[BACK]Return to minimal-note-ja.txt CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/minimal-note-ja.txt, Revision 1.4

1.4     ! takayama    1: $OpenXM: OpenXM/src/k097/lib/minimal/minimal-note-ja.txt,v 1.3 2000/06/08 08:37:53 takayama Exp $
1.1       takayama    2:
                      3: SpairAndReduction() :
                      4:    $BM?$($i$l$?(B pair $B$r(B reduction $B$9$k(B.
                      5:    V-minimal $B$KI,MW$+$I$&$+$NH=Dj$b$9$k(B.
                      6:
                      7: SpairAndReduction2():
                      8:   tower2 = StowerOf(tower,level-1);
                      9:   SsetTower(tower2);
                     10:   /** sm1(" show_ring ");   */
                     11:
                     12:   $BM?$($i$l$?(B pair $B$r(B reduction $B$9$k$?$a$N(B schreyer order
                     13:   $B$r@_Dj$9$k(B.  Resolution $B$N?<$5$K1~$8$F(B, tower $B$b?<$/$9$kI,MW$,$"$k(B.
                     14:
                     15:
                     16:   if (IsConstant(t_syz[i])){
                     17:
                     18:   Syzygy $B$r$_$F(B, $BDj?t@.J,$,$J$$$+(B check.
                     19:   t_syz[i] $B$,Dj?t@.J,$G$"$l$P(B, $B0l$DA0$N(B GB $B$N9=@.MWAG$G$"$k(B
                     20:   g_i $B$,M>J,$J(B GB $B$G$"$k2DG=@-$,$?$+$$(B.
                     21:   SpairAndReduction() ( LaScala-Stillman $B$NJ}K!(B) $B$H$N@09g@-$r$H$k$?$a(B
                     22:   g_i $B$r(B tmp[0] $B$KBeF~$7(B ( reduction $B$G$-$J$+$C$?$U$j$r$9$k(B )
                     23:   g_i $B$N(B V-degree $B$r$7$i$Y$k(B.
                     24:
                     25:
                     26: Sannfs2_laScala2()
                     27: Sannfs3_laScala2()  $B$r:n$k(B.
                     28:
                     29: $BFs$D$N%"%k%4%j%:%`$NHf3S(B.
                     30: In(11)=sm1_pmat(a1[1]); $B$N=gHV$r$+$($k(B.
                     31:  [
                     32:    [    3*Dx^2*h , 0 , Dy , -Dz ]
                     33:    [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0]
                     34:    [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
                     35:    [    2*x*Dy*Dz , 0 , z , -y ]
                     36:
                     37:    [    0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz ]
                     38:  ]
                     39: In(12)=sm1_pmat(a2[1]);
                     40:  [
                     41:    [    3*Dx^2*h , 0 , Dy , -Dz ]
                     42:    [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy, 0 ]
                     43:    [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
                     44:    [    2*x*Dy*Dz , 0 , z , -y ]
                     45:
                     46:    [    9*z*Dx^2*h , 2*x*Dy^2*Dz-3*z*Dx^2*h , 3*z*Dy , 2*x*Dx ]
                     47:    [    2*x*Dx*Dz^2+3*z*Dz^3+5*Dz^2*h^2 , y*Dy*Dz^2-z*Dz^3-2*Dz^2*h^2 , 0 , 0 ]
                     48:  ]
                     49: In(13)=
                     50:
                     51: ----------------------
                     52: In(16)=sm1_pmat(a1[2]);
                     53:  [
                     54:    [    -2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy^2 , 3*Dy*Dz , -2*x*Dy , 2*x*Dz , 0 ]
                     55:    [    3*y*z , z , y , -2*x*Dy*Dz , -3*z*Dy , 2*x*Dx , 2*x*z , -2*x*y , 0 ]
                     56:  ]
                     57: In(17)=sm1_pmat(a2[2]);
                     58:  [
                     59:    [    -y , 2*x*Dy*Dz , z , 0 , 2*x*Dx , 0 ]
                     60:    [    -Dz , 3*Dx^2*h , Dy , -2*x*Dx-3*y*Dy-3*h^2 , -3*Dy*Dz , 0 ]
                     61:  ]
                     62: In(18)=
                     63:
1.2       takayama   64: ---------------------------
                     65:
                     66: May 22, (Tue),  5:50 (Spain local time, 12:50 JST)
                     67:
                     68: kan96xx/Kan/resol.c $B$G(B,
                     69:    RemoveRedundantInSchreyerSkelton = 0
                     70: $B$KJQ$($F(B ($B$3$N(B option $B$b$"$?$i$7$/2C$($k(B), schreyer $B$,@5$7$/F0$/$+(B
                     71: $BD4$Y$k$3$H$K$9$k(B.
