[BACK]Return to example-ja.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/example-ja.tex, Revision 1.4

1.4     ! takayama    1: % $OpenXM: OpenXM/src/k097/lib/minimal/example-ja.tex,v 1.3 2000/08/09 03:45:27 takayama Exp $
1.1       takayama    2: \documentclass[12pt]{jarticle}
                      3: \newtheorem{example}{Example}
                      4: \def\pd#1{ \partial_{#1} }
                      5: %% [2] should be replaced by \cite{....}
                      6:
                      7: \begin{document}
                      8: \section{$BNc(B}
                      9: $B2f!9$,(B $(u,v)$-$B6K>.<+M3J,2r$N9=@.$K6=L#$r$b$C$?F05!$N(B
                     10: $B0l$D$O(B, $D$ $B2C72(B $M$ $B$N@)8B%3%[%b%m%8$N7W;;$N8zN(2=$G$"$k(B.
                     11: [2] $B$G$O(B, $M$ $B$N(B Schreyer resolution $B$,(B $(-{\bf 1},{\bf 1})$
                     12: $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$G$"$k$3$H$r>ZL@$7(B,
                     13: $B$3$l$rMQ$$$?@)8B%3%[%b%m%8$N7W;;K!$rM?$($?(B.
                     14: $B$3$NJ}K!$rE,MQ$9$k$K$O(B
                     15: $(-w,w)$ $B$KE,9g$7$?(B $M$ $B$N<+M3J,2r$J$i$J$s$G$b$h$/(B,
                     16: Schreyer resolution $B$r$H$kI,A3@-$O$J$$(B.
                     17: [2] $B$NJ}K!$G$O(B, 1 $BE@$X$N@)8B$r7W;;$9$k$N$K<!85(B
                     18: $$O\left( (\mbox{ $B<+M3J,2r$N(B betti $B?t(B}) \times
                     19:   \left(\mbox{$b$$B4X?t$N:GBg@0?t:,(B}\right)^n\right)$$
                     20: $B$N%Y%/%H%k6u4V$NJ#BN$N(B ${\rm Ker}/{\rm Im}$ $B$r(B
                     21: $B7W;;$9$kI,MW$,@8$8$k(B.
                     22: ( $BItJ,B?MMBN$X$N@)8B$K$O(B $D_m$, $(m < n)$ $B<+M32C72$NJ#BN(B
                     23: $B$N%3%[%b%m%8$r7W;;$9$kI,MW$,$"$k(B.)
                     24: $B$7$?$,$C$F(B, betti $B?t$,Bg$-$/$J$k$H(B, $B7W;;$9$Y$-(B $B%Y%/%H%k6u4V$N<!85$,(B
                     25: $BBg$-$/$J$j(B, $B%a%b%jITB-$r$^$M$$$F$$$?(B.
                     26: $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$O(B Schreyer resolution $B$N(B betti $B?t$K(B
                     27: $BHf3S$7$F$+$J$j>.$5$/$$$^$^$G@)8B$,7W;;$G$-$J$+$C$?Nc$b7W;;$G$-$k$h$&$K(B
                     28: $B$J$C$?(B.
                     29:
                     30: Schreyer resolution $B$N(B betti $B?t$H(B $(-w,w)$-$B6K>.<+M3J,2r$N(B betti $B?t$r(B
                     31: $B$$$/$D$+$NNc$K$D$$$FHf3S$7$F$_$h$&(B.
                     32:
                     33: $BHf3S$NA0$K$$$/$D$+5-9f$HM=HwCN<1$rF3F~$9$k(B.
                     34: \begin{enumerate}
                     35: \item Schreyer resolution $B$N(B betti $B?t$O(B $(-w,w)$ $B$@$1$G$J$/(B
                     36: tie-breaking order $B$K$b0MB8$9$k(B.
                     37: $B0J2<(B tie-breaking order $B$H$7$F(B, graded reverse lexicographic order
                     38: $B$rMQ$$$k(B.
                     39: \item $BB?9`<0(B $f$ $B$N(B $b$-$B4X?t$N:G>.@0?t:,$r(B $-r$ $B$H$9$k$H$-(B
                     40: ${\rm Ann}(D f^{-1})$ $B$G(B
                     41: $1/f^r$ $B$rNm2=$9$k(B $D$ $B$N%$%G%"%k$N$"$k@8@.85$N=89g$r$"$i$o$9(B.
1.2       takayama   42: $B2<$N<BNc$N>l9g$G$O4X?t(B {\tt Sannfs(f,v)} $B$N=PNO$r$"$i$o$9(B.
1.1       takayama   43: \item $F(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r$"$i$o$9(B.
                     44: \item $F^h(G)$ $B$G(B $G$ $B$N(B formal Laplace $BJQ49$r(B homogenize $B$7$?$b$N$r$"$i$o$9(B.
                     45: \item Grothendieck $B$NHf3SDjM}$K$h$l$P(B
                     46: $I = F({\rm Ann} D f^{-1})$ $B$H$*$/$H$-(B $D/I$ $B$N86E@$X$N@)8B%3%[%b%m%8(B
                     47: $B$,6u4V(B $ {\bf C}^n \setminus V(f)$ $B$N(B ${\bf C}$-$B78?t%3%[%b%m%872$K0lCW$9$k(B.
                     48: ( "An algorithm for de Rham cohomology groups of the
                     49: complement of an affine variety via D-module computation",
                     50: Journal of pure and applied algebra, 139 (1999), 201--233. $B$r;2>H(B)
                     51: \end{enumerate}
                     52:
1.3       takayama   53: \begin{example} \rm  \label{example:cusp}
1.1       takayama   54: %Prog: minimal-test.k    test18()
                     55: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2} \right) \right]$
                     56: $B$N>l9g(B.
                     57: $B%$%G%"%k(B $I$ $B$O(B
                     58: $$ -2x\pd{x}-3y\pd{y}+h^2 ,  -3y\pd{x}^2+2x\pd{y}h $$
                     59: $B$G@8@.$5$l$k(B.
