[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/minimal.k, Revision 1.14

1.14    ! takayama    1: /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.13 2000/06/08 08:37:53 takayama Exp $ */
1.1       takayama    2: #define DEBUG 1
                      3: /* #define ORDINARY 1 */
1.4       takayama    4: /* If you run this program on openxm version 1.1.2 (FreeBSD),
                      5:    make a symbolic link by the command
                      6:    ln -s /usr/bin/cpp /lib/cpp
                      7: */
1.6       takayama    8: #define OFFSET 0
1.14    ! takayama    9: #define TOTAL_STRATEGY 1
1.6       takayama   10: /* #define OFFSET 20*/
1.1       takayama   11: /* Test sequences.
                     12:    Use load["minimal.k"];;
                     13:
                     14:    a=Sminimal(v);
                     15:    b=a[0];
                     16:    b[1]*b[0]:
                     17:    b[2]*b[1]:
                     18:
                     19:    a = test0();
                     20:    b = a[0];
                     21:    b[1]*b[0]:
                     22:    b[2]*b[1]:
                     23:    a = Sminimal(b[0]);
                     24:
                     25:    a = test1();
                     26:    b=a[0];
                     27:    b[1]*b[0]:
                     28:    b[2]*b[1]:
                     29:
                     30: */
                     31:
                     32:
                     33: load("cohom.k");
                     34: def load_tower() {
                     35:   if (Boundp("k0-tower.sm1.loaded")) {
                     36:   }else{
                     37:     sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");
                     38:     sm1(" /k0-tower.sm1.loaded 1 def ");
                     39:   }
1.7       takayama   40:   sm1(" oxNoX ");
1.1       takayama   41: }
                     42: load_tower();
                     43: SonAutoReduce = true;
                     44: def Factor(f) {
                     45:    sm1(f, " fctr /FunctionValue set");
                     46: }
                     47: def Reverse(f) {
                     48:    sm1(f," reverse /FunctionValue set");
                     49: }
                     50: def Sgroebner(f) {
                     51:    sm1(" [f] groebner /FunctionValue set");
                     52: }
                     53: def test0() {
                     54:   local f;
                     55:   Sweyl("x,y,z");
                     56:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     57:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     58:   frame=SresolutionFrame(f);
                     59:   Println(frame);
                     60:   /* return(frame); */
                     61:   return(SlaScala(f));
                     62: }
                     63: def test1() {
                     64:   local f;
                     65:   Sweyl("x,y,z");
                     66:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     67:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     68:   return(Sminimal(f));
                     69: }
                     70:
                     71:
                     72:
                     73: def Sweyl(v,w) {
                     74:   /* extern WeightOfSweyl ; */
                     75:   local ww,i,n;
                     76:   if(Length(Arglist) == 1) {
                     77:     sm1(" [v s_ring_of_differential_operators 0 [(schreyer) 1]] define_ring ");
                     78:     sm1(" define_ring_variables ");
                     79:
                     80:     sm1(" [ v to_records pop ] /ww set ");
                     81:     n = Length(ww);
                     82:     WeightOfSweyl = NewArray(n*4);
                     83:     for (i=0; i< n; i++) {
                     84:       WeightOfSweyl[2*i] = ww[i];
                     85:       WeightOfSweyl[2*i+1] = 1;
                     86:     }
                     87:     for (i=0; i< n; i++) {
                     88:       WeightOfSweyl[2*n+2*i] = AddString(["D",ww[i]]);
                     89:       WeightOfSweyl[2*n+2*i+1] = 1;
                     90:     }
                     91:
                     92:   }else{
                     93:     sm1(" [v s_ring_of_differential_operators w s_weight_vector 0 [(schreyer) 1]] define_ring ");
                     94:     sm1(" define_ring_variables ");
                     95:     WeightOfSweyl = w[0];
                     96:   }
                     97: }
                     98:
                     99:
                    100: def Spoly(f) {
                    101:   sm1(f, " toString tparse /FunctionValue set ");
                    102: }
                    103:
                    104: def SreplaceZeroByZeroPoly(f) {
                    105:   if (IsArray(f)) {
                    106:      return(Map(f,"SreplaceZeroByZeroPoly"));
                    107:   }else{
                    108:      if (IsInteger(f)) {
                    109:        return(Poly(ToString(f)));
                    110:      }else{
                    111:        return(f);
                    112:      }
                    113:   }
                    114: }
                    115: def Shomogenize(f) {
                    116:   f = SreplaceZeroByZeroPoly(f);
                    117:   if (IsArray(f)) {
                    118:     sm1(f," sHomogenize2  /FunctionValue set ");
                    119:     /* sm1(f," {sHomogenize2} map  /FunctionValue set ");  */
                    120:     /* Is it correct? Double check.*/
                    121:   }else{
                    122:     sm1(f, " sHomogenize /FunctionValue set ");
                    123:   }
                    124: }
                    125:
                    126: def StoTower() {
                    127:   sm1("  [(AvoidTheSameRing)] pushEnv [ [(AvoidTheSameRing) 0] system_variable (mmLarger) (tower) switch_function ] pop popEnv ");
                    128: }
                    129:
                    130: def SsetTower(tower) {
                    131: sm1(" [(AvoidTheSameRing)] pushEnv
                    132:       [ [(AvoidTheSameRing) 0] system_variable
                    133:         [(gbListTower) tower (list) dc] system_variable
                    134:       ] pop popEnv ");
1.14    ! takayama  135:       /* sm1("(hoge) message show_ring "); */
1.1       takayama  136: }
                    137:
                    138: def SresolutionFrameWithTower(g,opt) {
                    139:   local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof,
                    140:         gbasis;
                    141:   if (Length(Arglist) >= 2) {
                    142:     if (IsInteger(opt)) count = opt;
                    143:   }else{
                    144:     count = -1;
                    145:   }
                    146:
                    147:   sm1(" setupEnvForResolution ");
                    148:   /* If I do not put this macro, homogenization
                    149:      make a strange behavior. For example,
                    150:      [(2*x*Dx + 3*y*Dy+6) (0)] homogenize returns
                    151:      [(2*x*Dx*h + 3*y*Dy*h+6*h^3) (0)].
                    152:      4/19, 2000.