                     72: ( commit $B$O(B kan96xx $B$H(B k097 $BN>J}$9$Y$7(B.)
                     73:
                     74: test8() $B$G(B sm1 $B$G=q$$$?J}$N(B Schreyer $B$r8+$k$H(B,
                     75:    RemoveRedundantInSchreyerSkelton = 1
                     76: $B$G$b(B,
                     77: kernel = image
                     78: $B$H$J$C$F$$$k$N$G0J8e$3$N(B option $B$O(B 1 $B$N$^$^;H$&$3$H$H$9$k(B.
                     79: $BMW$9$k$K(B k0 $B$N%3!<%I$,$I$&$d$i$*$+$7$$$i$7$$(B.
1.4     ! takayama   80: ==>
        !            81: 6/8 $B$N%N!<%H$h$j(B.
        !            82: syzygy $B$r(B homogenization $B$r2p$7$F7W;;$9$k$N$OLdBj$"$j(B.
        !            83: --> usage of isExact
        !            84: $BMW$9$k$K(B kernel = image $B$N%3!<%I$bJQ(B.  Homogenized $B$N$^$^$d$kI,MW$"$j(B.
1.3       takayama   85:
                     86: -----------------------------------
                     87: June 8, 2000 (Thu), 9:10 (Spain local time)
                     88: hol.sm1 :  gb_h, syz_h, isSameIdeal, isSameIdeal_h
                     89: complex.sm1 :  isExact, isExact_h
                     90:
                     91: syzygy $B$r(B homogenization $B$r2p$7$F7W;;$9$k$N$OLdBj$"$j(B.
                     92: --> usage of isExact
                     93:
                     94: [(Homogenize_vec) 0] system_variable : vector $B$N(B homogenize $B$r$7$J$$(B.
                     95: (grade) (module1v) switch_function : vector $BJQ?t$O(B, total
                     96:        degree $B$K?t$($J$$(B.
                     97: ==> $BL58B%k!<%W$KCm0U(B   ---> gb_h, syz_h  $B$N(B usage.
                     98:
                     99: minimal-test.k $B$N(B ann(x^3-y^2*z^2) $B$N(B laplace $BJQ49$N(B
                    100: betti $B?t$,JQ(B, exact $B$G$J$$(B, $B$r(B isExact_h $B$G(B check
                    101: $B$7$h$&(B.
                    102:
                    103: minimal-test.k
                    104: test10();
                    105:   LaScala-Stillman $B$NJ}K!$G$D$/$C$?(B, schreyer resol $B$,(B exact $B$+(B
                    106:   $BD4$Y$k(B.
                    107:   $BNcBj$O(B, ann(1/(x^3-y^2 z^2)) $B$N(B Laplace $BJQ49(B.
1.4     ! takayama  108:   ==> OK.  IsExact_h $B$G$7$i$Y$k(B.  (IsExact $B$O$@$a$h(B)
        !           109:
        !           110: June 8, 2000 (Thu), 19:35
        !           111: load["minimal-test.k"];;
        !           112: test11();
        !           113:   LaScala-Stillman $B$NJ}K!$G$D$/$C$?(B, minimal resol $B$,(B exact $B$+(B
        !           114:   $BD4$Y$k(B.
        !           115:   $BNcBj$O(B, ann(1/(x^3-y^2 z^2)) $B$N(B Laplace $BJQ49(B.
        !           116:
        !           117: SwhereInTower $B$r;H$&$H$-$O(B,
        !           118: SsetTower() $B$G(B gbList $B$rJQ99$7$J$$$H$$$1$J$$(B.
        !           119: $B$b$A$m$s;HMQ$7$?$i(B, $B$=$l$rLa$9$3$H(B.
        !           120: SpairAndReduction, SpairAndReduction2 $B$G(B,
        !           121:   SsetTower(StowerOf(tower,level));
        !           122:   pos = SwhereInTower(syzHead,tower[level]);
        !           123:
        !           124:   SsetTower(StowerOf(tower,level-1));
        !           125:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
        !           126: $B$H(B, SwhereInTower $B$NA0$K(B setTower $B$r$/$o$($?(B.
        !           127: ( $B0c$&%l%Y%k$G$NHf3S$N$?$a(B.)
        !           128:
        !           129: IsExact_h $B$O(B, 0 $B%Y%/%H%k$r4^$`>l9g(B, $B$?$@$7$/F0:n$7$J$$$h$&$@(B.
