Annotation of OpenXM/src/k097/lib/minimal/minimal-test.k, Revision 1.1
1.1 ! takayama 1: /* $OpenXM$ */
! 2: load["minimal.k"];
! 3: def test5() {
! 4: local a,b,c,cc,v;
! 5: a = Sannfs3_laScala2("x^3-y^2*z^2");
! 6: b = a[0];
! 7: v = [x,y,z];
! 8: c = Skernel(b[0],v);
! 9: c = c[0];
! 10: sm1_pmat([c,b[1],v]);
! 11: Println("-----------------------------------");
! 12: cc = sm1_res_div(c,b[1],v);
! 13: sm1_pmat(sm1_gb(cc,v));
! 14: c = Skernel(b[1],v);
! 15: c = c[0];
! 16: cc = sm1_res_div(c,b[2],v);
! 17: sm1_pmat(sm1_gb(cc,v));
! 18: return(a);
! 19: }
! 20: def test6() {
! 21: local a,b,c,cc,v;
! 22: a = Sannfs3("x^3-y^2*z^2");
! 23: b = a[0];
! 24: v = [x,y,z];
! 25: c = Skernel(b[0],v);
! 26: c = c[0];
! 27: sm1_pmat([c,b[1],v]);
! 28: Println("-------ker = im for minimal ?---------------------");
! 29: cc = sm1_res_div(c,b[1],v);
! 30: sm1_pmat(sm1_gb(cc,v));
! 31: c = Skernel(b[1],v);
! 32: c = c[0];
! 33: cc = sm1_res_div(c,b[2],v);
! 34: sm1_pmat(sm1_gb(cc,v));
! 35: Println("------ ker=im for Schreyer ?------------------");
! 36: b = a[3];
! 37: c = Skernel(b[0],v);
! 38: c = c[0];
! 39: sm1_pmat([c,b[1],v]);
! 40: cc = sm1_res_div(c,b[1],v);
! 41: sm1_pmat(sm1_gb(cc,v));
! 42: c = Skernel(b[1],v);
! 43: c = c[0];
! 44: cc = sm1_res_div(c,b[2],v);
! 45: sm1_pmat(sm1_gb(cc,v));
! 46: return(a);
! 47: }
! 48:
! 49: /* May 23, Tue */
! 50: def test7() {
! 51: local a,b,c,cc,v;
! 52: a = Sannfs3_laScala2("x^3-y^2*z^2");
! 53: b = a[0];
! 54: v = [x,y,z];
! 55: c = Skernel(b[0],v);
! 56: c = c[0];
! 57: sm1_pmat([c,b[1],v]);
! 58: Println("-------ker = im for minimal ?---------------------");
! 59: cc = sm1_res_div(c,b[1],v);
! 60: sm1_pmat(sm1_gb(cc,v));
! 61: c = Skernel(b[1],v);
! 62: c = c[0];
! 63: cc = sm1_res_div(c,b[2],v);
! 64: sm1_pmat(sm1_gb(cc,v));
! 65: Println("------ ker=im for Schreyer ?------------------");
! 66: b = a[3];
! 67: c = Skernel(b[0],v);
! 68: c = c[0];
! 69: sm1_pmat([c,b[1],v]);
! 70: cc = sm1_res_div(c,b[1],v);
! 71: sm1_pmat(sm1_gb(cc,v));
! 72: c = Skernel(b[1],v);
! 73: c = c[0];
! 74: cc = sm1_res_div(c,b[2],v);
! 75: sm1_pmat(sm1_gb(cc,v));
! 76: return(a);
! 77: }
! 78:
! 79: def sm1_resol1(p) {
! 80: sm1(" p resol1 /FunctionValue set ");
! 81: }
! 82:
! 83:
! 84: def test8() {
! 85: local p,pp,ans,b,c,cc,ww,ww2;
! 86: f = "x^3-y^2*z^2";
! 87: p = Sannfs(f,"x,y,z");
! 88: ww = [["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1],
! 89: ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 90: ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 91: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 92: Sweyl("x,y,z",ww);
! 93: pp = Map(p,"Spoly");
! 94: /* return(pp); */
! 95: /* pp =
! 96: [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 ,
! 97: 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ]
! 98: */
! 99: ans = sm1_resol1([pp,"x,y,z",ww]);
! 100: /* Schreyer is in ans. */
! 101:
! 102: v = [x,y,z];
! 103: b = ans;
! 104: Println("------ ker=im for Schreyer ?------------------");
! 105: c = Skernel(b[0],v);
! 106: c = c[0];
! 107: sm1_pmat([c,b[1],v]);
! 108: cc = sm1_res_div(c,b[1],v);
! 109: sm1_pmat(sm1_gb(cc,v));
! 110: c = Skernel(b[1],v);
! 111: c = c[0];
! 112: cc = sm1_res_div(c,b[2],v);
! 113: sm1_pmat(sm1_gb(cc,v));
! 114: return(ans);
! 115: }
! 116: /*
! 117: a = test8();
! 118: SisComplex(a):
! 119: */
! 120:
! 121: def test8a() {
! 122: local p,pp,ans,b,c,cc,ww, ans_all;
! 123: f = "x^3-y^2*z^2";
! 124: p = Sannfs(f,"x,y,z");
! 125: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 126: ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 127: /* Removed "x",1, ... ===> It causes an error. I do not know the reason.*/
! 128: Sweyl("x,y,z",ww);
! 129: pp = Map(p,"Spoly");
! 130: /* return(pp); */
! 131: /* pp =
! 132: [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 ,
! 133: 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ]
! 134: */
! 135: ans_all = Sschreyer(pp);
! 136: ans = ans_all[0];
! 137: /* ans = sm1_resol1([pp,"x,y,z",ww]); */
! 138: /* Schreyer is in ans. */
! 139:
! 140: v = [x,y,z];
! 141: b = ans;
! 142: Println("------ ker=im for Schreyer ?------------------");
! 143: c = Skernel(b[0],v);
! 144: c = c[0];
! 145: sm1_pmat([c,b[1],v]);
! 146: cc = sm1_res_div(c,b[1],v);
! 147: sm1_pmat(sm1_gb(cc,v));
! 148: c = Skernel(b[1],v);
! 149: c = c[0];
! 150: cc = sm1_res_div(c,b[2],v);
! 151: sm1_pmat(sm1_gb(cc,v));
! 152: return(ans);
! 153: }
! 154:
! 155: /* Comparing two constructions */
! 156: def test9() {
! 157: local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2;
! 158: f = "x^3-y^2*z^2";
! 159: p = Sannfs(f,"x,y,z");
! 160: ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 161: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 162: Sweyl("x,y,z",ww2);
! 163: pp = Map(p,"Spoly");
! 164: ans = sm1_resol1([pp,"x,y,z",ww2]);
! 165:
! 166: f = "x^3-y^2*z^2";
! 167: p = Sannfs(f,"x,y,z");
! 168: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 169: ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 170: Sweyl("x,y,z",ww);
! 171: pp = Map(p,"Spoly");
! 172: ans_all = Sschreyer(pp);
! 173: ans2 = ans_all[0];
! 174:
! 175: return([ans,ans2]);
! 176:
! 177: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>