B.
        !           152:
        !           153: %% Uli Walther $B$N(B $BO@J8(B (MEGA 2000) $B$NNc$H(B betti $B?t$rHf3S$;$h(B.
        !           154: \begin{tabular}{|l|l|}
        !           155: \hline
        !           156: Resolution type &  Betti numbers          \\ \hline
        !           157: Schreyer &                            \\ \hline
        !           158: $(-{\bf 1},{\bf 1})$-minimal &     \\ \hline
        !           159: minimal &                             \\
        !           160: \hline
        !           161: \end{tabular}
        !           162:
        !           163: \noindent
        !           164: $(-{\bf 1},{\bf 1})$-minimal resolution
        !           165: {\footnotesize \begin{verbatim}
        !           166:
        !           167: \end{verbatim}}
        !           168: \end{example}
        !           169:
        !           170:
        !           171: \begin{example} \rm
        !           172: %Prog: minimal-test.k    test21();
        !           173: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2+y^2+z^2} \right) \right]$
        !           174: $B$N>l9g(B.
        !           175:
        !           176: \begin{tabular}{|l|l|}
        !           177: \hline
        !           178: Resolution type &  Betti numbers          \\ \hline
        !           179: Schreyer &                            \\ \hline
        !           180: $(-{\bf 1},{\bf 1})$-minimal &     \\ \hline
        !           181: minimal &                             \\
        !           182: \hline
        !           183: \end{tabular}
        !           184:
        !           185: \noindent
        !           186: $(-{\bf 1},{\bf 1})$-minimal resolution
        !           187: {\footnotesize \begin{verbatim}
        !           188:
        !           189: \end{verbatim}}
        !           190: $B%3%[%b%m%872$O(B ... $B$H$J$k(B.
        !           191: $B9M$($k@~7A6u4V$NJ#BN$N<!85$O(B, ...
        !           192: Schreyer resolution $B$+$i%9%?!<%H$7$F(B,
        !           193: $B@~7A6u4V$NJ#BN$r9M$($k$H(B, $B$=$N<!85$O(B
        !           194: ... $B$H$J$k(B.
        !           195: \end{example}
        !           196:
        !           197: \begin{example} \rm
        !           198: %Prog: minimal-test.k    test20()
        !           199: $I = D\cdot\{  x_1*\pd{1}+2x_2\pd{2}+3x_3\pd{3} ,
        !           200:     \pd{1}^2-\pd{2}*h,
        !           201:     -\pd{1}\pd{2}+\pd{3}*h,
        !           202:     \pd{2}^2-\pd{1}\pd{3} \}
        !           203: $ $B$N>l9g(B.
        !           204: $B$3$l$O(B $A=(1,2,3)$, $\beta=0$ $B$KIU?o$9$k(B GKZ $BD64v2?7O$N(B
        !           205: homogenization.
        !           206:
        !           207: \begin{tabular}{|l|l|}
        !           208: \hline
        !           209: Resolution type &  Betti numbers          \\ \hline
        !           210: Schreyer &                        4, 5, 2    \\ \hline
        !           211: $(-{\bf 1},{\bf 1})$-minimal &    10, 25, 23, 8, 1   \\ \hline
        !           212: minimal &                         4, 5,  2    \\
        !           213: \hline
        !           214: \end{tabular}
        !           215:
        !           216: \noindent
        !           217: $(-{\bf 1},{\bf 1})$-minimal resolution
        !           218: {\footnotesize \begin{verbatim}
        !           219:  [
        !           220:   [
        !           221:     [    x1*Dx1+2*x2*Dx2+3*x3*Dx3 ]
        !           222:     [    Dx1^2-Dx2*h ]
        !           223:     [    -Dx1*Dx2+Dx3*h ]
        !           224:     [    Dx2^2-Dx1*Dx3 ]
        !           225:   ]
        !           226:   [
        !           227:     [    Dx1*Dx2-Dx3*h , -x1*Dx2 , 2*x2*Dx2+3*x3*Dx3+3*h^2 , -x1*h ]
        !           228:     [    Dx1^2-Dx2*h , -x1*Dx1-3*x3*Dx3-2*h^2 , 2*x2*Dx1 , 2*x2*h ]
        !           229:     [    Dx2^2-Dx1*Dx3 , x1*Dx3 , x1*Dx2 , -2*x2*Dx2-3*x3*Dx3-4*h^2 ]
        !           230:     [    0 , Dx3 , Dx2 , Dx1 ]
        !           231:     [    0 , -Dx2 , -Dx1 , -h ]
        !           232:   ]
        !           233:   [
        !           234:     [    Dx2 , -Dx3 , -Dx1 , -2*x2*Dx2-3*x3*Dx3-4*h^2 , -x1*Dx2-2*x2*Dx3 ]
        !           235:     [    -Dx1 , Dx2 , h , -x1*h , -3*x3*Dx3-h^2 ]
        !           236:   ]
        !           237:  ]
        !           238: Degree shifts
        !           239: [    [    0 ]  , [    0 , 2 , 2 , 2 ]  , [    2 , 2 , 2 , 3 , 3 ]  ]
        !           240: \end{verbatim}}
        !           241: %% $B$3$N(B resolution $B$O<B$O(B, toric $B$N(B resolution $B$N(B Koszul complex $B$K$J$C$F$k(B
        !           242: %% $B$O$:(B.
        !           243: \end{example}
        !           244:
        !           245:
        !           246:
        !           247:
        !           248: $(-w,w)$-$B6K>.<+M3J,2r$H(B $B6K>.<+M3J,2r$,$3$H$J$kNc$r$5$,$7$F$$$k$,(B
        !           249: $B$3$l$O$^$@8+$D$+$C$F$$$J$$(B.
        !           250:
        !           251: \section{$B<BAu(B}
        !           252: $B$3$3$G$O(B
        !           253: \begin{verbatim}
        !           254: /* OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v
        !           255:    1.23 2000/08/01 08:51:03 takayama Exp  */
        !           256: \end{verbatim}
        !           257: $BHG$N(B {\tt minimal.k} $B$K=`5r$7$F<BAu$N35N,$r2r@b$9$k(B.
        !           258:
        !           259: $B$^$@=q$$$F$J$$(B.
        !           260:
        !           261: \end{document}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>