        !           130: test11().
        !           131: test11a() $B$G(B, 0 $B%Y%/%H%k$r<j$G=|$$$?9TNs$N(B exactness $B$r%A%'%C%/(B. ==> OK.
        !           132:
        !           133:
        !           134: ---------------------------------
        !           135: June 9, 6:20
        !           136: SpairAndReduction
        !           137: $B$H(B
        !           138: SpairAndReduction2
        !           139: $B$N0c$$(B.
        !           140: SpairAndReduction  :  SlaScala  (LaScala-Stillman's algorithm $B$G;H$&(B)
        !           141: SpairAndReduction2 :  Sschreyer (schreyer  algorithm $B$G;H$&(B, laScala $B$O$J$7(B.)
        !           142:
        !           143: 0 $B$r<+F0$G=|$/%3!<%I$r=q$3$&(B.
        !           144:
        !           145: SpruneZeroRow() $B$r(B Sminimal() $B$K2C$($?(B.
        !           146: test11() $B$b@5$7$/F0:n$9$k$O$:(B.
        !           147: IsExact_h $B$O(B schreyer $B$r(B off $B$7$F(B, ReParse $B$7$F$+$i(B,
        !           148: $B8F$S=P$9$3$H(B.
        !           149:
        !           150:
        !           151: #ifdef TOTAL_STRATEGY
        !           152:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
        !           153: #endif
        !           154:   /* Strategy must be compatible with ordering.  */
        !           155:   /* Weight vector must be non-negative, too.  */
        !           156:   /* See Sdegree, SgenerateTable, reductionTable. */
        !           157:   wd = Sord_w(f,ww);
        !           158:   return(wd+Sdegree(tower[level-2,i],tower,level-1));
        !           159: TOTAL_STRATEGY $B$rMQ$$$kI,MW$,$"$k$N$G$O(B??
        !           160: Example 1:  Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
        !           161:           v=[[2*x*Dx + 3*y*Dy+6, 0],
        !           162:              [3*x^2*Dy + 2*y*Dx, 0],
        !           163:              [0,  x^2+y^2],
        !           164:              [0,  x*y]];
        !           165:          a=Sminimal(v);
        !           166: strategy $B$,$*$+$7$$$H$$$C$F$H$^$k(B. $BM}M3$O(B?
        !           167:
        !           168: a=test_ann3("x^3+y^3+z^3); $B$O;~4V$,$+$+$j$=$&(B.
        !           169: a=test_ann3("x^3+y^3"); OK.
        !           170: a=test_ann3("x^2+y^2+z"); OK.
        !           171:
        !           172:
        !           173: $B>e$N(B example 1 $B$N%(%i!<(B $B$N8+J}(B:
        !           174: Processing [    1 , 3 ]    Strategy = 2
        !           175:      1 $B$N(B 3 $BHVL\$N(B spair $B$N(B reduction $B$r=hM}Cf(B.
        !           176:      In(7)=reductionTable:
        !           177:     [[ 1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           178:                                                    -- $B$3$l(B.
        !           179: SpairAndReduction:
        !           180: [    p and bases  , [    [    0 , 3 ]  , [    y*h , -x ]  ]  , [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , %[null] ]  ]
        !           181: 0 $B$N(B 0 $BHVL\$H(B 3 $BHVL\(B $B$N(B spair $B$r7W;;$7$F(B, 0 $B%l%Y%k$N(B gb $B$G(B reduction.
        !           182: [ 1 , 1 , 1 , 2 , 2 , 3 ] $B$K$"$k$h$&$K(B, strategy 3 $B0J30$O7W;;$:$_(B.
        !           183: ( $B7W;;$7$F$J$$$b$N$O(B %[null] $B$H$J$C$F$k(B. )
        !           184: [    level= , 1 ]
        !           185: [    tower2= , [    [   ]  ]  ]   ( $B0lHV2<$J$N$G(B, tower $B$O$J$7$h(B. )
        !           186: [    y*h , -es^3*x ]
        !           187: [gi, gj] = [    2*x*Dx+3*y*Dy+6*h^2 , 2*y*Dx*h+3*x^2*Dy ]
        !           188: 1
        !           189: Reduce the element 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy
        !           190: by  [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , %[null] ]
        !           191: result is [    3*y^2*Dy*h+6*y*h^3-3*x^3*Dy , 1 , [    0 , 0 , 0 , 0 , 0 , 0 ]  ]
        !           192: vdegree of the original = -1
        !           193: vdegree of the remainder = -1
        !           194: [    3*y^2*Dy*h+6*y*h^3-3*x^3*Dy , [    y*h , 0 , 0 , -x , 0 , 0 ]  , 3 , 5 , -1 , -1 ]
        !           195:
        !           196: In(11)=freeRes:
        !           197: [    [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy ]  , [    %[null] , [    0 , 0 , y^2 , 0 , -x , 0 ]  , [    0 , -y , x , 0 , 1 , 0 ]  , [    -y*h , 0 , 0 , x , 0 , 1 ]  , %[null] ]  , [    %[null] ]  ]
        !           198: $B$r$_$l$P$o$+$k$h$&$K(B, SlaScala $B$G(B, freeRes $B$K$3$N85$,(B [0,5] $B$K2C$((B
        !           199: $B$i$l$?(B.