                    153:   */
                    154:
                    155:   sm1(" (mmLarger) (matrix) switch_function ");
                    156:   g = Map(g,"Shomogenize");
                    157:   if (SonAutoReduce) {
                    158:     sm1("[ (AutoReduce) ] system_variable /autof set ");
                    159:     sm1("[ (AutoReduce) 1 ] system_variable ");
                    160:   }
                    161:   gbasis = Sgroebner(g);
                    162:   g = gbasis[0];
                    163:   if (SonAutoReduce) {
                    164:     sm1("[ (AutoReduce) autof] system_variable  ");
                    165:   }
                    166:
                    167:   g = Init(g);
                    168:
                    169: /*  sm1(" setupEnvForResolution-sugar "); */
                    170:   /* -sugar is fine? */
                    171:   sm1(" setupEnvForResolution ");
                    172:
                    173:   Println(g);
                    174:   startingGB = g;
                    175:   /* ans = [ SzeroMap(g) ];  It has not been implemented. see resol1.withZeroMap */
                    176:   ans = [ ];
                    177:   gbTower = [ ];
                    178:   skelton = [ ];
                    179:   while (true) {
                    180:     /* sm1(g," res0Frame /ff set "); */
                    181:     withSkel = Sres0FrameWithSkelton(g);
                    182:     ff = withSkel[0];
                    183:     ans = Append(ans, ff[0]);
                    184:     gbTower = Join([ ff[1] ], gbTower);
                    185:     skelton = Join([ withSkel[1] ], skelton);
                    186:     g = ff[0];
                    187:     if (Length(g) == 0) break;
                    188:     SsetTower( gbTower );
                    189:     if (count == 0) break;
                    190:     count = count - 1;
                    191:   }
                    192:   return([ans,Reverse(gbTower),Join([ [ ] ], Reverse(skelton)),gbasis]);
                    193: }
                    194: HelpAdd(["SresolutionFrameWithTower",
                    195: ["It returs [resolution of the initial, gbTower, skelton, gbasis]",
                    196:  "Example: Sweyl(\"x,y\");",
                    197:  "         a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]);
                    198:
                    199: def SresolutionFrame(f,opt) {
                    200:   local ans;
                    201:   ans = SresolutionFrameWithTower(f);
                    202:   return(ans[0]);
                    203: }
                    204: /* ---------------------------- */
                    205: def ToGradedPolySet(g) {
                    206:   sm1(g," (gradedPolySet) dc /FunctionValue set ");
                    207: }
                    208:
                    209: def NewPolynomialVector(size) {
                    210:   sm1(size," (integer) dc newPolyVector /FunctionValue set ");
                    211: }
                    212:
                    213: def  SturnOffHomogenization() {
                    214:   sm1("
                    215:     [(Homogenize)] system_variable 1 eq
                    216:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message
                    217:       [(Homogenize) 0] system_variable
                    218:       [(ReduceLowerTerms) 0] system_variable
                    219:     } {  } ifelse
                    220:   ");
                    221: }
                    222: def  SturnOnHomogenization() {
                    223:   sm1("
                    224:     [(Homogenize)] system_variable 0 eq
                    225:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message
                    226:       [(Homogenize) 1] system_variable
                    227:       [(ReduceLowerTerms) 1] system_variable
                    228:     } {  } ifelse
                    229:   ");
                    230: }
                    231:
                    232: def SschreyerSkelton(g) {
                    233:   sm1(" [(schreyerSkelton) g] gbext /FunctionValue set ");
                    234: }
                    235: def Stoes(g) {
                    236:   if (IsArray(g)) {
                    237:     sm1(g," {toes} map /FunctionValue set ");
                    238:   }else{
                    239:     sm1(g," toes /FunctionValue set ");
                    240:   }
                    241: }
                    242: def Stoes_vec(g) {
                    243:     sm1(g," toes /FunctionValue set ");
                    244: }
                    245:
                    246: def Sres0Frame(g) {
                    247:   local ans;
                    248:   ans = Sres0FrameWithSkelton(g);
                    249:   return(ans[0]);
                    250: }
                    251: def Sres0FrameWithSkelton(g) {
                    252:   local t_syz, nexttower, m, t_gb, skel, betti,
                    253:         gg, k, i, j, pair, tmp, si, sj, grG, syzAll, gLength;
                    254:
                    255:   SturnOffHomogenization();
                    256:
                    257:   g = Stoes(g);
                    258:   skel = SschreyerSkelton(g);
                    259:   /* Print("Skelton is ");
                    260:   sm1_pmat(skel); */
                    261:   betti = Length(skel);
                    262:
                    263:   gLength = Length(g);
                    264:   grG = ToGradedPolySet(g);
                    265:   syzAll = NewPolynomialVector(betti);
                    266:   for (k=0; k<betti; k++) {
                    267:     pair = skel[k];
                    268:     i = pair[0,0];
                    269:     j = pair[0,1];
                    270:     si = pair[1,0];
                    271:     sj = pair[1,1];
                    272:     /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */
                    273:     Print(".");
                    274:
                    275:     t_syz = NewPolynomialVector(gLength);
                    276:     t_syz[i] = si;
                    277:     t_syz[j] = sj;
                    278:     syzAll[k] = t_syz;
                    279:   }
                    280:   t_syz = syzAll;
                    281:   Print("Done. betti="); Println(betti);
                    282:   /* Println(g);  g is in a format such as
                    283:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    284:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    285:     [y-es*x , 3*es^4*y*Dy-es^5*x , 3*es^5*y*Dy-es^6*x , ...]
                    286:     [3*es^3*y*Dy-es^5*x ]
                    287:   */
                    288:   nexttower = Init(g);
                    289:   SturnOnHomogenization();
                    290:   return([[t_syz, nexttower],skel]);
                    291: }
                    292:
                    293:
                    294: def StotalDegree(f) {
1.14    ! takayama  295:   local d0;
        !           296:   sm1(" [(grade) f] gbext (universalNumber) dc /d0 set ");
        !           297:   /* Print("degree of "); Print(f); Print(" is "); Println(d0); */
        !           298:   return(d0);
1.1       takayama  299: }
                    300:
                    301: /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */
                    302: def Sord_w(f,w) {
                    303:   local neww,i,n;
                    304:   n = Length(w);
                    305:   neww = NewArray(n);
                    306:   for (i=0; i<n; i=i+2) {
                    307:     neww[i] = ToString(w[i]);
                    308:   }
                    309:   for (i=1; i<n; i=i+2) {
                    310:     neww[i] = IntegerToSm1Integer(w[i]);
                    311:   }
                    312:   sm1(" f neww ord_w (universalNumber) dc /FunctionValue set ");
                    313: }
                    314:
                    315:
                    316: /* This is not satisfactory. */
                    317: def SinitOfArray(f) {
                    318:   local p,pos,top;
                    319:   if (IsArray(f)) {
                    320:      sm1(f," toes init /p set ");
                    321:      sm1(p," (es). degree (universalNumber) dc /pos set ");
                    322:      return([Init(f[pos]),pos]);
                    323:   } else {
                    324:      return(Init(f));
                    325:   }
                    326: }
                    327:
                    328: def test_SinitOfArray() {
                    329:   local f, frame,p,tower,i,j,k;
                    330:   Sweyl("x,y,z");
                    331:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                    332:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                    333:   p=SresolutionFrameWithTower(f);
                    334:   sm1_pmat(p);
                    335:   sm1_pmat(SgenerateTable(p[1]));
                    336:   return(p);
                    337:   frame = p[0];
                    338:   sm1_pmat(p[1]);
                    339:   sm1_pmat(frame);
                    340:   sm1_pmat(Map(frame[0],"SinitOfArray"));
                    341:   sm1_pmat(Map(frame[1],"SinitOfArray"));
                    342:   return(p);
                    343: }
                    344:
                    345: /* f is assumed to be a monomial with toes. */
                    346: def Sdegree(f,tower,level) {
1.6       takayama  347:   local i,ww, wd;
                    348:   /* extern WeightOfSweyl; */
                    349:   ww = WeightOfSweyl;
1.5       takayama  350:   f = Init(f);
1.1       takayama  351:   if (level <= 1) return(StotalDegree(f));
                    352:   i = Degree(f,es);
1.6       takayama  353: #ifdef TOTAL_STRATEGY
                    354:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
                    355: #endif
                    356:   /* Strategy must be compatible with ordering.  */