                     60:
                     61: \begin{tabular}{|l|l|}
                     62: \hline
                     63: Resolution type &  Betti numbers          \\ \hline
1.2       takayama   64: Schreyer &                        1, 4, 4, 1    \\ \hline
                     65: $(-{\bf 1},{\bf 1})$-minimal &    1, 2, 1 \\ \hline
                     66: minimal &                         1, 2, 1    \\
1.1       takayama   67: \hline
                     68: \end{tabular}
                     69:
                     70: \noindent
                     71: $(-{\bf 1},{\bf 1})$-minimal resolution
                     72: {\footnotesize \begin{verbatim}
                     73:  [
                     74:   [
                     75:     [    -2*x*Dx-3*y*Dy+h^2 ]
                     76:     [    -3*y*Dx^2+2*x*Dy*h ]
                     77:   ]
                     78:   [
                     79:     [    -3*y*Dx^2+2*x*Dy*h , 2*x*Dx+3*y*Dy ]
                     80:   ]
                     81:  ]
                     82: Degree shifts
                     83: [    [    0 ]  , [    0 , 1 ]  ]
                     84: \end{verbatim}}
                     85: Schreyer Resolution  %%Prog: a=test18();  sm1_pmat(a[3]);
                     86: {\footnotesize \begin{verbatim}
                     87:  [
                     88:   [
                     89:     [    -2*x*Dx-3*y*Dy+h^2 ]
                     90:     [    -3*y*Dx^2+2*x*Dy*h ]
                     91:     [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ]
                     92:     [    27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ]
                     93:   ]
                     94:   [
                     95:     [    9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ]
                     96:     [    -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ]
                     97:     [    2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ]
                     98:     [    3*y*Dx , -2*x , 1 , 0 ]
                     99:   ]
                    100:   [
                    101:     [    -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ]
                    102:   ]
                    103:  ]
                    104: \end{verbatim}}
                    105: \end{example}
                    106:
                    107: \begin{example} \rm
                    108: %Prog: minimal-test.k    test17b()
                    109: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2} \right) \right]$
                    110: $B$N>l9g(B.
                    111:
                    112: \begin{tabular}{|l|l|}
                    113: \hline
                    114: Resolution type &  Betti numbers          \\ \hline
1.2       takayama  115: Schreyer &                        1, 8, 16, 11, 2    \\ \hline
                    116: $(-{\bf 1},{\bf 1})$-minimal &    1, 4, 5, 2 \\ \hline
                    117: minimal &                         1, 4, 5, 2    \\
1.1       takayama  118: \hline
                    119: \end{tabular}
                    120:
                    121: \noindent
                    122: $(-{\bf 1},{\bf 1})$-minimal resolution
                    123: {\footnotesize \begin{verbatim}
                    124:  [
                    125:   [
                    126:     [    y*Dy-z*Dz ]
                    127:     [    -2*x*Dx-3*z*Dz+h^2 ]
                    128:     [    2*x*Dy*Dz^2-3*y*Dx^2*h ]
                    129:     [    2*x*Dy^2*Dz-3*z*Dx^2*h ]
                    130:   ]
                    131:   [
                    132:     [    0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz ]
                    133:     [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
                    134:     [    3*Dx^2*h , 0 , Dy , -Dz ]
                    135:     [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0 ]
                    136:     [    2*x*Dy*Dz , 0 , z , -y ]
                    137:   ]
                    138:   [
                    139:     [    y , -2*x*Dy*Dz , 3*y*z , z , 2*x*Dx ]
                    140:     [    Dz , -3*Dx^2*h , 2*x*Dx+3*y*Dy+3*z*Dz+6*h^2 , Dy , -3*Dy*Dz ]
                    141:   ]
                    142:  ]
                    143: Degree shifts
                    144: [    [    0 ]  , [    0 , 0 , 2 , 2 ]  , [    2 , 0 , 3 , 2 , 1 ]  ]
                    145: \end{verbatim}}
                    146: \end{example}
                    147:
                    148: \begin{example} \rm
                    149: %Prog: minimal-test.k    test22();
                    150: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3+y^3+z^3} \right) \right]$
                    151: $B$N>l9g(B.
                    152:
                    153: %% Uli Walther $B$N(B $BO@J8(B (MEGA 2000) $B$NNc$H(B betti $B?t$rHf3S$;$h(B.
                    154: \begin{tabular}{|l|l|}
                    155: \hline
                    156: Resolution type &  Betti numbers          \\ \hline
1.2       takayama  157: Schreyer &    1, 12, 44, 75, 70, 39, 13, 2     \\ \hline
                    158: $(-1,-2,-3,1,2,3)$-minimal & 1, 4, 5, 2  \\ \hline
                    159: minimal & 1, 4, 5, 2                      \\
1.1       takayama  160: \hline
                    161: \end{tabular}
                    162:
                    163: \noindent
1.2       takayama  164: $(-1,-2,-3,1,2,3)$-minimal resolution
1.1       takayama  165: {\footnotesize \begin{verbatim}
1.2       takayama  166:  [
                    167:   [
                    168:     [    x*Dx+y*Dy+z*Dz-3*h^2 ]
                    169:     [    y*Dz^2-z*Dy^2 ]
                    170:     [    x*Dz^2-z*Dx^2 ]
                    171:     [    x*Dy^2-y*Dx^2 ]
                    172:   ]
                    173:   [
                    174:     [    0 , -x , y , -z ]
                    175:     [    -x*Dz^2+z*Dx^2 , x*Dy , x*Dx+z*Dz-3*h^2 , z*Dy ]
                    176:     [    -x*Dy^2+y*Dx^2 , -x*Dz , y*Dz , x*Dx+y*Dy-3*h^2 ]
                    177:     [    -y*Dz^2+z*Dy^2 , x*Dx+y*Dy+z*Dz-2*h^2 , 0 , 0 ]
                    178:     [    0 , Dx^2 , -Dy^2 , Dz^2 ]
                    179:   ]
                    180:   [
                    181:     [    -x*Dx+3*h^2 , y , -z , -x , 0 ]
                    182:     [    -Dz^3-Dy^3 , -Dy^2 , Dz^2 , Dx^2 , -x*Dx-y*Dy-z*Dz ]
                    183:   ]
                    184:  ]
                    185: Degree shifts
                    186: [    [    0 ]  , [    0 , 4 , 5 , 3 ]  , [    3 , 5 , 6 , 4 , 9 ]  ]
1.1       takayama  187: \end{verbatim}}
                    188: \end{example}
                    189:
                    190:
                    191: \begin{example} \rm
                    192: %Prog: minimal-test.k    test21();
                    193: $I = F^h\left[{\rm Ann}\left( D \frac{1}{x^3-y^2z^2+y^2+z^2} \right) \right]$
                    194: $B$N>l9g(B.
                    195:
                    196: \begin{tabular}{|l|l|}
                    197: \hline
                    198: Resolution type &  Betti numbers          \\ \hline
1.2       takayama  199: Schreyer        & 1, 13, 43, 50, 21, 2                        \\ \hline
                    200: $(-{\bf 1},{\bf 1})$-minimal &  1, 7, 10, 4   \\ \hline
                    201: minimal &  1, 7, 10, 4                        \\
1.1       takayama  202: \hline
                    203: \end{tabular}
                    204:
                    205: \noindent
1.2       takayama  206: $f=x^3-y^2z^2+y^2+z^2$ $B$H$*$$$?>l9g(B,
                    207: $B6u4V(B ${\bf C}^3 \setminus V(f)$ $B$N(B
                    208: $B%3%[%b%m%872$N<!85$O(B
1.4     ! takayama  209: ${\rm dim}\, H^0 = 8$, ${\rm dim}\, H^1 = 0$,
        !           210: ${\rm dim}\, H^2 = 1$, ${\rm dim}\, H^3 = 1$
1.2       takayama  211: $B$H$J$k(B.