        !           200:
        !           201: $B<!$K(B SnextI $B$,(B SlaScala $B$h$j8F$P$l$F$3$N%(%i!<(B.
        !           202:         i = SnextI(reductionTable_tmp,strategy,redundantTable,
        !           203:                    skel,level,freeRes);
        !           204: In(22)=reductionTable:
        !           205: [    [    1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           206: $B$J$N$G(B, $B:G8e(B $B$N(B 2 $B$,=hM}$5$l$k$O$:$@$,(B,
        !           207: In(25)=skel[2]:
        !           208: [    [    [    0 , 2 ]  , [    1 , -y^2 ]  ]  ]
        !           209: $B$N$h$&$K(B, 0 $BHVL\$H(B, 2 $BHVL\$N(B spair.
        !           210: $B$7$+$7(B,
        !           211: In(26)=bases:
        !           212: [    %[null] , [    0 , 0 , y^2 , 0 , -x , 0 ]  , [    0 , -y , x , 0 , 1 , 0 ]  , [    -y*h , 0 , 0 , x , 0 , 1 ]  , %[null] ]
        !           213: $B$N$h$&$K(B, 0 $BHVL\$O(B strategy 3 $B$J$N$G(B, $B$^$@$b$H$^$C$F$$$J$$(B.
        !           214:
        !           215: reductionTable_tmp=[    2 ]
        !           216: See also reductionTable, strategy, level,i
        !           217: ERROR(sm): error operator : SnextI: bases[i] or bases[j] is null for all combinations.
        !           218: --- Engine error or interrupt : In function : Error of class PrimitiveObject
        !           219:
        !           220: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
        !           221: In(7)=reductionTable:
        !           222: [    [    1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           223: In(8)=strategy:
        !           224: 2
        !           225: In(9)=level:
        !           226: 2
        !           227:
        !           228:    RemoveRedundantInSchreyerSkelton = 0
        !           229: $B$H$7$F$bF1$8%(%i!<(B.
        !           230:
        !           231: -------------------------------------------------
        !           232: test_ann3("x*y+y*z+z*x");    OK.
        !           233:
        !           234: 6/9 (Fri)
        !           235: Sminimal $B$N<BAu$KAjJQ$o$i$:6lO+$7$F$^$9(B.
        !           236: Sevilla $B$G$$$m$$$m$HD>$7$?7k2L(B,
        !           237: Sminimal $B$O$&$^$/$&$4$1$P@5$7$$Ez$($r$@$7$F$k$_$?$$$G$9$,(B
        !           238: (D<h> : homogenized Weyl $B$G(B ker = im $B$r(B check $B$7$F$k(B,
        !           239:  V-adapted (strict) $B$+$I$&$+$N(B check routing $B$O$^$@=q$$$F$J$$(B),
        !           240: strategy $B$,$&$^$/$&$4$+$J$/$F$H$^$k>l9g$b$"$j$^$9(B
        !           241: ( strategy = 2 $B$N(B sp $B$r7W;;$9$k$N$K(B, strategy 3 $B$N(B $B85$rI,MW$H(B
        !           242:   $B$7$?$j$9$k>l9g$"$j(B).
        !           243:
        !           244:
        !           245: strategy $B$O(B
        !           246: def Sdegree(f,tower,level) {
        !           247:   local i,ww, wd;
        !           248:   /* extern WeightOfSweyl; */
        !           249:   ww = WeightOfSweyl;
        !           250:   f = Init(f);
        !           251:   if (level <= 1) return(StotalDegree(f));
        !           252:   i = Degree(f,es);
        !           253:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
        !           254: }
        !           255: $B$rMQ$$$F(B,
        !           256:       ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1)
        !           257: $B$G7W;;$7$F$^$9(B.