                    357:   /* Weight vector must be non-negative, too.  */
                    358:   /* See Sdegree, SgenerateTable, reductionTable. */
                    359:   wd = Sord_w(f,ww);
                    360:   return(wd+Sdegree(tower[level-2,i],tower,level-1));
                    361:
1.1       takayama  362: }
                    363:
                    364: def SgenerateTable(tower) {
                    365:   local height, n,i,j, ans, ans_at_each_floor;
                    366:   height = Length(tower);
                    367:   ans = NewArray(height);
                    368:   for (i=0; i<height; i++) {
                    369:     n = Length(tower[i]);
                    370:     ans_at_each_floor=NewArray(n);
                    371:     for (j=0; j<n; j++) {
1.6       takayama  372:       ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1)
                    373:                             + OFFSET;
1.1       takayama  374:       /* Println([i,j,ans_at_each_floor[j]]); */
                    375:     }
                    376:     ans[i] = ans_at_each_floor;
                    377:   }
                    378:   return(ans);
                    379: }
                    380: Sweyl("x,y,z");
                    381: v=[[2*x*Dx + 3*y*Dy+6, 0],
                    382:    [3*x^2*Dy + 2*y*Dx, 0],
                    383:    [0,  x^2+y^2],
                    384:    [0,  x*y]];
                    385: /*  SresolutionFrameWithTower(v); */
                    386:
                    387: def SnewArrayOfFormat(p) {
                    388:   if (IsArray(p)) {
                    389:      return(Map(p,"SnewArrayOfFormat"));
                    390:   }else{
                    391:      return(null);
                    392:   }
                    393: }
1.4       takayama  394: def ScopyArray(a) {
                    395:   local n, i,ans;
                    396:   n = Length(a);
                    397:   ans = NewArray(n);
                    398:   for (i=0; i<n; i++) {
                    399:     ans[i] = a[i];
                    400:   }
                    401:   return(ans);
                    402: }
1.1       takayama  403: def SminOfStrategy(a) {
                    404:   local n,i,ans,tt;
                    405:   ans = 100000; /* very big number */
                    406:   if (IsArray(a)) {
                    407:     n = Length(a);
                    408:     for (i=0; i<n; i++) {
                    409:       if (IsArray(a[i])) {
                    410:         tt = SminOfStrategy(a[i]);
                    411:         if (tt < ans) ans = tt;
                    412:       }else{
                    413:         if (a[i] < ans) ans = a[i];
                    414:       }
                    415:     }
                    416:   }else{
                    417:      if (a < ans) ans = a;
                    418:   }
                    419:   return(ans);
                    420: }
                    421: def SmaxOfStrategy(a) {
                    422:   local n,i,ans,tt;
                    423:   ans = -100000; /* very small number */
                    424:   if (IsArray(a)) {
                    425:     n = Length(a);
                    426:     for (i=0; i<n; i++) {
                    427:       if (IsArray(a[i])) {
                    428:         tt = SmaxOfStrategy(a[i]);
                    429:         if (tt > ans) ans = tt;
                    430:       }else{
                    431:         if (a[i] > ans) ans = a[i];
                    432:       }
                    433:     }
                    434:   }else{
                    435:      if (a > ans) ans = a;
                    436:   }
                    437:   return(ans);
                    438: }
                    439:
                    440:
                    441: def SlaScala(g) {
                    442:   local rf, tower, reductionTable, skel, redundantTable, bases,
                    443:         strategy, maxOfStrategy, height, level, n, i,
                    444:         freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
1.4       takayama  445:         redundantTable_ordinary, redundant_seq_ordinary,
                    446:         reductionTable_tmp;
1.1       takayama  447:   /* extern WeightOfSweyl; */
                    448:   ww = WeightOfSweyl;
1.6       takayama  449:   Print("WeightOfSweyl="); Println(WeightOfSweyl);
1.1       takayama  450:   rf = SresolutionFrameWithTower(g);
1.14    ! takayama  451:   Print("rf="); sm1_pmat(rf);
1.1       takayama  452:   redundant_seq = 1;   redundant_seq_ordinary = 1;
                    453:   tower = rf[1];
                    454:   reductionTable = SgenerateTable(tower);
                    455:   skel = rf[2];
                    456:   redundantTable = SnewArrayOfFormat(rf[1]);
                    457:   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
                    458:   reducer = SnewArrayOfFormat(rf[1]);
                    459:   freeRes = SnewArrayOfFormat(rf[1]);
                    460:   bettiTable = SsetBettiTable(rf[1],g);
                    461:
                    462:   strategy = SminOfStrategy( reductionTable );
                    463:   maxOfStrategy = SmaxOfStrategy( reductionTable );
                    464:   height = Length(reductionTable);
                    465:   while (strategy <= maxOfStrategy) {
                    466:     for (level = 0; level < height; level++) {
                    467:       n = Length(reductionTable[level]);
1.4       takayama  468:       reductionTable_tmp = ScopyArray(reductionTable[level]);
                    469:       while (SthereIs(reductionTable_tmp,strategy)) {
                    470:         i = SnextI(reductionTable_tmp,strategy,redundantTable,
                    471:                    skel,level,freeRes);
                    472:         Println([level,i]);
                    473:         reductionTable_tmp[i] = -200000;
1.1       takayama  474:         if (reductionTable[level,i] == strategy) {
                    475:            Print("Processing "); Print([level,i]);
                    476:            Print("   Strategy = "); Println(strategy);
                    477:            if (level == 0) {
                    478:              if (IsNull(redundantTable[level,i])) {
                    479:                bases = freeRes[level];
                    480:                /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
                    481:                pos = SwhereInGB(tower[0,i],rf[3,0]);
                    482:                bases[i] = rf[3,0,pos];
                    483:                redundantTable[level,i] = 0;
                    484:                redundantTable_ordinary[level,i] = 0;
                    485:                freeRes[level] = bases;
                    486:                /* Println(["GB=",i,bases,tower[0,i]]); */
                    487:              }
                    488:            }else{ /* level >= 1 */
                    489:              if (IsNull(redundantTable[level,i])) {
                    490:                bases = freeRes[level];
                    491:                f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    492:                if (f[0] != Poly("0")) {
                    493:                   place = f[3];
                    494:                   /* (level-1, place) is the place for f[0],
                    495:                      which is a newly obtained  GB. */
                    496: #ifdef ORDINARY
                    497:                   redundantTable[level-1,place] = redundant_seq;
                    498:                   redundant_seq++;
                    499: #else
                    500:                   if (f[4] > f[5]) {
                    501:                     /* Zero in the gr-module */
                    502:                     Print("v-degree of [org,remainder] = ");
                    503:                     Println([f[4],f[5]]);
                    504:                     Print("[level,i] = "); Println([level,i]);
                    505:                     redundantTable[level-1,place] = 0;
                    506:                   }else{
                    507:                     redundantTable[level-1,place] = redundant_seq;
                    508:                     redundant_seq++;
                    509:                   }
                    510: #endif
                    511:                   redundantTable_ordinary[level-1,place]
                    512:                      =redundant_seq_ordinary;
                    513:                   redundant_seq_ordinary++;
                    514:                   bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
                    515:                   redundantTable[level,i] = 0;
                    516:                   redundantTable_ordinary[level,i] = 0;
                    517:                   /* i must be equal to f[2], I think. Double check. */
                    518:                   freeRes[level] = bases;
                    519:                   bases = freeRes[level-1];
                    520:                   bases[place] = f[0];
                    521:                   freeRes[level-1] = bases;
                    522:                   reducer[level-1,place] = f[1];
                    523:                }else{
                    524:                   redundantTable[level,i] = 0;
                    525:                   bases = freeRes[level];
                    526:                   bases[i] = f[1];  /* Put the syzygy. */
                    527:                   freeRes[level] = bases;
                    528:                }
                    529:              }
                    530:            } /* end of level >= 1 */
                    531:         }
                    532:       }
                    533:     }
