[BACK]Return to example-ja.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/example-ja.tex, Revision 1.2

1.2     ! takayama    1: % $OpenXM: OpenXM/src/k097/lib/minimal/example-ja.tex,v 1.1 2000/08/02 03:23:36 takayama Exp $
1.1       takayama    2: \documentclass[12pt]{jarticle}
                      3: \newtheorem{example}{Example}
                      4: \def\pd#1{ \partial_{#1} }
                      5: %% [2] should be replaced by \cite{....}
                      6:
                      7: \begin{document}
                      8: \section{$BNc(B}
                      9: $B2f!9$,(B $(u,v)$-$B6K>.<+M3J,2r$N9=@.$K6=L#$r$b$C$?F05!$N(B
                     10: $B0l$D$O(B, $D$ $B2C72(B $M$ $B$N@)8B%3%[%b%m%8$N7W;;$N8zN(2=$G$"$k(B.
                     11: [2] $B$G$O(B, $M$ $B$N(B Schreyer resolution $B$,(B $(-{\bf 1},{\bf 1})$
                     12: $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$G$"$k$3$H$r>ZL@$7(B,
                     13: $B$3$l$rMQ$$$?@)8B%3%[%b%m%8$N7W;;K!$rM?$($?(B.
                     14: $B$3$NJ}K!$rE,MQ$9$k$K$O(B
                     15: $(-w,w)$ $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$J$i$J$s$G$b$h$/(B,
                     16: Schreyer resolution $B$r$H$kI,A3@-$O$J$$(B.
                     17: [2] $B$NJ}K!$G$O(B, 1 $BE@$X$N@)8B$r7W;;$9$k$N$K<!85(B
                     18: $$O\left( (\mbox{ $B<+M3J,2r$N(B betti $B?t(B}) \times
                     19:   \left(\mbox{$b$$B4X?t$N:GBg@0?t:,(B}\right)^n\right)$$
                     20: $B$N%Y%/%H%k6u4V$NJ#BN$N(B ${\rm Ker}/{\rm Im}$ $B$r(B
                     21: $B7W;;$9$kI,MW$,@8$8$k(B.
                     22: ( $BItJ,B?MMBN$X$N@)8B$K$O(B $D_m$, $(m < n)$ $B<+M32C72$NJ#BN(B
                     23: $B$N%3%[%b%m%8$r7W;;$9$kI,MW$,$"$k(B.)
                     24: $B$7$?$,$C$F(B, betti $B?t$,Bg$-$/$J$k$H(B, $B7W;;$9$Y$-(B $B%Y%/%H%k6u4V$N<!85$,(B
                     25: $BBg$-$/$J$j(B, $B%a%b%jITB-$r$^$M$$$F$$$?(B.
                     26: $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$O(B Schreyer resolution $B$N(B betti $B?t$K(B
                     27: $BHf3S$7$F$+$J$j>.$5$/$$$^$^$G@)8B$,7W;;$G$-$J$+$C$?Nc$b7W;;$G$-$k$h$&$K(B
                     28: $B$J$C$?(B.
                     29:
                     30: Schreyer resolution $B$N(B betti $B?t$H(B $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$r(B
                     31: $B$$$/$D$+$NNc$K$D$$$FHf3S$7$F$_$h$&(B.
                     32:
                     33: $BHf3S$NA0$K$$$/$D$+5-9f$HM=HwCN<1$rF3F~$9$k(B.
                     34: \begin{enumerate}
                     35: \item Schreyer resolution $B$N(B betti $B?t$O(B $(-w,w)$ $B$@$1$G$J$/(B
                     36: tie-breaking order $B$K$b0MB8$9$k(B.
                     37: $B0J2<(B tie-breaking order $B$H$7$F(B, graded reverse lexicographic order
                     38: $B$rMQ$$$k(B.
                     39: \item $BB?9`<0(B $f$ $B$N(B $b$-$B4X?t$N:G>.@0?t:,$r(B $-r$ $B$H$9$k$H$-(B
                     40: ${\rm Ann}(D f^{-1})$ $B$G(B
                     41: $1/f^r$ $B$rNm2=$9$k(B $D$ $B$N%$%G%"%k$N$"$k@8@.85$N=89g$r$"$i$o$9(B.
1.2     ! takayama   42: $B2<$N<BNc$N>l9g$G$O4X?t(B {\tt Sannfs(f,v)} $B$N=PNO$r$"$i$o$9(B.
1.1       takayama   43: \item $F(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r$"$i$o$9(B.
                     44: \item $F^h(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r(B homogenize $B$7$?$b$N$r$"$i$o$9(B.