        !           258:
        !           259: $B$$$/$D$+=PNO$r$D$1$F$*$-$^$9$N$G(B, $B8!F$(B!!!
        !           260:
        !           261: $BNc(B 1:
        !           262: load["minimal-test.k"];;
        !           263: a=test_ann3("x^3-y^2*z^2"); $B0z?t$N(B annihilating ideal $B$N(B laplace $BJQ49$N(B
        !           264:                             homogenization $B$N(B resolution.
        !           265:       weight vector $B$O(B (-1,-1,-1,1,1,1)
        !           266:
        !           267: In(4)=sm1_pmat(a[1]);
        !           268:  [
        !           269:   [   0 $B<!(B
        !           270:     [    y*Dy-z*Dz ]
        !           271:     [    -2*x*Dx-3*z*Dz+h^2 ]
        !           272:     [    2*x*Dy*Dz^2-3*y*Dx^2*h ]
        !           273:     [    2*x*Dy^2*Dz-3*z*Dx^2*h ]
        !           274:   ]
        !           275:   [   1 $B<!(B
        !           276:     [    3*Dx^2*h , 0 , Dy , -Dz ]
        !           277:     [    6*x*Dy*Dz^2-9*y*Dx^2*h , -2*x*Dy*Dz^2+3*y*Dx^2*h , -2*x*Dx-3*y*Dy , 0 ]
        !           278:     [    0 , 2*x*Dy^2*Dz-3*z*Dx^2*h , 0 , 2*x*Dx+3*z*Dz ]
        !           279:     [    2*x*Dx+3*z*Dz-h^2 , y*Dy-z*Dz , 0 , 0 ]
        !           280:     [    2*x*Dy*Dz , 0 , z , -y ]
        !           281:   ]
        !           282:   [  2 $B<!(B
        !           283:     [    -2*x*Dx-3*y*Dy-3*z*Dz-6*h^2 , -Dy , -Dz , 3*Dx^2*h , 3*Dy*Dz ]
        !           284:     [    3*y*z , z , y , -2*x*Dy*Dz , 2*x*Dx ]
        !           285:   ]
        !           286:  ]
        !           287: In(5)=
        !           288:
        !           289: $BNc(B 2:
        !           290: load["minimal-test.k"];;
        !           291: a=test_ann3("x*y+y*z+z*x");
        !           292: In(6)=sm1_pmat(a[1]);
        !           293:  [
        !           294:   [  0 $B<!(B
        !           295:     [    2*x*Dx+x*Dz-y*Dz+z*Dz+h^2 ]
        !           296:     [    -2*y*Dy+x*Dz-y*Dz-z*Dz-h^2 ]
        !           297:     [    -2*x*Dy+2*z*Dy+x*Dz-y*Dz+3*z*Dz+h^2 ]
        !           298:     [    -2*y*Dx+2*z*Dx-x*Dz+y*Dz+3*z*Dz+h^2 ]
        !           299:   ]
        !           300:   [  1 $B<!(B
        !           301:     [    y-z , x-z , -y , x ]
        !           302:     [    2*Dy-2*Dz , 2*Dx-2*Dz , 2*Dx+2*Dz , -2*Dy-2*Dz ]
        !           303:     [    2*y*Dx-2*z*Dx+x*Dz-y*Dz-3*z*Dz-2*h^2 , 0 , 0 , 2*x*Dx+x*Dz-y*Dz+z*Dz+2*h^2 ]
        !           304:     [    2*y*Dy-2*z*Dy+y*Dz-z*Dz+h^2 , 2*x*Dz-y*Dz+2*z*Dz+h^2 , -x*Dz+z*Dz , 2*x*Dy+x*Dz ]
        !           305:     [    -2*y*Dy+2*z*Dy+y*Dz-z*Dz , y*Dz-4*z*Dz , -2*y*Dx+2*z*Dx-y*Dz+2*z*Dz , -2*z*Dy+y*Dz-3*z*Dz ]
        !           306:   ]
        !           307:   [  2 $B<!(B
        !           308:     [    -2*y*Dx+2*z*Dx-y*Dz+2*z*Dz , x*y-x*z-y*z+z^2 , y-z , y , x+y-z ]
        !           309:     [    -6*Dx*Dz-2*Dz^2 , x*Dz+y*Dz-5*z*Dz-4*h^2 , -2*Dy+2*Dz , 2*Dx+2*Dz , 4*Dz ]
        !           310:   ]
        !           311:  ]
        !           312: In(7)=
        !           313:
        !           314: $BNc(B 3:  $B$&$^$/9T$+$J$$Nc(B:
        !           315:
        !           316: Example 1:  Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
        !           317:           v=[[2*x*Dx + 3*y*Dy+6, 0],
        !           318:              [3*x^2*Dy + 2*y*Dx, 0],
        !           319:              [0,  x^2+y^2],
        !           320:              [0,  x*y]];
        !           321:          a=Sminimal(v);
        !           322: strategy $B$,$*$+$7$$$H$$$C$F$H$^$k(B. $BM}M3$O(B?
