Annotation of OpenXM/src/k097/lib/minimal/minimal-test.k, Revision 1.2
1.2 ! takayama 1: /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal-test.k,v 1.1 2000/05/24 15:31:28 takayama Exp $ */
1.1 takayama 2: load["minimal.k"];
3: def test5() {
4: local a,b,c,cc,v;
5: a = Sannfs3_laScala2("x^3-y^2*z^2");
6: b = a[0];
7: v = [x,y,z];
8: c = Skernel(b[0],v);
9: c = c[0];
10: sm1_pmat([c,b[1],v]);
11: Println("-----------------------------------");
12: cc = sm1_res_div(c,b[1],v);
13: sm1_pmat(sm1_gb(cc,v));
14: c = Skernel(b[1],v);
15: c = c[0];
16: cc = sm1_res_div(c,b[2],v);
17: sm1_pmat(sm1_gb(cc,v));
18: return(a);
19: }
20: def test6() {
21: local a,b,c,cc,v;
22: a = Sannfs3("x^3-y^2*z^2");
23: b = a[0];
24: v = [x,y,z];
25: c = Skernel(b[0],v);
26: c = c[0];
27: sm1_pmat([c,b[1],v]);
28: Println("-------ker = im for minimal ?---------------------");
29: cc = sm1_res_div(c,b[1],v);
30: sm1_pmat(sm1_gb(cc,v));
31: c = Skernel(b[1],v);
32: c = c[0];
33: cc = sm1_res_div(c,b[2],v);
34: sm1_pmat(sm1_gb(cc,v));
35: Println("------ ker=im for Schreyer ?------------------");
36: b = a[3];
37: c = Skernel(b[0],v);
38: c = c[0];
39: sm1_pmat([c,b[1],v]);
40: cc = sm1_res_div(c,b[1],v);
41: sm1_pmat(sm1_gb(cc,v));
42: c = Skernel(b[1],v);
43: c = c[0];
44: cc = sm1_res_div(c,b[2],v);
45: sm1_pmat(sm1_gb(cc,v));
46: return(a);
47: }
48:
49: /* May 23, Tue */
50: def test7() {
51: local a,b,c,cc,v;
52: a = Sannfs3_laScala2("x^3-y^2*z^2");
53: b = a[0];
54: v = [x,y,z];
55: c = Skernel(b[0],v);
56: c = c[0];
57: sm1_pmat([c,b[1],v]);
58: Println("-------ker = im for minimal ?---------------------");
59: cc = sm1_res_div(c,b[1],v);
60: sm1_pmat(sm1_gb(cc,v));
61: c = Skernel(b[1],v);
62: c = c[0];
63: cc = sm1_res_div(c,b[2],v);
64: sm1_pmat(sm1_gb(cc,v));
65: Println("------ ker=im for Schreyer ?------------------");
66: b = a[3];
67: c = Skernel(b[0],v);
68: c = c[0];
69: sm1_pmat([c,b[1],v]);
70: cc = sm1_res_div(c,b[1],v);
71: sm1_pmat(sm1_gb(cc,v));
72: c = Skernel(b[1],v);
73: c = c[0];
74: cc = sm1_res_div(c,b[2],v);
75: sm1_pmat(sm1_gb(cc,v));
76: return(a);
77: }
78:
79: def sm1_resol1(p) {
80: sm1(" p resol1 /FunctionValue set ");
81: }
82:
83:
84: def test8() {
85: local p,pp,ans,b,c,cc,ww,ww2;
86: f = "x^3-y^2*z^2";
87: p = Sannfs(f,"x,y,z");
88: ww = [["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1],
89: ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
90: ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
91: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
92: Sweyl("x,y,z",ww);
93: pp = Map(p,"Spoly");
94: /* return(pp); */
95: /* pp =
96: [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 ,
97: 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ]
98: */
99: ans = sm1_resol1([pp,"x,y,z",ww]);
100: /* Schreyer is in ans. */
101:
102: v = [x,y,z];
103: b = ans;
104: Println("------ ker=im for Schreyer ?------------------");
105: c = Skernel(b[0],v);
106: c = c[0];