                    534:     strategy++;
                    535:   }
                    536:   n = Length(freeRes);
                    537:   freeResV = SnewArrayOfFormat(freeRes);
                    538:   for (i=0; i<n; i++) {
                    539:     bases = freeRes[i];
                    540:     bases = Sbases_to_vec(bases,bettiTable[i]);
                    541:     freeResV[i] = bases;
                    542:   }
                    543:   return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
                    544: }
1.4       takayama  545:
                    546: def SthereIs(reductionTable_tmp,strategy) {
                    547:   local n,i;
                    548:   n = Length(reductionTable_tmp);
                    549:   for (i=0; i<n; i++) {
                    550:     if (reductionTable_tmp[i] == strategy) {
                    551:       return(true);
                    552:     }
                    553:   }
                    554:   return(false);
                    555: }
                    556:
                    557: def SnextI(reductionTable_tmp,strategy,redundantTable,
                    558:                                   skel,level,freeRes)
                    559: {
                    560:    local ii,n,p,myindex,i,j,bases;
                    561:    n = Length(reductionTable_tmp);
                    562:    if (level == 0) {
                    563:      for (ii=0; ii<n; ii++) {
                    564:        if (reductionTable_tmp[ii] == strategy) {
                    565:           return(ii);
                    566:         }
                    567:       }
                    568:    }else{
                    569:      for (ii=0; ii<n; ii++) {
                    570:        if (reductionTable_tmp[ii] == strategy) {
                    571:          p = skel[level,ii];
                    572:          myindex = p[0];
                    573:          i = myindex[0]; j = myindex[1];
                    574:          bases = freeRes[level-1];
                    575:          if (IsNull(bases[i]) || IsNull(bases[j])) {
                    576:
                    577:          }else{
                    578:            return(ii);
                    579:          }
                    580:        }
                    581:      }
                    582:    }
1.5       takayama  583:    Print("reductionTable_tmp=");
1.4       takayama  584:    Println(reductionTable_tmp);
1.5       takayama  585:    Println("See also reductionTable, strategy, level,i");
1.4       takayama  586:    Error("SnextI: bases[i] or bases[j] is null for all combinations.");
                    587: }
                    588:
                    589:
1.1       takayama  590:
                    591: def SsetBettiTable(freeRes,g) {
                    592:   local level,i, n,bases,ans;
                    593:   ans = NewArray(Length(freeRes)+1);
                    594:   n = Length(freeRes);
                    595:   if (IsArray(g[0])) {
                    596:     ans[0] = Length(g[0]);
                    597:   }else{
                    598:     ans[0] = 1;
                    599:   }
                    600:   for (level=0; level<n; level++) {
                    601:     bases = freeRes[level];
                    602:     if (IsArray(bases)) {
                    603:       ans[level+1] = Length(bases);
                    604:     }else{
                    605:       ans[level+1] = 1;
                    606:     }
                    607:   }
                    608:   return(ans);
                    609: }
                    610:
                    611: def SwhereInGB(f,tower) {
                    612:   local i,n,p,q;
                    613:   n = Length(tower);
                    614:   for (i=0; i<n; i++) {
                    615:     p = MonomialPart(tower[i]);
                    616:     q = MonomialPart(f);
                    617:     if (p == q) return(i);
                    618:   }
                    619:   Println([f,tower]);
                    620:   Error("whereInGB : [f,myset]: f could not be found in the myset.");
                    621: }
                    622: def SunitOfFormat(pos,forms) {
                    623:   local ans,i,n;
                    624:   n = Length(forms);
                    625:   ans = NewArray(n);
                    626:   for (i=0; i<n; i++) {
                    627:     if (i != pos) {
                    628:       ans[i] = Poly("0");
                    629:     }else{
                    630:       ans[i] = Poly("1");
                    631:     }
                    632:   }
                    633:   return(ans);
                    634: }
                    635:
                    636: def Error(s) {
                    637:   sm1(" s error ");
                    638: }
                    639:
                    640: def IsNull(s) {
                    641:   if (Stag(s) == 0) return(true);
                    642:   else return(false);
                    643: }
                    644:
                    645: def StowerOf(tower,level) {
                    646:   local ans,i;
                    647:   ans = [ ];
                    648:   if (level == 0) return([[]]);
                    649:   for (i=0; i<level; i++) {
                    650:     ans = Append(ans,tower[i]);
                    651:   }
                    652:   return(Reverse(ans));
                    653: }
                    654:
                    655: def Sspolynomial(f,g) {
                    656:   if (IsArray(f)) {
                    657:     f = Stoes_vec(f);
                    658:   }
                    659:   if (IsArray(g)) {
                    660:     g = Stoes_vec(g);
                    661:   }
                    662:   sm1("f g spol /FunctionValue set");
                    663: }
                    664:
                    665: def MonomialPart(f) {
                    666:   sm1(" [(lmonom) f] gbext /FunctionValue set ");
                    667: }
                    668:
1.14    ! takayama  669: /* WARNING:
        !           670:   When you use SwhereInTower, you have to change gbList
        !           671:   as below. Ofcourse, you should restrore the gbList
        !           672:   SsetTower(StowerOf(tower,level));
        !           673:   pos = SwhereInTower(syzHead,tower[level]);
        !           674: */
1.1       takayama  675: def SwhereInTower(f,tower) {
                    676:   local i,n,p,q;
                    677:   if (f == Poly("0")) return(-1);
                    678:   n = Length(tower);
                    679:   for (i=0; i<n; i++) {
                    680:     p = MonomialPart(tower[i]);
                    681:     q = MonomialPart(f);
                    682:     if (p == q) return(i);
                    683:   }
                    684:   Println([f,tower]);
                    685:   Error("[f,tower]: f could not be found in the tower.");
                    686: }
                    687:
                    688: def Stag(f) {
                    689:   sm1(f," tag (universalNumber) dc /FunctionValue set");
                    690: }
                    691:
                    692: def SpairAndReduction(skel,level,ii,freeRes,tower,ww) {
                    693:   local i, j, myindex, p, bases, tower2, gi, gj,
                    694:        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
                    695:        vdeg,vdeg_reduced;
                    696:   Println("SpairAndReduction:");
                    697:
                    698:   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
                    699:   p = skel[level,ii];
                    700:   myindex = p[0];
                    701:   i = myindex[0]; j = myindex[1];
                    702:   bases = freeRes[level-1];
                    703:   Println(["p and bases ",p,bases]);
                    704:   if (IsNull(bases[i]) || IsNull(bases[j])) {
                    705:     Println([level,i,j,bases[i],bases[j]]);
                    706:     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
                    707:   }
                    708:
                    709:   tower2 = StowerOf(tower,level-1);
                    710:   SsetTower(tower2);
1.14    ! takayama  711:   Println(["level=",level]);
        !           712:   Println(["tower2=",tower2]);
1.1       takayama  713:   /** sm1(" show_ring ");   */
                    714:
                    715:   gi = Stoes_vec(bases[i]);
                    716:   gj = Stoes_vec(bases[j]);
                    717:
                    718:   ssp = Sspolynomial(gi,gj);
                    719:   si = ssp[0,0];
                    720:   sj = ssp[0,1];
                    721:   syzHead = si*es^i;
                    722:   /* This will be the head term, I think. But, double check. */
                    723:   Println([si*es^i,sj*es^j]);
                    724:
                    725:   Print("[gi, gj] = "); Println([gi,gj]);
                    726:   sm1(" [(Homogenize)] system_variable message ");
                    727:   Print("Reduce the element "); Println(si*gi+sj*gj);
                    728:   Print("by  "); Println(bases);
                    729:
                    730:   tmp = Sreduction(si*gi+sj*gj, bases);
                    731:
                    732:   Print("result is "); Println(tmp);
                    733:
1.3       takayama  734:   /* This is essential part for V-minimal resolution. */
                    735:   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
                    736:   vdeg = SvDegree(si*gi,tower,level-1,ww);
1.1       takayama  737:   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);
                    738:   Print("vdegree of the original = "); Println(vdeg);
                    739:   Print("vdegree of the remainder = "); Println(vdeg_reduced);
                    740:
                    741:   t_syz = tmp[2];
                    742:   si = si*tmp[1]+t_syz[i];