                    212: $B$3$N>l9g(B $D/I$ $B$N(B
                    213: $b$-$B4X?t$N:GBg@0?t:,$O(B $2$ $B$H$J$j(B,
                    214: $B%3%[%b%m%8$r7W;;$9$k$?$a$K(B
1.4     ! takayama  215: $B9M$($k@~7A6u4V$NJ#BN$N<!85$O(B, $20, 28, 27, 11$  $B$G$"$k(B. %%Prog: Srestall_s.sm1
1.2       takayama  216: $B0lJ}(B Schreyer resolution $B$+$i%9%?!<%H$7$F(B,
1.1       takayama  217: $B@~7A6u4V$NJ#BN$r9M$($k$H(B, $B$=$N<!85$O(B
1.2       takayama  218: 130, 1078, 1667, 749, 40 $B$H$J$k(B. %%Prog: test21b()
1.1       takayama  219: \end{example}
                    220:
1.4     ! takayama  221: $B<!$K(B $(u,v)$-$B6K>.<+M3J,2r$H6K>.<+M3J,2r$,0[$J$kNc$r<($=$&(B.
        !           222: \begin{example} \rm
        !           223: %%Prog: minimal-test.k test24()
        !           224: $BF1<!2=%o%$%kBe?t$N:8%$%G%"%k(B
        !           225: $$I  = D^{(h)}\cdot \{ h \pd{x} - x \pd{x} - y \pd{y},
        !           226:                        h \pd{y} - x \pd{x} - y \pd{y} \} $$
        !           227: $B$r9M$($k(B.
        !           228:
        !           229: \begin{tabular}{|l|l|}
        !           230: \hline
        !           231: Resolution type &  Betti numbers          \\ \hline
        !           232: Schreyer &                         1, 3, 3, 1   \\ \hline
        !           233: $(-{\bf 1},{\bf 1})$-minimal &     1, 3, 2 \\ \hline
        !           234: minimal &                          1, 2, 1 \\
        !           235: \hline
        !           236: \end{tabular}
        !           237:
        !           238: \noindent
        !           239: $(-{\bf 1},{\bf 1})$-minimal resolution
        !           240: {\footnotesize \begin{verbatim}
        !           241:  [
        !           242:   [
        !           243:     [    Dx*h-x*Dx-y*Dy ]
        !           244:     [    Dy*h-x*Dx-y*Dy ]
        !           245:     [    x*Dx^2-x*Dx*Dy+y*Dx*Dy-y*Dy^2 ]
        !           246:   ]
        !           247:   [
        !           248:     [    x*Dx-x*Dy+y*Dy+x*h , -y*Dy-x*h , -h+x ]
        !           249:     [    -Dy+h , Dx-h , 1 ]
        !           250:   ]
        !           251:  ]
        !           252: \end{verbatim}
        !           253: }  \noindent
        !           254: $B$G$"$j(B,  1 $BHVL\$N(B syzygy $B$K(B
        !           255: \verb# [-Dy+h, Dx-h, 1 ] #
        !           256: $B$H(B $1$ $B$,=P8=$7$F$$$k(B.
        !           257: $B<+M3J,2r$N<gIt(B (initial) $B$O0J2<$N$H$&$j(B.
        !           258: {\footnotesize
        !           259: \begin{verbatim}
        !           260:  [
        !           261:   [
        !           262:     [    Dx*h ]
        !           263:     [    Dy*h ]
        !           264:     [    x*Dx^2-x*Dx*Dy+y*Dx*Dy-y*Dy^2 ]
        !           265:   ]
        !           266:   [
        !           267:     [    x*Dx-x*Dy+y*Dy , -y*Dy , -h ]
        !           268:     [    -Dy , Dx , 0 ]
        !           269:   ]
        !           270:  ]
        !           271: \end{verbatim}
        !           272: }
        !           273:
        !           274: \noindent
        !           275: $B0lJ}(B
        !           276: minimal resolution  %%Prog: test24b()  minimal-test.k
        !           277: $B$O(B
        !           278: {\footnotesize \begin{verbatim}
        !           279:  [
        !           280:   [
        !           281:     [    Dx*h-x*Dx-y*Dy ]
        !           282:     [    Dy*h-x*Dx-y*Dy ]
        !           283:   ]
        !           284:   [
        !           285:     [    -Dy*h+x*Dx+y*Dy+h^2 , Dx*h-x*Dx-y*Dy-h^2 ]
        !           286:   ]
        !           287:  ]
        !           288: \end{verbatim}
        !           289: }  \noindent
        !           290:
        !           291: \end{example}
        !           292:
1.1       takayama  293: \begin{example} \rm
                    294: %Prog: minimal-test.k    test20()
1.2       takayama  295: $I = D\cdot\{  x_1\pd{1}+2x_2\pd{2}+3x_3\pd{3} ,
                    296:     \pd{1}^2-\pd{2}h,
                    297:     -\pd{1}\pd{2}+\pd{3}h,
1.1       takayama  298:     \pd{2}^2-\pd{1}\pd{3} \}
                    299: $ $B$N>l9g(B.
                    300: $B$3$l$O(B $A=(1,2,3)$, $\beta=0$ $B$KIU?o$9$k(B GKZ $BD64v2?7O$N(B
                    301: homogenization.
                    302:
                    303: \begin{tabular}{|l|l|}
                    304: \hline
                    305: Resolution type &  Betti numbers          \\ \hline
1.2       takayama  306: Schreyer &                  1, 10, 25, 23, 8, 1    \\ \hline
                    307: $(-{\bf 1},{\bf 1})$-minimal &    1, 4, 5, 2  \\ \hline
                    308: minimal &                         1, 4, 5,  2    \\
1.1       takayama  309: \hline
                    310: \end{tabular}
                    311:
                    312: \noindent
                    313: $(-{\bf 1},{\bf 1})$-minimal resolution
                    314: {\footnotesize \begin{verbatim}
                    315:  [
                    316:   [
                    317:     [    x1*Dx1+2*x2*Dx2+3*x3*Dx3 ]
                    318:     [    Dx1^2-Dx2*h ]
                    319:     [    -Dx1*Dx2+Dx3*h ]
                    320:     [    Dx2^2-Dx1*Dx3 ]
                    321:   ]
                    322:   [
                    323:     [    Dx1*Dx2-Dx3*h , -x1*Dx2 , 2*x2*Dx2+3*x3*Dx3+3*h^2 , -x1*h ]
                    324:     [    Dx1^2-Dx2*h , -x1*Dx1-3*x3*Dx3-2*h^2 , 2*x2*Dx1 , 2*x2*h ]
                    325:     [    Dx2^2-Dx1*Dx3 , x1*Dx3 , x1*Dx2 , -2*x2*Dx2-3*x3*Dx3-4*h^2 ]
                    326:     [    0 , Dx3 , Dx2 , Dx1 ]
                    327:     [    0 , -Dx2 , -Dx1 , -h ]
                    328:   ]
                    329:   [
                    330:     [    Dx2 , -Dx3 , -Dx1 , -2*x2*Dx2-3*x3*Dx3-4*h^2 , -x1*Dx2-2*x2*Dx3 ]
                    331:     [    -Dx1 , Dx2 , h , -x1*h , -3*x3*Dx3-h^2 ]
                    332:   ]
                    333:  ]
                    334: Degree shifts
                    335: [    [    0 ]  , [    0 , 2 , 2 , 2 ]  , [    2 , 2 , 2 , 3 , 3 ]  ]
                    336: \end{verbatim}}
1.3       takayama  337: %%Prog:test23() of minimal-test.k
                    338: $B$3$N6K>.<+M3J,2r$O<B$O(B $B9TNs(B $(1,2,3)$ $B$G$-$^$k(B affine toric ideal
                    339: $B$N6K>.<+M3J,2r$N(B Koszul complex $B$K$J$C$F$k(B.