                     45: \item Grothendieck $B$NHf3SDjM}$K$h$l$P(B
                     46: $I = F({\rm Ann} D f^{-1})$ $B$H$*$/$H$-(B $D/I$ $B$N86E@$X$N@)8B%3%[%b%m%8(B
                     47: $B$,6u4V(B $ {\bf C}^n \setminus V(f)$ $B$N(B ${\bf C}$-$B78?t%3%[%b%m%872$K0lCW$9$k(B.
                     48: ( "An algorithm for de Rham cohomology groups of the
                     49: complement of an affine variety via D-module computation",
                     50: Journal of pure and applied algebra, 139 (1999), 201--233. $B$r;2>H(B)
                     51: \end{enumerate}
                     52:
                     53: \begin{example} \rm
                     54: %Prog: minimal-test.k    test18()
                     55: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2} \right) \right]$
                     56: $B$N>l9g(B.
                     57: $B%$%G%"%k(B $I$ $B$O(B
                     58: $$ -2x\pd{x}-3y\pd{y}+h^2 ,  -3y\pd{x}^2+2x\pd{y}h $$
                     59: $B$G@8@.$5$l$k(B.
                     60:
                     61: \begin{tabular}{|l|l|}
                     62: \hline
                     63: Resolution type &  Betti numbers          \\ \hline
1.2     ! takayama   64: Schreyer &                        1, 4, 4, 1    \\ \hline
        !            65: $(-{\bf 1},{\bf 1})$-minimal &    1, 2, 1 \\ \hline
        !            66: minimal &                         1, 2, 1    \\
1.1       takayama   67: \hline
                     68: \end{tabular}
                     69:
                     70: \noindent
                     71: $(-{\bf 1},{\bf 1})$-minimal resolution
                     72: {\footnotesize \begin{verbatim}
                     73:  [
                     74:   [
                     75:     [    -2*x*Dx-3*y*Dy+h^2 ]
                     76:     [    -3*y*Dx^2+2*x*Dy*h ]
                     77:   ]
                     78:   [
                     79:     [    -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ]
                     80:   ]
                     81:  ]
                     82: Degree shifts
                     83: [    [    0 ]  , [    0 , 1 ]  ]
                     84: \end{verbatim}}
                     85: Schreyer Resolution  %%Prog: a=test18();  sm1_pmat(a[3]);
                     86: {\footnotesize \begin{verbatim}
                     87:  [
                     88:   [
                     89:     [    -2*x*Dx-3*y*Dy+h^2 ]
                     90:     [    -3*y*Dx^2+2*x*Dy*h ]
                     91:     [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ]
                     92:     [    27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ]
                     93:   ]
                     94:   [
                     95:     [    9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ]
                     96:     [    -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ]
                     97:     [    2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ]
                     98:     [    3*y*Dx , -2*x , 1 , 0 ]
                     99:   ]
                    100:   [
                    101:     [    -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ]
                    102:   ]
                    103:  ]
                    104: \end{verbatim}}
                    105: \end{example}
                    106:
                    107: \begin{example} \rm
                    108: %Prog: minimal-test.k    test17b()
                    109: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2} \right) \right]$
                    110: $B$N>l9g(B.
                    111:
                    112: \begin{tabular}{|l|l|}
                    113: \hline
                    114: Resolution type &  Betti numbers          \\ \hline
1.2     ! takayama  115: Schreyer &                        1, 8, 16, 11, 2    \\ \hline
        !           116: $(-{\bf 1},{\bf 1})$-minimal &    1, 4, 5, 2 \\ \hline
        !           117: minimal &                         1, 4, 5, 2    \\
1.1       takayama  118: \hline
                    119: \end{tabular}
                    120:
                    121: \noindent
                    122: $(-{\bf 1},{\bf 1})$-minimal resolution
                    123: {\footnotesize \begin{verbatim}
                    124:  [
                    125:   [
                    126:     [    y*Dy-z*Dz ]
                    127:     [    -2*x*Dx-3*z*Dz+h^2 ]
                    128:     [    2*x*Dy*Dz^2-3*y*Dx^2*h ]
                    129:     [    2*x*Dy^2*Dz-3*z*Dx^2*h ]
                    130:   ]
                    131:   [
                    132:     [    0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz ]
                    133:     [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
                    134:     [    3*Dx^2*h , 0 , Dy , -Dz ]
                    135:     [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0 ]
                    136:     [    2*x*Dy*Dz , 0 , z , -y ]
                    137:   ]
                    138:   [
                    139:     [    y , -2*x*Dy*Dz , 3*y*z , z , 2*x*Dx ]
                    140:     [    Dz , -3*Dx^2*h , 2*x*Dx+3*y*Dy+3*z*Dz+6*h^2 , Dy , -3*Dy*Dz ]
                    141:   ]
                    142:  ]
                    143: Degree shifts
                    144: [    [    0 ]  , [    0 , 0 , 2 , 2 ]  , [    2 , 0 , 3 , 2 , 1 ]  ]
                    145: \end{verbatim}}
                    146: \end{example}
                    147:
                    148: \begin{example} \rm
                    149: %Prog: minimal-test.k    test22();
                    150: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3+y^3+z^3} \right) \right]$
                    151: $B$N>l9g(B.