                    743:   sj = sj*tmp[1]+t_syz[j];
                    744:   t_syz[i] = si;
                    745:   t_syz[j] = sj;
1.14    ! takayama  746:
        !           747:   SsetTower(StowerOf(tower,level));
1.1       takayama  748:   pos = SwhereInTower(syzHead,tower[level]);
1.14    ! takayama  749:
        !           750:   SsetTower(StowerOf(tower,level-1));
1.1       takayama  751:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
                    752:   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced];
                    753:   /* pos is the place to put syzygy at level. */
                    754:   /* pos2 is the place to put a new GB at level-1. */
                    755:   Println(ans);
                    756:   return(ans);
                    757: }
                    758:
                    759: def Sreduction(f,myset) {
                    760:   local n, indexTable, set2, i, j, tmp, t_syz;
                    761:   n = Length(myset);
                    762:   indexTable = NewArray(n);
                    763:   set2 = [ ];
                    764:   j = 0;
                    765:   for (i=0; i<n; i++) {
                    766:     if (IsNull(myset[i])) {
                    767:       indexTable[i] = -1;
                    768: /*    }else if (myset[i] == Poly("0")) {
                    769:       indexTable[i] = -1;  */
                    770:     }else{
                    771:       set2 = Append(set2,Stoes_vec(myset[i]));
                    772:       indexTable[i] = j;
                    773:       j++;
                    774:     }
                    775:   }
                    776:   sm1(" f toes set2 (gradedPolySet) dc reduction /tmp set ");
                    777:   t_syz = NewArray(n);
                    778:   for (i=0; i<n; i++) {
                    779:     if (indexTable[i] != -1) {
                    780:       t_syz[i] = tmp[2, indexTable[i]];
                    781:     }else{
                    782:       t_syz[i] = Poly("0");
                    783:     }
                    784:   }
                    785:   return([tmp[0],tmp[1],t_syz]);
                    786: }
                    787:
                    788: def Warning(s) {
                    789:   Print("Warning: ");
                    790:   Println(s);
                    791: }
                    792: def RingOf(f) {
                    793:   local r;
                    794:   if (IsPolynomial(f)) {
                    795:     if (f != Poly("0")) {
                    796:       sm1(f," (ring) dc /r set ");
                    797:     }else{
                    798:       sm1(" [(CurrentRingp)] system_variable /r set ");
                    799:     }
                    800:   }else{
                    801:     Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
                    802:     sm1(" [(CurrentRingp)] system_variable /r set ");
                    803:   }
                    804:   return(r);
                    805: }
                    806:
                    807: def Sfrom_es(f,size) {
                    808:   local c,ans, i, d, myes, myee, j,n,r,ans2;
                    809:   if (Length(Arglist) < 2) size = -1;
                    810:   if (IsArray(f)) return(f);
                    811:   r = RingOf(f);
                    812:   myes = PolyR("es",r);
                    813:   myee = PolyR("e_",r);
                    814:   if (Degree(f,myee) > 0 && size == -1) {
                    815:     if (size == -1) {
                    816:        sm1(f," (array) dc /ans set");
                    817:        return(ans);
                    818:     }
                    819:   }
                    820:
                    821: /*
                    822:     Coefficients(x^2-1,x):
                    823:     [    [    2 , 0 ]  , [    1 , -1 ]  ]
                    824: */
                    825:   if (Degree(f,myee) > 0) {
                    826:     c = Coefficients(f,myee);
                    827:   }else{
                    828:     c = Coefficients(f,myes);
                    829:   }
                    830:   if (size < 0) {
                    831:     size = c[0,0]+1;
                    832:   }
                    833:   ans = NewArray(size);
                    834:   for (i=0; i<size; i++) {ans[i] = 0;}
                    835:   n = Length(c[0]);
                    836:   for (j=0; j<n; j++) {
                    837:     d = c[0,j];
                    838:     ans[d] = c[1,j];
                    839:   }
                    840:   return(ans);
                    841: }
                    842:
                    843: def Sbases_to_vec(bases,size) {
                    844:   local n, giveSize, newbases,i;
                    845:   /*  bases = [1+es*x, [1,2,3*x]] */
                    846:   if (Length(Arglist) > 1) {
                    847:     giveSize = true;
                    848:   }else{
                    849:     giveSize = false;
                    850:   }
                    851:   n = Length(bases);
                    852:   newbases = NewArray(n);
                    853:   for (i=0; i<n; i++) {
                    854:      if (giveSize) {
                    855:        newbases[i] = Sfrom_es(bases[i], size);
                    856:      }else{
                    857:        newbases[i] = Sfrom_es(bases[i]);
                    858:      }
                    859:   }
                    860:   return(newbases);
                    861: }
                    862:
1.14    ! takayama  863: HelpAdd(["Sminimal",
        !           864: ["It constructs the V-minimal free resolution by LaScala-Stillman's algorithm",
        !           865:  "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
        !           866:  "          v=[[2*x*Dx + 3*y*Dy+6, 0],",
        !           867:  "             [3*x^2*Dy + 2*y*Dx, 0],",
        !           868:  "             [0,  x^2+y^2],",
        !           869:  "             [0,  x*y]];",
        !           870:  "         a=Sminimal(v);",
        !           871:  "         Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
        !           872:  "         b = ReParse(a[0]); sm1_pmat(b); ",
        !           873:  "         IsExact_h(b,[x,y]):",
        !           874:  "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);
        !           875:
1.1       takayama  876: def Sminimal(g) {
                    877:   local r, freeRes, redundantTable, reducer, maxLevel,
                    878:         minRes, seq, maxSeq, level, betti, q, bases, dr,
1.14    ! takayama  879:         betti_levelplus, newbases, i, j,qq, tminRes;
1.1       takayama  880:   r = SlaScala(g);
                    881:   /* Should I turn off the tower?? */
                    882:   freeRes = r[0];
                    883:   redundantTable = r[1];
                    884:   reducer = r[2];
                    885:   minRes = SnewArrayOfFormat(freeRes);
                    886:   seq = 0;
                    887:   maxSeq = SgetMaxSeq(redundantTable);
                    888:   maxLevel = Length(freeRes);
                    889:   for (level = 0; level < maxLevel; level++) {
                    890:     minRes[level] = freeRes[level];
                    891:   }
                    892:   seq=maxSeq+1;
                    893:   while (seq > 1) {
                    894:     seq--;
                    895:     for (level = 0; level < maxLevel; level++) {
                    896:       betti = Length(freeRes[level]);
                    897:       for (q = 0; q<betti; q++) {
                    898:         if (redundantTable[level,q] == seq) {
                    899:           Print("[seq,level,q]="); Println([seq,level,q]);
                    900:           if (level < maxLevel-1) {
                    901:             bases = freeRes[level+1];
                    902:             dr = reducer[level,q];
                    903:             dr[q] = -1;
                    904:             newbases = SnewArrayOfFormat(bases);
                    905:             betti_levelplus = Length(bases);
                    906:             /*
                    907:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                    908:             */
                    909:             for (i=0; i<betti_levelplus; i++) {
                    910:               newbases[i] = bases[i] + bases[i,q]*dr;
                    911:             }
                    912:             Println(["level, q =", level,q]);
                    913:             Println("bases="); sm1_pmat(bases);
                    914:             Println("dr="); sm1_pmat(dr);
                    915:             Println("newbases="); sm1_pmat(newbases);
                    916:             minRes[level+1] = newbases;
                    917:             freeRes = minRes;
                    918: #ifdef DEBUG
                    919:             for (qq=0; qq<betti; qq++) {
                    920:               if ((redundantTable[level,qq] >= seq) &&
                    921:                   (redundantTable[level,qq] <= maxSeq)) {
                    922:                 for (i=0; i<betti_levelplus; i++) {
                    923:                   if (!IsZero(newbases[i,qq])) {
                    924:                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
                    925:                     Print("redundantTable ="); sm1_pmat(redundantTable[level]);
                    926:                     Error("Stop in Sminimal for debugging.");
                    927:                   }
                    928:                 }
                    929:               }
                    930:             }
                    931: #endif
                    932:           }
                    933:         }
                    934:       }
                    935:     }
                    936:    }
1.14    ! takayama  937:    tminRes = Stetris(minRes,redundantTable);