                    340: Gel'fand, Kapranov, Zelevinsky $B$K$h$C$FF3F~$5$l$?(B $D/I$
                    341: $B$N(B resolution $B$r<+A3$K1dD9$7$?<!$N(B 2 $B=EJ#BN$r9M$($h$&(B.
                    342: $$
                    343: \begin{array}{ccccccccc}
                    344: 0 & \longrightarrow & D^2 & \stackrel{d^1}{\longrightarrow}
                    345:                     & D^3 & \stackrel{d^2}{\longrightarrow}
                    346:                     & D & \longrightarrow & 0 \\
                    347:   &                 & u^1 \downarrow      &
                    348:                     & u^2 \downarrow      &
                    349:                     & u^3 \downarrow      &   \\
                    350: 0 & \longrightarrow & D^2 & \stackrel{d^1}{\longrightarrow}
                    351:                     & D^3 & \stackrel{d^2}{\longrightarrow}
                    352:                     & D & \longrightarrow & 0
                    353: \end{array}
                    354: $$
                    355: $B$3$3$G$O(B, ($B8m2r$b$J$$$H;W$&$N$G(B) $D$ $B$GF1<!2=%o%$%kBe?t(B,
                    356: $d^i$ $B$G(B affine toric ideal $B$NF1<!2=$NB?9`<04D$G$N6K>.<+M3J,2r(B
                    357: $$ d^2 = \pmatrix{ \pd{1}^2 - \pd{2}^2 h \cr
                    358:                    -\pd{1} \pd{2} + \pd{3} h \cr
                    359:                    \pd{2}^2 - \pd{1} \pd{3} \cr }, \
                    360:    d^1 = \pmatrix{ -\pd{2} & -\pd{1} & -h \cr
                    361:                    \pd{3}  & \pd{2}  & \pd{1} \cr }
                    362: $$
                    363: $B$r$"$i$o$9$b$N$H$9$k(B.
                    364: $B$^$?(B $\ell = x_1 \pd{1} + 2 x_2 \pd{2} + 3 x_3 \pd{3}$ $B$H$*$/$H$-(B $u^i$ $B$r(B
                    365: $B<!$N$h$&$K$-$a$k(B.
                    366: $$ u^1=\pmatrix{ \ell + 4 h^2 & 0 \cr
                    367:                  0 & \ell+5 h^2 \cr}, \quad
                    368:    u^2=\pmatrix{\ell+2 h^2 & 0 & 0 \cr
                    369:                 0 & \ell + 3 h^2 & 0 \cr
                    370:                 0 & 0 & \ell+ 4 h^2 \cr}, \quad
                    371:    u^3 = \pmatrix{ \ell \cr}.
                    372: $$
                    373:
                    374: $B$3$N$H$-IU?o$9$k(B 1 $B=EJ#BN$O(B
                    375: $$L^1 \ni f \mapsto (-d^1(f), u^1(f)) \in L^2 \oplus L^1, $$
                    376: $$  L^2\oplus L^1 \ni (f,g)\mapsto (-d^2(f), u^2(f)+d^1(g)) \in L^3\oplus L^2,
                    377: $$
                    378: $$
                    379:   L^3\oplus L^2 \ni (f,g)\mapsto u^3(f)+d^2(g) \in L^3.
                    380: $$
                    381: $B$G$"$?$($i$l$k(B.
                    382: $B$3$3$G(B $L^1 = D^2$, $L^2 = D^3$, $L^3 = D$ $B$G$"$k(B.
                    383: $B$3$N(B 1 $B=EJ#BN$N6qBN7A$O0J2<$N$H$&$j(B.
                    384: \footnotesize{
                    385: \begin{verbatim}
                    386:  [
                    387:   [
                    388:     [    x1*Dx1+2*x2*Dx2+3*x3*Dx3 ]
                    389:     [    Dx1^2-Dx2*h ]
                    390:     [    -Dx1*Dx2+Dx3*h ]
                    391:     [    Dx2^2-Dx1*Dx3 ]
                    392:   ]
                    393:   [
                    394:     [    -Dx1^2+Dx2*h , x1*Dx1+2*x2*Dx2+3*x3*Dx3+2*h^2 , 0 , 0 ]
                    395:     [    Dx1*Dx2-Dx3*h , 0 , x1*Dx1+2*x2*Dx2+3*x3*Dx3+3*h^2 , 0 ]
                    396:     [    -Dx2^2+Dx1*Dx3 , 0 , 0 , x1*Dx1+2*x2*Dx2+3*x3*Dx3+4*h^2 ]
                    397:     [    0 , -Dx2 , -Dx1 , -h ]
                    398:     [    0 , Dx3 , Dx2 , Dx1 ]
                    399:   ]
                    400:   [
                    401:     [    Dx2 , Dx1 , h , x1*Dx1+2*x2*Dx2+3*x3*Dx3+4*h^2 , 0 ]
                    402:     [    -Dx3 , -Dx2 , -Dx1 , 0 , x1*Dx1+2*x2*Dx2+3*x3*Dx3+5*h^2 ]
                    403:   ]
                    404:  ]
                    405: \end{verbatim}
                    406: }
1.1       takayama  407: \end{example}
                    408:
                    409:
                    410:
                    411:
1.3       takayama  412: \section{$B<BAu(B}
                    413: $B$3$3$G$O(B
                    414: \begin{verbatim}
                    415: /* OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.25
                    416:    2000/08/02 05:14:31 takayama Exp  */
                    417: \end{verbatim}
                    418: $BHG$N(B {\tt minimal.k} $B$K=`5r$7$F<BAu$N35N,$r2r@b$9$k(B.
                    419:
                    420: $B<BAu$N@bL@$N$?$a$NNc$H$7$F%$%G%"%k(B
                    421: $$ I = D \cdot \{  -2x\pd{x}-3y\pd{y}+h^2,  -3y\pd{x}^2+2x\pd{y}h \} $$
                    422: $B$N(B $(u,v) = (-1,-1,1,1)$-$B6K>.J,2r$N9=@.(B
                    423: $B$r9M$($h$&(B.
                    424: %%Prog: minimal-note-ja.txt  6/9 (Fri) $B$*$h$S0J8e$N(B bug fix $B$N5-O?$r;2>H(B.