                    152:
                    153: %% Uli Walther $B$N(B $BO@J8(B (MEGA 2000) $B$NNc$H(B betti $B?t$rHf3S$;$h(B.
                    154: \begin{tabular}{|l|l|}
                    155: \hline
                    156: Resolution type &  Betti numbers          \\ \hline
1.2     ! takayama  157: Schreyer &    1, 12, 44, 75, 70, 39, 13, 2     \\ \hline
        !           158: $(-1,-2,-3,1,2,3)$-minimal & 1, 4, 5, 2  \\ \hline
        !           159: minimal & 1, 4, 5, 2                      \\
1.1       takayama  160: \hline
                    161: \end{tabular}
                    162:
                    163: \noindent
1.2     ! takayama  164: $(-1,-2,-3,1,2,3)$-minimal resolution
1.1       takayama  165: {\footnotesize \begin{verbatim}
1.2     ! takayama  166:  [
        !           167:   [
        !           168:     [    x*Dx+y*Dy+z*Dz-3*h^2 ]
        !           169:     [    y*Dz^2-z*Dy^2 ]
        !           170:     [    x*Dz^2-z*Dx^2 ]
        !           171:     [    x*Dy^2-y*Dx^2 ]
        !           172:   ]
        !           173:   [
        !           174:     [    0 , -x , y , -z ]
        !           175:     [    -x*Dz^2+z*Dx^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ]
        !           176:     [    -x*Dy^2+y*Dx^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ]
        !           177:     [    -y*Dz^2+z*Dy^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ]
        !           178:     [    0 , Dx^2 , -Dy^2 , Dz^2 ]
        !           179:   ]
        !           180:   [
        !           181:     [    -x*Dx+3*h^2 , y , -z , -x , 0 ]
        !           182:     [    -Dz^3-Dy^3 , -Dy^2 , Dz^2 , Dx^2 , -x*Dx-y*Dy-z*Dz ]
        !           183:   ]
        !           184:  ]
        !           185: Degree shifts
        !           186: [    [    0 ]  , [    0 , 4 , 5 , 3 ]  , [    3 , 5 , 6 , 4 , 9 ]  ]
1.1       takayama  187: \end{verbatim}}
                    188: \end{example}
                    189:
                    190:
                    191: \begin{example} \rm
                    192: %Prog: minimal-test.k    test21();
                    193: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2+y^2+z^2} \right) \right]$
                    194: $B$N>l9g(B.
                    195:
                    196: \begin{tabular}{|l|l|}
                    197: \hline
                    198: Resolution type &  Betti numbers          \\ \hline
1.2     ! takayama  199: Schreyer        & 1, 13, 43, 50, 21, 2                        \\ \hline
        !           200: $(-{\bf 1},{\bf 1})$-minimal &  1, 7, 10, 4   \\ \hline
        !           201: minimal &  1, 7, 10, 4                        \\
1.1       takayama  202: \hline
                    203: \end{tabular}
                    204:
                    205: \noindent
1.2     ! takayama  206: $f=x^3-y^2z^2+y^2+z^2$ $B$H$*$$$?>l9g(B,
        !           207: $B6u4V(B ${\bf C}^3 \setminus V(f)$ $B$N(B
        !           208: $B%3%[%b%m%872$N<!85$O(B
        !           209: ${\rm dim}\, H^i = 1$, $(i=0, 1)$,
        !           210: ${\rm dim}\, H^i = 0$, $(i=2, 3)$,
        !           211: $B$H$J$k(B.