        !           938:    return([SpruneZeroRow(tminRes), tminRes,
1.3       takayama  939:           [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
1.1       takayama  940:   /* r[4] is the redundantTable_ordinary */
1.3       takayama  941:   /* r[0] is the freeResolution */
1.1       takayama  942: }
                    943:
                    944:
                    945: def IsZero(f) {
                    946:   if (IsPolynomial(f)) {
                    947:     return( f == Poly("0"));
                    948:   }else if (IsInteger(f)) {
                    949:     return( f == 0);
                    950:   }else if (IsSm1Integer(f)) {
                    951:     return( f == true );
                    952:   }else if (IsDouble(f)) {
                    953:     return( f == 0.0 );
                    954:   }else if (IsRational(f)) {
                    955:     return(IsZero(Denominator(f)));
                    956:   }else{
                    957:     Error("IsZero: cannot deal with this data type.");
                    958:   }
                    959: }
                    960: def SgetMaxSeq(redundantTable) {
                    961:    local level,i,n,ans, levelMax,bases;
                    962:    levelMax = Length( redundantTable );
                    963:    ans = 0;
                    964:    for (level = 0; level < levelMax; level++) {
                    965:      bases = redundantTable[level];
                    966:      n = Length(bases);
                    967:      for (i=0; i<n; i++) {
                    968:        if (IsInteger( bases[i] )) {
                    969:           if (bases[i] > ans) {
                    970:              ans = bases[i];
                    971:           }
                    972:        }
                    973:      }
                    974:    }
                    975:    return(ans);
                    976: }
                    977:
                    978: def Stetris(freeRes,redundantTable) {
                    979:   local level, i, j, resLength, minRes,
                    980:         bases, newbases, newbases2;
                    981:   minRes = SnewArrayOfFormat(freeRes);
                    982:   resLength = Length( freeRes );
                    983:   for (level=0; level<resLength; level++) {
                    984:     bases = freeRes[level];
                    985:     newbases = SnewArrayOfFormat(bases);
                    986:     betti = Length(bases); j = 0;
                    987:     /* Delete rows */
                    988:     for (i=0; i<betti; i++) {
                    989:       if (redundantTable[level,i] < 1) {
                    990:          newbases[j] = bases[i];
                    991:          j++;
                    992:       }
                    993:     }
                    994:     bases = SfirstN(newbases,j);
                    995:     if (level > 0) {
                    996:       /* Delete columns */
                    997:       newbases = Transpose(bases);
                    998:       betti = Length(newbases); j = 0;
                    999:       newbases2 = SnewArrayOfFormat(newbases);
                   1000:       for (i=0; i<betti; i++) {
                   1001:         if (redundantTable[level-1,i] < 1) {
                   1002:            newbases2[j] = newbases[i];
                   1003:            j++;
                   1004:         }
                   1005:       }
                   1006:       newbases = Transpose(SfirstN(newbases2,j));
                   1007:     }else{
                   1008:       newbases = bases;
                   1009:     }
                   1010:     Println(["level=", level]);
                   1011:     sm1_pmat(bases);
                   1012:     sm1_pmat(newbases);
                   1013:
                   1014:     minRes[level] = newbases;
                   1015:   }
                   1016:   return(minRes);
                   1017: }
                   1018:
                   1019: def SfirstN(bases,k) {
                   1020:    local ans,i;
                   1021:    ans = NewArray(k);
                   1022:    for (i=0; i<k; i++) {
                   1023:      ans[i] = bases[i];
                   1024:    }
                   1025:    return(ans);
                   1026: }
                   1027:
                   1028:
                   1029: /* usage:  tt is tower. ww is weight.
                   1030:     a = SresolutionFrameWithTower(v);
                   1031:     tt = a[1];
                   1032:     ww = [x,1,y,1,Dx,1,Dy,1];
                   1033:     SvDegree(x*es,tt,1,ww):
                   1034:
                   1035: In(17)=tt:
                   1036: [[2*x*Dx , e_*x^2 , e_*x*y , 3*x^2*Dy , e_*y^3 , 9*x*y*Dy^2 , 27*y^2*Dy^3 ]  ,
                   1037:  [es*y , 3*es^3*y*Dy , 3*es^5*y*Dy , 3*x*Dy , es^2*y^2 , 9*y*Dy^2 ]  ,
                   1038:  [3*es^3*y*Dy ]  ]
                   1039: In(18)=SvDegree(x*es,tt,1,ww):
                   1040: 3
                   1041: In(19)=SvDegree(x*es^3,tt,1,ww):
                   1042: 4
                   1043: In(20)=SvDegree(x,tt,2,ww):
                   1044: 4
                   1045:
                   1046: */
                   1047: def SvDegree(f,tower,level,w) {
                   1048:   local i,ans;
                   1049:   if (IsZero(f)) return(null);
1.3       takayama 1050:   f = Init(f);
1.1       takayama 1051:   if (level <= 0) {
                   1052:     return(Sord_w(f,w));
                   1053:   }
                   1054:   i = Degree(f,es);
                   1055:   ans = Sord_w(f,w) +
                   1056:         SvDegree(tower[level-1,i],tower,level-1,w);
                   1057:   return(ans);
                   1058: }
                   1059:
1.2       takayama 1060: def Sannfs(f,v) {
                   1061:   local f2;
                   1062:   f2 = ToString(f);
                   1063:   if (IsArray(v)) {
                   1064:      v = Map(v,"ToString");
                   1065:   }
                   1066:   sm1(" [f2 v] annfs /FunctionValue set ");
                   1067: }
                   1068:
                   1069: /* Sannfs2("x^3-y^2"); */
                   1070: def Sannfs2(f) {
                   1071:   local p,pp;
                   1072:   p = Sannfs(f,"x,y");
1.6       takayama 1073:   sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
1.5       takayama 1074: /*
                   1075:   Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1],
                   1076:                ["x",-1,"y",-1,"Dx",1,"Dy",1]]); */
1.6       takayama 1077:   /* Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1]]); */
1.10      takayama 1078:
1.6       takayama 1079:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                   1080:   pp = Map(p,"Spoly");
                   1081:   return(Sminimal_v(pp));
                   1082:   /* return(Sminimal(pp)); */
                   1083: }
                   1084:
1.10      takayama 1085: HelpAdd(["Sannfs2",
                   1086: ["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)",
                   1087:  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y.",
                   1088:  "See also Sminimal_v, Sannfs3.",
                   1089:  "Example: a=Sannfs2(\"x^3-y^2\");",
                   1090:  "         b=a[0]; sm1_pmat(b);",
                   1091:  "         b[1]*b[0]:",
                   1092:  "Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");",
                   1093:  "         b=a[0]; sm1_pmat(b);",
                   1094:  "         b[1]*b[0]:"
                   1095: ]]);
                   1096:
1.6       takayama 1097: /* Do not forget to turn on TOTAL_STRATEGY */
                   1098: def Sannfs2_laScala(f) {
                   1099:   local p,pp;
                   1100:   p = Sannfs(f,"x,y");
                   1101:   /*   Do not make laplace transform.
                   1102:     sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
                   1103:     p = [p];
                   1104:   */
                   1105:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
1.2       takayama 1106:   pp = Map(p[0],"Spoly");
                   1107:   return(Sminimal(pp));
                   1108: }
                   1109:
1.11      takayama 1110: def Sannfs2_laScala2(f) {
                   1111:   local p,pp;
                   1112:   p = Sannfs(f,"x,y");
                   1113:   sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
                   1114:   p = [p];
                   1115:   Sweyl("x,y",[["x",1,"y",1,"Dx",1,"Dy",1,"h",1],
                   1116:                ["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                   1117:   pp = Map(p[0],"Spoly");
                   1118:   return(Sminimal(pp));
                   1119: }
                   1120:
1.3       takayama 1121: def Sannfs3(f) {
                   1122:   local p,pp;
                   1123:   p = Sannfs(f,"x,y,z");
1.6       takayama 1124:   sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
1.3       takayama 1125:   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
1.6       takayama 1126:   pp = Map(p,"Spoly");
                   1127:   return(Sminimal_v(pp));
1.3       takayama 1128: }
                   1129:
1.10      takayama 1130: HelpAdd(["Sannfs3",
                   1131: ["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)",
                   1132:  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.",
                   1133:  "See also Sminimal_v, Sannfs2.",
                   1134:  "Example: a=Sannfs3(\"x^3-y^2*z^2\");",
                   1135:  "         b=a[0]; sm1_pmat(b);",
                   1136:  "         b[1]*b[0]: b[2]*b[1]:"]]);
                   1137:
1.2       takayama 1138: /*
                   1139:   The betti numbers of most examples are 2,1. (0-th and 1-th).