                    425: %%$BNc$H$7$F(B, $B%$%G%"%k(B
                    426: %%$$ I = D \cdot \{ x^2 + y^2, x y \} $$
                    427: %%$B$N(B $(u,v) = (-1,-1,1,1)$-$B6K>.J,2r$N9=@.(B
                    428: %%$B$r9M$($h$&(B.
                    429: %%($B$3$N>l9g$OB?9`<04D$NF1<!<0$G@8@.$5$l$k$N$G(B, $BB?9`<04D$G$N(B
                    430: %% $B6K>.<+M3J,2r$N7W;;$HF1$8$3$H$K$J$k(B.)
                    431: $B$3$N>l9g(B,
                    432: $I$ $B$N%0%l%V%J4pDl(B $G$ $B$O(B
                    433: {\footnotesize
                    434: \begin{verbatim}
                    435:  [
                    436:    [    -2*x*Dx-3*y*Dy+h^2 ]
                    437:    [    -3*y*Dx^2+2*x*Dy*h ]
                    438:    [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ]
                    439:    [    27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ]
                    440:  ]
                    441: \end{verbatim}
                    442: }  \noindent
                    443: $B$H$J$C$F$*$j(B,
                    444: Schreyer resolution $B$O(B
                    445: {\footnotesize
                    446: \begin{verbatim}
                    447:   [
                    448:    [
                    449:      [    -2*x*Dx-3*y*Dy+h^2 ]
                    450:      [    -3*y*Dx^2+2*x*Dy*h ]
                    451:      [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ]
                    452:      [    27*y^3*Dy^2+27*y^2*Dy*h^2-3*y*h^4-8*x^3*Dy*h ]
                    453:    ]
                    454:    [
                    455:      [    9*y^2*Dy+3*y*h^2 , 0 , 2*x , 1 ]
                    456:      [    -4*x^2*Dy*h , 0 , -3*y*Dy+4*h^2 , Dx ]
                    457:      [    2*x*Dy*h , 3*y*Dy-2*h^2 , Dx , 0 ]
                    458:      [    3*y*Dx , -2*x , 1 , 0 ]
                    459:    ]
                    460:    [
                    461:      [    -Dx , 1 , 2*x , 3*y*Dy-2*h^2 ]
                    462:    ]
                    463:   ]
                    464: \end{verbatim}
                    465: }  \noindent
                    466: $B$G$"$k(B.  $1$ $B$,$?$/$5$s(B Schreyer resolution $B$NCf$K$O$"$k$3$H$K(B
                    467: $BCm0U(B. $1$ $B$O6K>.<+M3J,2r$K$OI,MW$J$$85$G$"$k$3$H$r0UL#$9$k(B.
                    468: $B6K>.<+M3J,2r$O(B, $BNc(B \ref{example:cusp} $B$K6qBN7A$r=q$$$F$*$$$?(B.
                    469:
                    470: \medbreak
                    471:
                    472:
                    473: $B$3$N<BAu$G$O6K>.<+M3J,2r$r(B LaScala $B$N%"%k%4%j%:%`$r$b$H$K$7$F(B
                    474: $B9=@.$9$k(B (LaScala and Stillman [??] $B$*$h$S?tM}2J3X$N5-;v(B ??? $B$r;2>H(B).
                    475:
                    476: $B$3$N%"%k%4%j%:%`$O4{CN$H$7$F(B, $B0c$$$N$_$r@bL@$7$h$&(B.
                    477: LaScala $B$N%"%k%4%j%:%`$O(B,
                    478: reduction $B$7$?$H$-$K(B $0$ $B$K$J$C$?>l9g(B, $B$=$N(B reduction $B$KIU?o$7$?(B
                    479: syzygy $B$r(B $B6K>.<+M3J,2r$N85$H$7(B,
                    480: reduction $B$7$?$H$-$K(B $0$ $B$K$J$i$J$+$C$?>l9g(B, $B$=$N85$r(B
                    481: $B%0%l%V%J4pDl$N85$H$7$F2C$((B, $BIU?o$7$?(B syzygy $B$O6K>.<+M3J,2r$G$OM>7W$J$b$N$H(B
                    482: $B$_$J$9(B.
                    483: $B$o$l$o$l$O(B $(u,v)$-$B6K>.$J<+M3J,2r$r$b$H$a$?$$(B.
                    484: $B$=$3$G>e$N<jB3$-$r<!$N$h$&$KJQ$($k(B.
                    485: \begin{center}
                    486: \begin{minipage}{10cm}
                    487: Reduction $B$7$?$H$-$K(B modulo $(u,v)$-$B%U%#%k%?!<$G(B $0$ $B$K$J$C$?>l9g(B,
                    488: $B$=$N(B reduction $B$KIU?o$7$?(B syzygy $B$r(B $B6K>.<+M3J,2r$N85$H$7(B, $B$5$i$K(B
                    489: $B$=$N85$,(B $0$ $B$G$J$1$l$P%0%l%V%J4pDl$K2C$($k(B.
                    490: reduction $B$7$?$H$-$K(B modulo $(u,v)$-$B%U%#%k%?!<$G(B $0$ $B$K$J$i$J$+$C$?>l9g(B,
                    491: $B$=$N85$r%0%l%V%J4pDl$N85$H$7$F2C$((B,
                    492: $BIU?o$7$?(B syzygy $B$O6K>.<+M3J,2r$G$OM>7W$J$b$N$H$_$J$9(B.
                    493: \end{minipage}
                    494: \end{center}
                    495:
                    496:
                    497: \bigbreak
                    498:
1.4     ! takayama  499: \noindent
1.3       takayama  500: {\tt minimal.k} $B$N%=!<%9%3!<%I$G$O$3$NItJ,$O<!$N$h$&$K$J$C$F$$$k(B.
                    501: {\footnotesize
                    502: \begin{verbatim}
                    503: def SlaScala(g,opt) {
                    504:     ...
                    505:     ...
                    506:                f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    507:                if (f[0] != Poly("0")) {
                    508:                   place = f[3];
                    509: if (Sordinary) {
                    510:                   redundantTable[level-1,place] = redundant_seq;
                    511:                   redundant_seq++;
                    512: }else{
                    513:                   if (f[4] > f[5]) {                       ($B$$(B)
                    514:                     /* Zero in the gr-module */
                    515:                     Print("v-degree of [org,remainder] = ");
                    516:                     Println([f[4],f[5]]);
                    517:                     Print("[level,i] = "); Println([level,i]);
                    518:                     redundantTable[level-1,place] = 0;
                    519:                   }else{                                   ($B$m(B)
                    520:                     redundantTable[level-1,place] = redundant_seq;
                    521:                     redundant_seq++;
                    522:                   }
                    523: }
                    524:                   redundantTable_ordinary[level-1,place]
                    525:                      =redundant_seq_ordinary;
                    526:   ...
                    527:   ...
                    528: }
                    529: \end{verbatim}
                    530: }
                    531:
                    532: $B>/!9D9$/$J$k$,(B, $B$3$NItJ,$K$"$i$o$l$kJQ?t$N@bL@$r$7$h$&(B.