        !           212: $B$3$N>l9g(B $D/I$ $B$N(B
        !           213: $b$-$B4X?t$N:GBg@0?t:,$O(B $2$ $B$H$J$j(B,
        !           214: $B%3%[%b%m%8$r7W;;$9$k$?$a$K(B
        !           215: $B9M$($k@~7A6u4V$NJ#BN$N<!85$O(B, $10, 12, 9, 4$  $B$G$"$k(B. %%Prog: Srestall.sm1
        !           216: $B0lJ}(B Schreyer resolution $B$+$i%9%?!<%H$7$F(B,
1.1       takayama  217: $B@~7A6u4V$NJ#BN$r9M$($k$H(B, $B$=$N<!85$O(B
1.2     ! takayama  218: 130, 1078, 1667, 749, 40 $B$H$J$k(B. %%Prog: test21b()
1.1       takayama  219: \end{example}
                    220:
                    221: \begin{example} \rm
                    222: %Prog: minimal-test.k    test20()
1.2     ! takayama  223: $I = D\cdot\{  x_1\pd{1}+2x_2\pd{2}+3x_3\pd{3} ,
        !           224:     \pd{1}^2-\pd{2}h,
        !           225:     -\pd{1}\pd{2}+\pd{3}h,
1.1       takayama  226:     \pd{2}^2-\pd{1}\pd{3} \}
                    227: $ $B$N>l9g(B.
                    228: $B$3$l$O(B $A=(1,2,3)$, $\beta=0$ $B$KIU?o$9$k(B GKZ $BD64v2?7O$N(B
                    229: homogenization.
                    230:
                    231: \begin{tabular}{|l|l|}
                    232: \hline
                    233: Resolution type &  Betti numbers          \\ \hline
1.2     ! takayama  234: Schreyer &                  1, 10, 25, 23, 8, 1    \\ \hline
        !           235: $(-{\bf 1},{\bf 1})$-minimal &    1, 4, 5, 2  \\ \hline
        !           236: minimal &                         1, 4, 5,  2    \\
1.1       takayama  237: \hline
                    238: \end{tabular}
                    239:
                    240: \noindent
                    241: $(-{\bf 1},{\bf 1})$-minimal resolution
                    242: {\footnotesize \begin{verbatim}
                    243:  [
                    244:   [
                    245:     [    x1*Dx1+2*x2*Dx2+3*x3*Dx3 ]
                    246:     [    Dx1^2-Dx2*h ]
                    247:     [    -Dx1*Dx2+Dx3*h ]
                    248:     [    Dx2^2-Dx1*Dx3 ]
                    249:   ]
                    250:   [
                    251:     [    Dx1*Dx2-Dx3*h , -x1*Dx2 , 2*x2*Dx2+3*x3*Dx3+3*h^2 , -x1*h ]
                    252:     [    Dx1^2-Dx2*h , -x1*Dx1-3*x3*Dx3-2*h^2 , 2*x2*Dx1 , 2*x2*h ]
                    253:     [    Dx2^2-Dx1*Dx3 , x1*Dx3 , x1*Dx2 , -2*x2*Dx2-3*x3*Dx3-4*h^2 ]
                    254:     [    0 , Dx3 , Dx2 , Dx1 ]
                    255:     [    0 , -Dx2 , -Dx1 , -h ]
                    256:   ]
                    257:   [
                    258:     [    Dx2 , -Dx3 , -Dx1 , -2*x2*Dx2-3*x3*Dx3-4*h^2 , -x1*Dx2-2*x2*Dx3 ]
                    259:     [    -Dx1 , Dx2 , h , -x1*h , -3*x3*Dx3-h^2 ]
                    260:   ]
                    261:  ]
                    262: Degree shifts
                    263: [    [    0 ]  , [    0 , 2 , 2 , 2 ]  , [    2 , 2 , 2 , 3 , 3 ]  ]
                    264: \end{verbatim}}
                    265: %% $B$3$N(B resolution $B$O<B$O(B, toric $B$N(B resolution $B$N(B Koszul complex $B$K$J$C$F$k(B
                    266: %% $B$O$:(B.
                    267: \end{example}
                    268:
                    269:
                    270:
                    271:
                    272: $(-w,w)$-$B6K>.<+M3J,2r$H(B $B6K>.<+M3J,2r$,$3$H$J$kNc$r$5$,$7$F$$$k$,(B
                    273: $B$3$l$O$^$@8+$D$+$C$F$$$J$$(B.
                    274:
                    275: \section{$B<BAu(B}
                    276: $B$3$3$G$O(B
                    277: \begin{verbatim}
                    278: /* OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v
                    279:    1.23 2000/08/01 08:51:03 takayama Exp  */
                    280: \end{verbatim}
                    281: $BHG$N(B {\tt minimal.k} $B$K=`5r$7$F<BAu$N35N,$r2r@b$9$k(B.
                    282:
                    283: $B$^$@=q$$$F$J$$(B.
                    284:
                    285: \end{document}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>