                   1140:   a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2.
                   1141:   a=Sannfs2("x^3-y^2-x");    : it causes an error. It should be fixed.
1.3       takayama 1142:   a=Sannfs2("x*y*(x-y)");    : it causes an error. It should be fixed.
1.2       takayama 1143:
                   1144: */
                   1145:
1.11      takayama 1146: def Sannfs3_laScala2(f) {
                   1147:   local p,pp;
                   1148:   p = Sannfs(f,"x,y,z");
                   1149:   sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
                   1150:   Sweyl("x,y,z",[["x",1,"y",1,"z",1,"Dx",1,"Dy",1,"Dz",1,"h",1],
                   1151:                  ["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
                   1152:   pp = Map(p,"Spoly");
                   1153:   return(Sminimal(pp));
                   1154: }
1.5       takayama 1155:
                   1156:
1.6       takayama 1157: /*  The below does not use LaScala-Stillman's algorithm. */
1.5       takayama 1158: def Sschreyer(g) {
                   1159:   local rf, tower, reductionTable, skel, redundantTable, bases,
                   1160:         strategy, maxOfStrategy, height, level, n, i,
                   1161:         freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
                   1162:         redundantTable_ordinary, redundant_seq_ordinary,
1.6       takayama 1163:         reductionTable_tmp,c2,ii,nn, m,ii, jj, reducerBase;
1.5       takayama 1164:   /* extern WeightOfSweyl; */
                   1165:   ww = WeightOfSweyl;
                   1166:   Print("WeghtOfSweyl="); Println(WeightOfSweyl);
                   1167:   rf = SresolutionFrameWithTower(g);
                   1168:   redundant_seq = 1;   redundant_seq_ordinary = 1;
                   1169:   tower = rf[1];
                   1170:   reductionTable = SgenerateTable(tower);
                   1171:   skel = rf[2];
                   1172:   redundantTable = SnewArrayOfFormat(rf[1]);
                   1173:   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
                   1174:   reducer = SnewArrayOfFormat(rf[1]);
                   1175:   freeRes = SnewArrayOfFormat(rf[1]);
                   1176:   bettiTable = SsetBettiTable(rf[1],g);
                   1177:
                   1178:   height = Length(reductionTable);
                   1179:   for (level = 0; level < height; level++) {
                   1180:       n = Length(reductionTable[level]);
                   1181:       for (i=0; i<n; i++) {
                   1182:            Println([level,i]);
                   1183:            Print("Processing "); Print([level,i]);
                   1184:            if (level == 0) {
                   1185:              if (IsNull(redundantTable[level,i])) {
                   1186:                bases = freeRes[level];
                   1187:                /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
                   1188:                pos = SwhereInGB(tower[0,i],rf[3,0]);
                   1189:                bases[i] = rf[3,0,pos];
                   1190:                /* redundantTable[level,i] = 0;
                   1191:                redundantTable_ordinary[level,i] = 0; */
                   1192:                freeRes[level] = bases;
                   1193:                /* Println(["GB=",i,bases,tower[0,i]]); */
                   1194:              }
                   1195:            }else{ /* level >= 1 */
                   1196:              if (IsNull(redundantTable[level,i])) {
                   1197:                bases = freeRes[level];
                   1198:                f = SpairAndReduction2(skel,level,i,freeRes,tower,
                   1199:                                       ww,redundantTable);
                   1200:                if (f[0] != Poly("0")) {
                   1201:                   place = f[3];
                   1202:                   /* (level-1, place) is the place for f[0],
                   1203:                      which is a newly obtained  GB. */
                   1204: #ifdef ORDINARY
                   1205:                   redundantTable[level-1,place] = redundant_seq;
                   1206:                   redundant_seq++;
                   1207: #else
                   1208:                   if (f[4] > f[5]) {
                   1209:                     /* Zero in the gr-module */
                   1210:                     Print("v-degree of [org,remainder] = ");
                   1211:                     Println([f[4],f[5]]);
                   1212:                     Print("[level,i] = "); Println([level,i]);
                   1213:                     redundantTable[level-1,place] = 0;
                   1214:                   }else{
                   1215:                     redundantTable[level-1,place] = redundant_seq;
                   1216:                     redundant_seq++;
                   1217:                   }
                   1218: #endif
                   1219:                   redundantTable_ordinary[level-1,place]
                   1220:                      =redundant_seq_ordinary;
                   1221:                   redundant_seq_ordinary++;
                   1222:                   bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
                   1223:                   /* redundantTable[level,i] = 0;
                   1224:                   redundantTable_ordinary[level,i] = 0; */
                   1225:                   /* i must be equal to f[2], I think. Double check. */
                   1226:
                   1227:                   /* Correction Of Constant */
1.9       takayama 1228:                   /* Correction of syzygy */
1.7       takayama 1229:                   c2 = f[6];  /* or -f[6]?  Double check. */
                   1230:                   Print("c2="); Println(c2);
1.5       takayama 1231:                   nn = Length(bases);
                   1232:                   for (ii=0; ii<nn;ii++) {
1.8       takayama 1233:                      if ((ii != i) && (! IsNull(bases[ii]))) {
1.7       takayama 1234:                        m = Length(bases[ii]);
                   1235:                        for (jj=0; jj<m; jj++) {
                   1236:                          if (jj != place) {
                   1237:                            bases[ii,jj] = bases[ii,jj]*c2;
                   1238:                          }
                   1239:                        }
1.5       takayama 1240:                      }
                   1241:                   }
                   1242:
1.7       takayama 1243:                   Print("Old freeRes[level] = "); sm1_pmat(freeRes[level]);
1.5       takayama 1244:                   freeRes[level] = bases;
1.7       takayama 1245:                   Print("New freeRes[level] = "); sm1_pmat(freeRes[level]);
1.6       takayama 1246:
                   1247:                  /* Update the freeRes[level-1] */
1.7       takayama 1248:                   Print("Old freeRes[level-1] = "); sm1_pmat(freeRes[level-1]);
1.6       takayama 1249:                   bases = freeRes[level-1];
                   1250:                   bases[place] = f[0];
                   1251:                   freeRes[level-1] = bases;
1.7       takayama 1252:                   Print("New freeRes[level-1] = "); sm1_pmat(freeRes[level-1]);
1.6       takayama 1253:
1.9       takayama 1254:                   reducer[level-1,place] = f[1]-SunitOfFormat(place,f[1]);
                   1255:                    /* This reducer is different from that of SlaScala(). */
                   1256:
                   1257:                   reducerBasis = reducer[level-1];
                   1258:                   nn = Length(reducerBasis);
                   1259:                   for (ii=0; ii<nn;ii++) {
                   1260:                      if ((ii != place) && (! IsNull(reducerBasis[ii]))) {
                   1261:                        m = Length(reducerBasis[ii]);
                   1262:                        for (jj=0; jj<m; jj++) {
                   1263:                          if (jj != place) {
                   1264:                            reducerBasis[ii,jj] = reducerBasis[ii,jj]*c2;
                   1265:                          }
                   1266:                        }
                   1267:                      }
                   1268:                   }
                   1269:                   reducer[level-1] = reducerBasis;
                   1270:
1.5       takayama 1271:                }else{
                   1272:                   /* redundantTable[level,i] = 0; */
                   1273:                   bases = freeRes[level];
                   1274:                   bases[i] = f[1];  /* Put the syzygy. */
                   1275:                   freeRes[level] = bases;
                   1276:                }
                   1277:              }  /* end of level >= 1 */