                    533:
                    534: LaScala $B$N%"%k%4%j%:%`$G$O(B, $B:G=i$K7W;;$9$Y$-(B S-pair $B$N7W;;<j=g(B,
                    535: $B$*$h$S(B Schreyer frame $B$r:n@.$9$k(B.
                    536: Schreyer frame $B$O(B Schreyer resolution $B$N(B initial $B$G$"$k(B.
                    537: $B$3$l$i$O$"$i$+$8$a(B
                    538: {\tt SresolutionFrameWithTower(g,opt);}
                    539: $B$G7W;;$5$l$F(B, {\tt tower} $B$*$h$S(B {\tt skel} $B$K3JG<$5$l$F$$$k(B.
                    540: $B$3$l$i$NJQ?t$NCM$O(B, $B4X?t(B {\tt Sminimal()} $B$NLa$jCM$H$7$F(B
                    541: $B8+$k$3$H$,$G$-$k(B.
                    542: $B4X?t(B {\tt Sminimal()} $B$NLa$jCM$,JQ?t(B $a$ $B$K3JG<$5$l$F$$$k$H$9$k$H(B,
                    543: {\tt a[0]} $B$,6K>.<+M3J,2r(B
                    544: {\tt a[3]} $B$,(B Schreyer $B<+M3J,2r(B($B$H$/$K(B {\tt a[3,0]} $B$,(B
                    545: $I$ $B$N%0%l%V%J4pDl(B),
                    546: {\tt a[4]} $B$,(B,
                    547: $B4X?t(B {\tt SlaScala()} $B$N(B
                    548: $BJQ?t(B {\tt [rf[0], tower, skel, rf[3]]} $B$NCM$G$"$k(B.
                    549: $B$7$?$,$C$F(B,  {\tt tower} $B$O(B {\tt a[4,1]} $B$K3JG<$5$l$F$$$k(B.
                    550: $I$ $B$N>l9g$N(B {\tt tower} $B$O0J2<$N$H$&$j(B.
                    551: {\footnotesize
                    552: \begin{verbatim}
                    553: In(25)=sm1_pmat(a[4,1]);
                    554:  [
                    555:    [    -2*x*Dx , -3*y*Dx^2 , -9*y^2*Dx*Dy , -27*y^3*Dy^2 ]
                    556:    [    -9*y^2*Dy , -3*es^2*y*Dy , -3*es*y*Dy , -3*y*Dx ]
                    557:    [    -Dx ]
                    558:  ]
                    559: \end{verbatim}
                    560: } \noindent
                    561: $B$3$3$G(B ${\tt es}^i$ $B$O%Y%/%H%k$N(B $BBh(B $i$ $B@.J,$G$"$k$3$H$r$7$a$7$F$$$k(B.
                    562: $B$?$H$($P(B,
                    563: \verb# -3*es^2*y*Dy # $B$O(B
                    564: \verb# [0, 0, -3*y*Dy, 0] # $B$r0UL#$9$k(B.
                    565:
                    566: $BJQ?t(B
                    567: {\tt skel} $B$K$O(B
                    568: S-pair (sp) $B$N7W;;<j=g$,$O$$$C$F$$$k(B.
                    569: $I$ $B$N>l9g$K$O0J2<$N$H$&$j(B.
                    570: {\footnotesize
                    571: \begin{verbatim}
                    572: In(16)=sm1_pmat(a[4,2]);
                    573:  [
                    574:    [   ]
                    575:   [
                    576:    [
                    577:      [    0 , 2 ]          G'[0] $B$H(B G'[2] $B$N(B sp $B$r7W;;(B (0)
                    578:      [    -9*y^2*Dy , 2*x ]
                    579:    ]
                    580:    [
                    581:      [    2 , 3 ]          G'[2] $B$H(B G'[3] $B$N(B sp $B$r7W;;(B (1)
                    582:      [    -3*y*Dy , Dx ]
                    583:    ]
                    584:    [
                    585:      [    1 , 2 ]          G'[1] $B$H(B G'[2] $B$N(B sp $B$r7W;;(B (2)
                    586:      [    -3*y*Dy , Dx ]
                    587:    ]
                    588:    [
                    589:      [    0 , 1 ]          G'[0] $B$H(B G'[1] $B$N(B sp $B$r7W;;(B (3)
                    590:      [    -3*y*Dx , 2*x ]
                    591:    ]
                    592:   ]
                    593:   [
                    594:    [
                    595:      [    0 , 3 ]          G''[0] $B$H(B G''[3] $B$N(B sp $B$r7W;;(B
                    596:      [    -Dx , 3*y*Dy ]
                    597:    ]
                    598:   ]
                    599:    [   ]
                    600:  ]
                    601: \end{verbatim}
                    602: }  \noindent
                    603: $B$3$3$G(B $G'$ $B$O(B Schreyer order $B$GF@$i$l$?(B $G$ $B$N(B syzygy $B$N@8@.85(B,
                    604: $G''$ $B$O(B Schreyer order $B$GF@$i$l$?(B $G'$ $B$N(B syzygy $B$N@8@.85$r$"$i$o$9(B.
                    605: $B$?$H$($P>e$NNc$G$O(B,
                    606: $G'[0]$ $B$O(B
                    607: $G[0]$ $B$H(B $G[2]$ $B$N(B sp $B$N7W;;$K$h$jF@$i$l$?(B syzygy,
                    608: $G'[1]$ $B$O(B
                    609: $G[2]$ $B$H(B $G[3]$ $B$N(B sp $B$N7W;;$K$h$jF@$i$l$?(B syzygy,
                    610: ...
                    611: $B$r0UL#$9$k(B.
                    612:
                    613: {\footnotesize
                    614: \begin{verbatim}
                    615:      f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    616: \end{verbatim}
                    617: } \noindent
                    618: $B$G$O(B {\tt skel[level,i]} $B$K3JG<$5$l$?(B
                    619: S-pair $B$r7W;;$7$F(B, {\tt freeRes[level-1]} $B$G(B reduction $B$r$*$3$J$&(B.
                    620: Reduction $B$N$?$a$N(B Schreyer order $B$O(B \\
                    621: {\tt StowerOf(tower,level-1)} $B$rMQ$$$k(B.
                    622: $B$?$H$($P(B, ${\tt [level,i] = [1,3]}$ $B$N$H$-$K(B
                    623: $B4X?t(B {\tt SpairAndReduction} $B$G(B
                    624: $B$I$N$h$&$J7W;;$,$J$5$l$F$$$k$+(B $I$ $B$N>l9g$K$_$F$_$h$&(B.
                    625:
                    626: {\tt SpairAndReduction} $B$N<B9T;~(B
                    627: $B$K<!$N$h$&$J%a%C%;!<%8$,$G$F$/$k(B.