        !           323: Negative weight vector $B$r;H$o$J$$$H$-$A$s$HF0$-$^$9(B.
        !           324:
        !           325:
        !           326: DEBUG $B=PNO(B:
        !           327: rf= [
        !           328:   [
        !           329:    [   Schreyer frame.
        !           330:      [    0 , y^3 , 0 , 0 , -x^2 , 0 ]
        !           331:      [    0 , 0 , y^2 , 0 , -x , 0 ]
        !           332:      [    0 , y , -x , 0 , 0 , 0 ]
        !           333:      [    y*h , 0 , 0 , -x , 0 , 0 ]
        !           334:      [    0 , 0 , 0 , 3*y*Dy , 0 , -2*Dx ]
        !           335:    ]
        !           336:    [
        !           337:      [    1 , 0 , -y^2 , 0 , 0 ]
        !           338:    ]
        !           339:     [   ]
        !           340:   ]
        !           341:   [
        !           342:     [    2*x*Dx , e_*x^2 , e_*x*y , 2*y*Dx*h , e_*y^3 , 3*y^2*Dy*h ]
        !           343:     [    es*y^3 , es^2*y^2 , es*y , y*h , 3*es^3*y*Dy ]
        !           344:     [    1 ]
        !           345:   ]
        !           346:   [
        !           347:     [   ]
        !           348:    [
        !           349:     [
        !           350:       [    1 , 4 ]
        !           351:       [    y^3 , -x^2 ]
        !           352:     ]
        !           353:     [
        !           354:       [    2 , 4 ]
        !           355:       [    y^2 , -x ]
        !           356:     ]
        !           357:     [
        !           358:       [    1 , 2 ]
        !           359:       [    y , -x ]
        !           360:     ]
        !           361:     [
        !           362:       [    0 , 3 ]
        !           363:       [    y*h , -x ]
        !           364:     ]
        !           365:     [
        !           366:       [    3 , 5 ]
        !           367:       [    3*y*Dy , -2*Dx ]
        !           368:     ]
        !           369:    ]
        !           370:    [
        !           371:     [
        !           372:       [    0 , 2 ]
        !           373:       [    1 , -y^2 ]
        !           374:     ]
        !           375:    ]
        !           376:     [   ]
        !           377:   ]
        !           378:   [   resolution $B$9$Y$-(B $BItJ,2C72(B e_ $B$O(B $B%Y%/%H%k@.J,$N%^!<%/(B.
        !           379:     [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy ]
        !           380:   ]
        !           381:  ]
        !           382:
        !           383: $BN,(B
        !           384: Processing [    1 , 3 ]    Strategy = 2
        !           385:      1 $B$N(B 3 $BHVL\$N(B spair $B$N(B reduction $B$r=hM}Cf(B.
        !           386:      In(7)=reductionTable:
        !           387:     [[ 1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           388:                                                    -- $B$3$l(B.
        !           389: SpairAndReduction:
        !           390: [    p and bases  , [    [    0 , 3 ]  , [    y*h , -x ]  ]  , [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , %[null] ]  ]
        !           391: 0 $B$N(B 0 $BHVL\$H(B 3 $BHVL\(B $B$N(B spair $B$r7W;;$7$F(B, 0 $B%l%Y%k$N(B gb $B$G(B reduction.
        !           392: [ 1 , 1 , 1 , 2 , 2 , 3 ] $B$K$"$k$h$&$K(B, strategy 3 $B0J30$O7W;;$:$_(B.