107: sm1_pmat([c,b[1],v]);
108: cc = sm1_res_div(c,b[1],v);
109: sm1_pmat(sm1_gb(cc,v));
110: c = Skernel(b[1],v);
111: c = c[0];
112: cc = sm1_res_div(c,b[2],v);
113: sm1_pmat(sm1_gb(cc,v));
114: return(ans);
115: }
116: /*
117: a = test8();
118: SisComplex(a):
119: */
120:
121: def test8a() {
122: local p,pp,ans,b,c,cc,ww, ans_all;
123: f = "x^3-y^2*z^2";
124: p = Sannfs(f,"x,y,z");
125: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
126: ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
127: /* Removed "x",1, ... ===> It causes an error. I do not know the reason.*/
128: Sweyl("x,y,z",ww);
129: pp = Map(p,"Spoly");
130: /* return(pp); */
131: /* pp =
132: [y*Dy-z*Dz , -2*x*Dx-3*y*Dy+1 , 2*x*Dy*Dz^2-3*y*Dx^2 ,
133: 2*x*Dy^2*Dz-3*z*Dx^2 , 2*x*z*Dz^3-3*y^2*Dx^2+4*x*Dz^2 ]
134: */
135: ans_all = Sschreyer(pp);
136: ans = ans_all[0];
137: /* ans = sm1_resol1([pp,"x,y,z",ww]); */
138: /* Schreyer is in ans. */
139:
140: v = [x,y,z];
141: b = ans;
142: Println("------ ker=im for Schreyer ?------------------");
143: c = Skernel(b[0],v);
144: c = c[0];
145: sm1_pmat([c,b[1],v]);
146: cc = sm1_res_div(c,b[1],v);
147: sm1_pmat(sm1_gb(cc,v));
148: c = Skernel(b[1],v);
149: c = c[0];
150: cc = sm1_res_div(c,b[2],v);
151: sm1_pmat(sm1_gb(cc,v));
152: return(ans);
153: }
154:
155: /* Comparing two constructions */
156: def test9() {
157: local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2;
158: f = "x^3-y^2*z^2";
159: p = Sannfs(f,"x,y,z");
160: ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
161: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
162: Sweyl("x,y,z",ww2);
163: pp = Map(p,"Spoly");
164: ans = sm1_resol1([pp,"x,y,z",ww2]);
165:
166: f = "x^3-y^2*z^2";
167: p = Sannfs(f,"x,y,z");
168: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
169: ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
170: Sweyl("x,y,z",ww);
171: pp = Map(p,"Spoly");
172: ans_all = Sschreyer(pp);
173: ans2 = ans_all[0];
174:
175: return([ans,ans2]);
1.2 ! takayama 176:
! 177: }
! 178:
! 179: /* Check if the complex is exact or not? */
! 180: def test10() {
! 181: local p,pp,ans,b,c,cc,ww,ww2,ans_all,ans2, r;
! 182: f = "x^3-y^2*z^2";
! 183: p = Sannfs(f,"x,y,z");
! 184: ww2 = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 185: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 186: Sweyl("x,y,z",ww2);
! 187: pp = Map(p,"Spoly");
! 188: ans = sm1_resol1([pp,"x,y,z",ww2]);
! 189:
! 190: f = "x^3-y^2*z^2";
! 191: p = Sannfs(f,"x,y,z");
! 192: sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
! 193: ww = [["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]];
! 194: Sweyl("x,y,z",ww);
! 195: pp = Map(p,"Spoly");
! 196: ans_all = Sschreyer(pp); /* Schreyer by LaScala-Stillman */
! 197: ans2 = ans_all[0];
! 198:
! 199: r= SisExact_h(ans2,[x,y,z]);
! 200: Print(r);
! 201:
! 202: return([r,[ans,ans2]]);
1.1 takayama 203:
204: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>