                    628: {\footnotesize
                    629: \begin{verbatim}
                    630: reductionTable= [
                    631:    [    1 , 2 , 3 , 4 ]
                    632:    [    3 , 4 , 3 , 2 ]
                    633:    [    3 ]
                    634:  ]
                    635: [    0 , 0 ]
                    636: Processing [level,i]= [    0 , 0 ]    Strategy = 1
                    637: [    0 , 1 ]
                    638: Processing [level,i]= [    0 , 1 ]    Strategy = 2
                    639: [    1 , 3 ]
                    640: Processing [level,i]= [    1 , 3 ]    Strategy = 2
                    641: SpairAndReduction:
                    642: [    p and bases  , [    [    0 , 1 ]  , [    -3*y*Dx , 2*x ]  ]  ,
                    643:    [-2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , %[null] , %[null] ]  ]
                    644: [    level= , 1 ]
                    645: [    tower2= , [    [   ]  ]  ]
                    646: [    -3*y*Dx , 2*es*x ]
                    647: [gi, gj] = [    -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h ]
                    648: 1
                    649: Reduce the element 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h
                    650: by  [ -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , %[null] , %[null] ]
                    651: result is [    9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h , 1 , [    0 , 0 , 0 , 0 ]  ]
                    652: vdegree of the original = 0
                    653: vdegree of the remainder = 0
                    654: [  9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h ,
                    655:   [ -3*y*Dx , 2*x , 0 , 0 ]  , 3 , 2 , 0 , 0 ]
                    656: \end{verbatim}
                    657: }  \noindent
                    658: $B:G=i$KI=<($5$l$k(B {\tt reductionTable} $B$N0UL#$O$"$H$G@bL@$9$k(B.
                    659: $B<!$N9T$KCmL\$7$h$&(B.  $B$3$3$G$O(B {\tt skel[0,4]} $B$N(B S-pair
                    660: $B$r7W;;$7$F(Breduction $B$7$F$$$k(B.
                    661: {\footnotesize
                    662: \begin{verbatim}
                    663: SpairAndReduction:
                    664: [    p and bases  , [    [    0 , 1 ]  , [    -3*y*Dx , 2*x ]  ]  ,
                    665:    [-2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h , %[null] , %[null] ]  ]
                    666: \end{verbatim}
                    667: }  \noindent
                    668: {\tt [0, 1]} $B$O(B  $G'[0]$ $B$H(B $G'[1]$ $B$N(B sp $B$r7W;;(B
                    669: $B$;$h$H$$$&0UL#$G$"$k(B.
                    670: ${\tt level} = 0$ $B$G4{$K$b$H$^$C$F$$$k(B $B%V%l%V%J4pDl$O(B
                    671: $G[0]$ $B$H(B $G[1]$ $B$N$_$G$"$j(B,
                    672: $B$=$l$i$O$=$l$>$l(B,
                    673: \verb# -2*x*Dx-3*y*Dy+h^2 , -3*y*Dx^2+2*x*Dy*h #
                    674: $B$G$"$k(B.
                    675: {\tt SpairAndReduction} $B$O(B $G[0]$, $G[1]$ $B$N$_$rMQ$$$F(B,
                    676: S-pair  \\
                    677: \verb# 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h #
                    678: $B$r(B reduction $B$9$k(B.
                    679: $B7k6I(B reduction $B$N7k2L$O(B 0 $B$G$O$J$/$F(B, \\
                    680: \verb# 9*y^2*Dx*Dy+3*y*Dx*h^2+4*x^2*Dy*h #
                    681: $B$H$J$k(B.
                    682: LaScala $B$N%"%k%4%j%:%`$N(B 2 $BG\$*F@%7%9%F%`$G(B,
                    683: $B$3$l$,?7$7$$%0%l%V%J4pDl$N85(B {\tt G[place]} $B$H$J$j(B,
                    684: reduction $B$N2aDx$h$j(B syzygy $B$bF@$i$l$k(B.
                    685:
                    686: $B$5$F(B, $(u,v)$-$B6K>.J,2r$r:n$k$K$O(B, reduction $B$7$?M>$j$,(B
                    687: $(u,v)$-$B%U%#%k%?!<$G(B modulo $B$7$F(B $0$ $B$+$I$&$+D4$Y$J$$$H$$$1$J$$(B.
                    688: $B$3$N$?$a(B,
                    689: $B4X?t(B {\tt Sdegree()} $B$rMQ$$$F(B, reduction $B$9$kA0$N85(B, $B$*$h$SM>$j$N(B
                    690: $B%7%U%HIU$-(B $(u,v)$-order $B$r7W;;$9$k(B.
                    691: $B$3$NNc$G$O(B, $BN>J}$H$b(B $0$ $B$G$"$k(B.
                    692: {\footnotesize
                    693: \begin{verbatim}
                    694: vdegree of the original = 0
                    695: vdegree of the remainder = 0
                    696: \end{verbatim}
                    697: }
                    698: $B$7$?$,$C$F(B, modulo $(u,v)$-$B%U%#%k%?!<$G$b(B $0$ $B$G$J$$(B.
1.1       takayama  699:
1.3       takayama  700: $B=`Hw@bL@$,$*$o$C$?(B. $B:G=i$N%W%m%0%i%`(B {\tt SlaScala()} $B$N@bL@$KLa$k(B.
                    701: {\tt SpairAndReduction()} $B$NLa$jCM(B
                    702: {\tt f[0]} $B$K$O(B, reduction $B$7$?M>$j(B,
                    703: {\tt f[4]}, {\tt f[5]} $B$K$O(B,
                    704: reduction $B$9$kA0$N85(B, $B$*$h$SM>$j$N(B
                    705: $B%7%U%HIU$-(B $(u,v)$-order $B$,3JG<$5$l$F$$$k(B.
                    706: $B$3$NNc$N>l9g$K$O(B ($B$m(B) $B$N>l9g$,<B9T$5$l$F(B,
                    707: $BIU?o$7$?(B syzygy $B$O(B $B6K>.<+M3J,2r$K$OITMW$J$b$N$H$7$F(B
                    708: {\tt redundantTable} $B$KEPO?$5$l$k(B:
                    709: {\footnotesize
                    710: \begin{verbatim}
                    711:                     redundantTable[level-1,place] = redundant_seq;
                    712: \end{verbatim}
                    713: }  \noindent
                    714: $BM>$j(B {\tt f[0]} $B$O(B, laScala $B$N%"%k%4%j%:%`$N(B 2 $BG\$*F@8=>]$GF@$i$l$?(B,
                    715: $B?7$7$$%V%l%V%J4pDl$N85$G$"$k$,(B, $B$3$l$rJ]B8$9$Y$->l=j$N%$%s%G%C%/%9$O(B,
                    716: $BLa$jCM(B {\tt f[3]}({\tt place}) $B$K3JG<$5$l$F$$$k(B:
                    717: {\footnotesize
                    718: \begin{verbatim}
                    719:                   bases[place] = f[0];
                    720:                   freeRes[level-1] = bases;
                    721:                   reducer[level-1,place] = f[1];
                    722: \end{verbatim}
                    723: } \noindent
                    724: $B$3$N(B reduction $B$GF@$i$l$?(B syzygy ($B$NK\<AE*ItJ,(B)$B$O(B,
                    725: $BJQ?t(B {\tt reducer} $B$KEPO?$5$l$k(B.