        !           393: ( $B7W;;$7$F$J$$$b$N$O(B %[null] $B$H$J$C$F$k(B. )
        !           394: [    level= , 1 ]
        !           395: [    tower2= , [    [   ]  ]  ]   ( $B0lHV2<$J$N$G(B, tower $B$O$J$7$h(B. )
        !           396: [    y*h , -es^3*x ]
        !           397: [gi, gj] = [    2*x*Dx+3*y*Dy+6*h^2 , 2*y*Dx*h+3*x^2*Dy ]
        !           398: 1
        !           399: Reduce the element 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy
        !           400: by  [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , %[null] ]
        !           401: result is [    3*y^2*Dy*h+6*y*h^3-3*x^3*Dy , 1 , [    0 , 0 , 0 , 0 , 0 , 0 ]  ]
        !           402: vdegree of the original = -1
        !           403: vdegree of the remainder = -1
        !           404: [    3*y^2*Dy*h+6*y*h^3-3*x^3*Dy , [    y*h , 0 , 0 , -x , 0 , 0 ]  , 3 , 5 , -1 , -1 ]
        !           405:
        !           406: In(11)=freeRes:
        !           407: [    [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy ]  , [    %[null] , [    0 , 0 , y^2 , 0 , -x , 0 ]  , [    0 , -y , x , 0 , 1 , 0 ]  , [    -y*h , 0 , 0 , x , 0 , 1 ]  , %[null] ]  , [    %[null] ]  ]
        !           408: $B$r$_$l$P$o$+$k$h$&$K(B, SlaScala $B$G(B, freeRes $B$K$3$N85$,(B [0,5] $B$K2C$((B
        !           409: $B$i$l$?(B.
        !           410:
        !           411: $B<!$K(B SnextI $B$,(B SlaScala $B$h$j8F$P$l$F$3$N%(%i!<(B.
        !           412:         i = SnextI(reductionTable_tmp,strategy,redundantTable,
        !           413:                    skel,level,freeRes);
        !           414: In(22)=reductionTable:
        !           415: [    [    1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           416: $B$J$N$G(B, $B:G8e(B $B$N(B 2 $B$,=hM}$5$l$k$O$:$@$,(B,
        !           417: In(25)=skel[2]:
        !           418: [    [    [    0 , 2 ]  , [    1 , -y^2 ]  ]  ]
        !           419: $B$N$h$&$K(B, 0 $BHVL\$H(B, 2 $BHVL\$N(B spair.
        !           420: $B$7$+$7(B,
        !           421: In(26)=bases:
        !           422: [    %[null] , [    0 , 0 , y^2 , 0 , -x , 0 ]  , [    0 , -y , x , 0 , 1 , 0 ]  , [    -y*h , 0 , 0 , x , 0 , 1 ]  , %[null] ]
        !           423: $B$N$h$&$K(B, 0 $BHVL\$O(B strategy 3 $B$J$N$G(B, $B$^$@$b$H$^$C$F$$$J$$(B.
        !           424:
        !           425: reductionTable_tmp=[    2 ]
        !           426: See also reductionTable, strategy, level,i
        !           427: ERROR(sm): error operator : SnextI: bases[i] or bases[j] is null for all combinations.
        !           428: --- Engine error or interrupt : In function : Error of class PrimitiveObject
        !           429:
        !           430: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
        !           431: In(7)=reductionTable:
        !           432: [    [    1 , 1 , 1 , 2 , 2 , 3 ]  , [    3 , 2 , 1 , 2 , 3 ]  , [    2 ]  ]
        !           433: In(8)=strategy:
        !           434: 2
        !           435: In(9)=level:
        !           436: 2
        !           437: $B$3$N;~E@$^$G$G$b$H$^$C$?(B basis
        !           438:  [
        !           439:    [    2*x*Dx+3*y*Dy+6*h^2 , e_*x^2+e_*y^2 , e_*x*y , 2*y*Dx*h+3*x^2*Dy , e_*y^3 , 3*y^2*Dy*h+6*y*h^3-3*x^3*Dy ]
        !           440:    [    %[null] , [    0 , 0 , y^2 , 0 , -x , 0 ]  , [    0 , -y , x , 0 , 1 , 0 ]  , [    -y*h , 0 , 0 , x , 0 , 1 ]  , %[null] ]
        !           441:    [    %[null] ]
        !           442:  ]
        !           443:
        !           444: -------------------------------------
        !           445:
        !           446: Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
        !           447: a=Sminimal([x^2+y^2,x*y]);
        !           448: $B$3$l$G$b;w$?$h$&$J%(%i!<$r$@$;$k(B.
        !           449: $B$3$NJ}$,(B debug $B$7$d$9$$(B:
        !           450: Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
        !           451: a=Sminimal([x*y,x^2+y^2]);
        !           452: $B$G$O%(%i!<$,$G$J$$$N$,IT;W5D(B.
        !           453: pruneZero $B$,F0$$$F$J$$$N$,JQ(B.