                    726: $B0J>e$G(B $(u,v)$-$B6K>.<+M3J,2rFCM-$N=hM}$NItJ,$N2r@b$r=*$($k(B.
                    727:
                    728:
                    729: \bigbreak
                    730: $B0J2<$G$O(B, LaScala $B$N%"%k%4%j%:%`$N$o$l$o$l$N<BAu$N35N,$HLdBjE@$r(B
                    731: $B=R$Y$k(B.
                    732:
                    733: $B$^$:(B, $BJQ?t(B
                    734: {\tt reductionTable} $B$N0UL#$r@bL@$7$h$&(B.
                    735: LaScala $B$N%"%k%4%j%:%`$G$O(B,
                    736: {\tt level - Sdegree(s)}
                    737: $B$N>.$5$$(B S-pair $B$+$i7W;;$7$F$$$/(B.
                    738: $B4X?t(B {\tt Sdegree} $B$O<!$N$h$&$K:F5"E*$KDj5A$5$l$F$$$k(B.
                    739: {\footnotesize
                    740: \begin{verbatim}
                    741: /* f is assumed to be a monomial with toes. */
                    742: def Sdegree(f,tower,level) {
                    743:   local i,ww, wd;
                    744:   /* extern WeightOfSweyl; */
                    745:   ww = WeightOfSweyl;
                    746:   f = Init(f);
                    747:   if (level <= 1) return(StotalDegree(f));
                    748:   i = Degree(f,es);
                    749:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
                    750: }
                    751: \end{verbatim}
                    752: }  \noindent
                    753: $B$3$3$G(B {\tt StotalDegree(f)} $B$O(B $f$ $B$NA4<!?t$G$"$k(B.
                    754:
                    755: \noindent
                    756: $B$5$F(B, LaScala $B$N%"%k%4%j%:%`$G$O(B,
                    757: Resolution $B$r2<$+$i=gHV$K7W;;$7$F$$$/$N$G$O$J$$(B.
                    758: $B$3$l$,K\<AE*$JE@$G$"$k(B.
                    759: $B$3$N=gHV$OJQ?t(B {\tt reductionTable} $B$K$O$C$F$$$k(B.
                    760: $I$ $B$NNc$G$O(B
                    761: {\footnotesize
                    762: \begin{verbatim}
                    763: reductionTable= [
                    764:    [    1 , 2 , 3 , 4 ]
                    765:    [    3 , 4 , 3 , 2 ]   skel[0] $B$KBP1~(B
                    766:    [    3 ]               skel[1] $B$KBP1~(B
                    767:  ]
                    768: \end{verbatim}
                    769: }  \noindent
                    770: $B$H$J$k(B.
                    771:
                    772: $B8=:_$N<BAu$G$N7W;;B.EY(B, $B%a%b%j;HMQNL$N%\%H%k%M%C%/$r(B
                    773: $B;XE&$7$F$*$/(B.
                    774: LaScala $B$N%"%k%4%j%:%`$G$O(B, Schreyer Frame $B$r9=@.$7$F$+$i(B,
                    775: $B6K>.<+M3J,2r$r9=@.$9$k(B.
                    776: $B2<5-$N%W%m%0%i%`$NJQ?t(B {\tt redundantTable[level,q]} $B$K$O(B,
                    777: $BBP1~$9$k(B syzygy $B$H(B $B%0%l%V%J4pDl$N85$,2?2sL\$N(B reduction $B$G@8@.(B
                    778: $B$5$l$?$+$N?t$,$O$$$C$F$$$k(B.
                    779: $B6K>.<+M3J,2r$N9=@.$G$O(B, $B:G8e$N(B reduction $B$N(B syzygy $B$+$i;O$a$F(B,
                    780: Schreyer resolution $B$+$i6K>.<+M3J,2r$K$H$C$FM>J,$J85$r<h$j=|$$$F(B
                    781: $B$$$/(B
                    782: ({\tt seq} $B$r(B $1$ $B$E$D8:$i$7$F$$$/(B).
                    783: {\footnotesize
1.1       takayama  784: \begin{verbatim}
1.3       takayama  785: def Sminimal(g,opt) {
                    786:
                    787:   ....
                    788:
                    789:   while (seq > 1) {
                    790:     seq--;
                    791:     for (level = 0; level < maxLevel; level++) {
                    792:       betti = Length(freeRes[level]);
                    793:       for (q = 0; q<betti; q++) {
                    794:         if (redundantTable[level,q] == seq) {
                    795:           Print("[seq,level,q]="); Println([seq,level,q]);
                    796:           if (level < maxLevel-1) {
                    797:             bases = freeRes[level+1];
                    798:             dr = reducer[level,q];
                    799:             dr[q] = -1;
                    800:             newbases = SnewArrayOfFormat(bases);
                    801:             betti_levelplus = Length(bases);
                    802:             /*
                    803:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                    804:             */
                    805:             for (i=0; i<betti_levelplus; i++) {
                    806:               newbases[i] = bases[i] + bases[i,q]*dr;
                    807:             }
                    808:             ....
                    809:           }
                    810:           ....
                    811:         }
                    812:      }
                    813:    }
                    814:   }
                    815:   ....
                    816: }
1.1       takayama  817: \end{verbatim}
1.3       takayama  818: } \noindent
                    819: $BLdBj$O(B,
                    820: $B6K>.<+M3J,2r<+BN$O$A$$$5$/$F$b(B, Schreyer Frame $B$,5pBg(B ($10000$ $BDxEY$N(B
                    821: betti $B?t(B) $B$H$J$k$3$H$bB?$$>l9g$,$"$k$3$H$G$"$k(B.
                    822: $B2<$NJQ?t(B {\tt bases} $B$K(B, Schreyer resolution $B$N(B {\tt level} $B<!$N(B
                    823: syzygy $B$r$$$l$F$$$k(B. Schreyer Frame $B$K(B $10000$ $BDxEY$N(B betti
                    824: $B?t$,$"$i$o$l$k$H$3$NJQ?t$O(B $B%5%$%:(B $10000$ $BDxEY$NG[Ns$H$J$k(B.
                    825: $B$5$i$K(B, Schreyer $BJ,2r$+$i6K>.<+M3J,2r$N$?$a$KITMW$J85$r$H$j$N$>$$$?(B
                    826: $BJ,2r$r:n$k$?$a$K(B\\
                    827: \verb#              newbases[i] = bases[i] + bases[i,q]*dr;   # \\
                    828: $B$J$k>C5n$r$*$3$J$$(B, $0$ $B$GKd$a$i$l$?Ns$^$?$O(B $0$ $B$GKd$a$i$l$?9T$r@8@.$7$F$$$k(B.
                    829: $B$3$NItJ,$,(B, $B%a%b%j$N;HMQ$r05Gw$7$F$*$j(B, $B7W;;;~4V$b$D$+$C$F$$$k(B.
                    830:
1.1       takayama  831:
                    832:
                    833: \end{document}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>