        !           454:
        !           455: rf= [
        !           456:   [
        !           457:    [
        !           458:      [    y^3 , 0 , -x^2 ]
        !           459:      [    0 , y^2 , -x ]
        !           460:      [    y , -x , 0 ]
        !           461:    ]
        !           462:    [
        !           463:      [    1 , 0 , -y^2 ]
        !           464:    ]
        !           465:     [   ]
        !           466:   ]
        !           467:   [
        !           468:     [    x^2 , x*y , y^3 ]
        !           469:     [    y^3 , es*y^2 , y ]
        !           470:     [    1 ]
        !           471:   ]
        !           472:   [
        !           473:     [   ]
        !           474:    [
        !           475:     [
        !           476:       [    0 , 2 ]
        !           477:       [    y^3 , -x^2 ]
        !           478:     ]
        !           479:     [
        !           480:       [    1 , 2 ]
        !           481:       [    y^2 , -x ]
        !           482:     ]
        !           483:     [
        !           484:       [    0 , 1 ]
        !           485:       [    y , -x ]
        !           486:     ]
        !           487:    ]
        !           488:    [
        !           489:     [
        !           490:       [    0 , 2 ]
        !           491:       [    1 , -y^2 ]
        !           492:     ]
        !           493:    ]
        !           494:     [   ]
        !           495:   ]
        !           496:   [
        !           497:     [    x^2+y^2 , x*y , y^3 ]
        !           498:   ]
        !           499:  ]
        !           500: [    0 , 0 ]
        !           501: Processing [    0 , 0 ]    Strategy = 1
        !           502: [    0 , 1 ]
        !           503: Processing [    0 , 1 ]    Strategy = 1
        !           504: [    1 , 2 ]
        !           505: Processing [    1 , 2 ]    Strategy = 1
        !           506: SpairAndReduction:
        !           507: [    p and bases  , [    [    0 , 1 ]  , [    y , -x ]  ]  , [    x^2+y^2 , x*y , %[null] ]  ]
        !           508: [    level= , 1 ]
        !           509: [    tower2= , [    [   ]  ]  ]
        !           510: [    y , -es*x ]
        !           511: [gi, gj] = [    x^2+y^2 , x*y ]
        !           512: 1
        !           513: Reduce the element y^3
        !           514: by  [    x^2+y^2 , x*y , %[null] ]
        !           515: result is [    y^3 , 1 , [    0 , 0 , 0 ]  ]
        !           516: vdegree of the original = -3
        !           517: vdegree of the remainder = -3
        !           518: [    y^3 , [    y , -x , 0 ]  , 2 , 2 , -3 , -3 ]
        !           519: [    0 , 2 ]
        !           520: Processing [    0 , 2 ]    Strategy = 2
        !           521: [    1 , 1 ]
        !           522: Processing [    1 , 1 ]    Strategy = 2
        !           523: SpairAndReduction:
        !           524: [    p and bases  , [    [    1 , 2 ]  , [    y^2 , -x ]  ]  , [    x^2+y^2 , x*y , y^3 ]  ]
        !           525: [    level= , 1 ]
        !           526: [    tower2= , [    [   ]  ]  ]
        !           527: [    es*y^2 , -es^2*x ]
        !           528: [gi, gj] = [    x*y , y^3 ]
        !           529: 1
        !           530: Reduce the element 0
        !           531: by  [    x^2+y^2 , x*y , y^3 ]
        !           532: result is [    0 , 1 , [    0 , 0 , 0 ]  ]
        !           533: vdegree of the original = -4
        !           534: vdegree of the remainder = %[null]
        !           535: [    0 , [    0 , y^2 , -x ]  , 1 , -1 , -4 , %[null] ]
        !           536: reductionTable_tmp=[    2 ]
        !           537: See also reductionTable, strategy, level,i
        !           538: ERROR(sm): error operator : SnextI: bases[i] or bases[j] is null for all combinations.
        !           539: --- Engine error or interrupt : In function : Error of class PrimitiveObject
        !           540:
        !           541: Type in Cleards() to exit the debug mode and Where() to see the stack trace.
        !           542: In(10)=reductionTable :
        !           543: [    [    1 , 1 , 2 ]  , [    3 , 2 , 1 ]  , [    2 ]  ]
        !           544: In(11)=bases:
        !           545: [    %[null] , [    0 , y^2 , -x ]  , [    -y , x , 1 ]  ]
        !           546: In(12)=  $B$3$l$O(B, [3, 2, 1]  $B$N85$N$&$A(B, 2,1 $B$,$b$H$^$C$F$$$k(B.
        !           547: [ 2 ] $B$N7W;;$K(B 0 $BHVL\$,I,MW$G$3$l$,$^$@$J$$(B.
        !           548:
        !           549:
        !           550:
1.3       takayama  551:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>