                   1278:           }
                   1279:     } /* i loop */
1.6       takayama 1280:
                   1281:     /* Triangulate reducer */
                   1282:     if (level >= 1) {
                   1283:       Println(" ");
                   1284:       Print("Triangulating reducer at level "); Println(level-1);
1.9       takayama 1285:       Println("freeRes[level]="); sm1_pmat(freeRes[level]);
1.6       takayama 1286:       reducerBase = reducer[level-1];
                   1287:       Print("reducerBase=");  Println(reducerBase);
1.9       takayama 1288:       Println("Compare freeRes[level] and reducerBase (put -1)");
1.6       takayama 1289:       m = Length(reducerBase);
                   1290:       for (ii=m-1; ii>=0; ii--) {
                   1291:         if (!IsNull(reducerBase[ii])) {
                   1292:            for (jj=ii-1; jj>=0; jj--) {
                   1293:              if (!IsNull(reducerBase[jj])) {
                   1294:               if (!IsZero(reducerBase[jj,ii])) {
1.9       takayama 1295:                 /* reducerBase[ii,ii] should be always constant. */
                   1296:                 reducerBase[jj] = reducerBase[ii,ii]*reducerBase[jj]-reducerBase[jj,ii]*reducerBase[ii];
1.6       takayama 1297:               }
                   1298:              }
                   1299:            }
                   1300:          }
                   1301:        }
                   1302:        Println("New reducer");
                   1303:        sm1_pmat(reducerBase);
                   1304:        reducer[level-1] = reducerBase;
                   1305:     }
                   1306:
1.5       takayama 1307:   } /* level loop */
                   1308:   n = Length(freeRes);
                   1309:   freeResV = SnewArrayOfFormat(freeRes);
                   1310:   for (i=0; i<n; i++) {
                   1311:     bases = freeRes[i];
                   1312:     bases = Sbases_to_vec(bases,bettiTable[i]);
                   1313:     freeResV[i] = bases;
                   1314:   }
1.6       takayama 1315:
                   1316:   /* Mark the non-redundant elements. */
                   1317:   for (i=0; i<n; i++) {
                   1318:     m = Length(redundantTable[i]);
                   1319:     for (jj=0; jj<m; jj++) {
                   1320:       if (IsNull(redundantTable[i,jj])) {
                   1321:         redundantTable[i,jj] = 0;
                   1322:       }
                   1323:     }
                   1324:   }
                   1325:
                   1326:
1.5       takayama 1327:   return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
                   1328: }
                   1329:
                   1330: def SpairAndReduction2(skel,level,ii,freeRes,tower,ww,redundantTable) {
                   1331:   local i, j, myindex, p, bases, tower2, gi, gj,
                   1332:        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
                   1333:        vdeg,vdeg_reduced,n,c2;
1.6       takayama 1334:   Println("SpairAndReduction2 : -------------------------");
1.5       takayama 1335:
                   1336:   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
                   1337:   p = skel[level,ii];
                   1338:   myindex = p[0];
                   1339:   i = myindex[0]; j = myindex[1];
                   1340:   bases = freeRes[level-1];
                   1341:   Println(["p and bases ",p,bases]);
                   1342:   if (IsNull(bases[i]) || IsNull(bases[j])) {
                   1343:     Println([level,i,j,bases[i],bases[j]]);
                   1344:     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
                   1345:   }
                   1346:
                   1347:   tower2 = StowerOf(tower,level-1);
                   1348:   SsetTower(tower2);
1.14    ! takayama 1349:   Println(["level=",level]);
        !          1350:   Println(["tower2=",tower2]);
1.5       takayama 1351:   /** sm1(" show_ring ");   */
                   1352:
                   1353:   gi = Stoes_vec(bases[i]);
                   1354:   gj = Stoes_vec(bases[j]);
                   1355:
                   1356:   ssp = Sspolynomial(gi,gj);
                   1357:   si = ssp[0,0];
                   1358:   sj = ssp[0,1];
                   1359:   syzHead = si*es^i;
                   1360:   /* This will be the head term, I think. But, double check. */
                   1361:   Println([si*es^i,sj*es^j]);
                   1362:
                   1363:   Print("[gi, gj] = "); Println([gi,gj]);
                   1364:   sm1(" [(Homogenize)] system_variable message ");
                   1365:   Print("Reduce the element "); Println(si*gi+sj*gj);
                   1366:   Print("by  "); Println(bases);
                   1367:
                   1368:   tmp = Sreduction(si*gi+sj*gj, bases);
                   1369:
                   1370:   Print("result is "); Println(tmp);
1.6       takayama 1371:   if (!IsZero(tmp[0])) {
                   1372:     Print("Error: base = ");
                   1373:     Println(Map(bases,"Stoes_vec"));
                   1374:     Error("SpairAndReduction2: the remainder should be zero. See tmp. tower2. show_ring.");
                   1375:   }
1.5       takayama 1376:   t_syz = tmp[2];
                   1377:   si = si*tmp[1]+t_syz[i];
                   1378:   sj = sj*tmp[1]+t_syz[j];
                   1379:   t_syz[i] = si;
                   1380:   t_syz[j] = sj;
                   1381:
                   1382:   c2 = null;
                   1383:   /* tmp[0] must be zero */
                   1384:   n = Length(t_syz);
                   1385:   for (i=0; i<n; i++) {
1.6       takayama 1386:      if (IsConstant(t_syz[i])){
                   1387:       if (!IsZero(t_syz[i])) {
1.5       takayama 1388:        if (IsNull(redundantTable[level-1,i])) {
                   1389:          /* i must equal to pos2 below. */
                   1390:          c2 = -t_syz[i];
1.6       takayama 1391:          tmp[0] = c2*Stoes_vec(freeRes[level-1,i]);
1.5       takayama 1392:          t_syz[i] = 0;
1.6       takayama 1393:          /* tmp[0] = t_syz . g */
1.5       takayama 1394:          /* break; does not work. Use */
                   1395:          i = n;
                   1396:        }
1.6       takayama 1397:       }
1.5       takayama 1398:      }
                   1399:   }
                   1400:
                   1401:   /* This is essential part for V-minimal resolution. */
                   1402:   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
                   1403:   vdeg = SvDegree(si*gi,tower,level-1,ww);
                   1404:   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);
                   1405:   Print("vdegree of the original = "); Println(vdeg);
                   1406:   Print("vdegree of the remainder = "); Println(vdeg_reduced);
                   1407:
1.11      takayama 1408:   if (!IsNull(vdeg_reduced)) {
                   1409:     if (vdeg_reduced < vdeg) {
                   1410:       Println("--- Special in V-minimal!");
                   1411:       Println(tmp[0]);
                   1412:       Println("syzygy="); sm1_pmat(t_syz);
                   1413:       Print("[vdeg, vdeg_reduced] = "); Println([vdeg,vdeg_reduced]);
                   1414:     }
                   1415:   }
                   1416:
1.14    ! takayama 1417:   SsetTower(StowerOf(tower,level));
        !          1418:   pos = SwhereInTower(syzHead,tower[level]);
1.11      takayama 1419:
1.14    ! takayama 1420:   SsetTower(StowerOf(tower,level-1));
1.5       takayama 1421:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
                   1422:   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced,c2];
                   1423:   /* pos is the place to put syzygy at level. */
                   1424:   /* pos2 is the place to put a new GB at level-1. */
                   1425:   Println(ans);
1.14    ! takayama 1426:   Println("--- end of SpairAndReduction2  ");
1.5       takayama 1427:   return(ans);
                   1428: }
1.6       takayama 1429:
1.10      takayama 1430: HelpAdd(["Sminimal_v",
                   1431: ["It constructs the V-minimal free resolution from the Schreyer resolution",
                   1432:  "step by step.",
1.14    ! takayama 1433:  "This code still contains bugs. It sometimes outputs wrong answer.",
1.10      takayama 1434:  "Example:   Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
                   1435:  "          v=[[2*x*Dx + 3*y*Dy+6, 0],",
                   1436:  "             [3*x^2*Dy + 2*y*Dx, 0],",
                   1437:  "             [0,  x^2+y^2],",
                   1438:  "             [0,  x*y]];",
                   1439:  "         a=Sminimal_v(v);",
                   1440:  "         sm1_pmat(a[0]); b=a[0]; b[1]*b[0]:",
                   1441:  "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);
                   1442:
1.14    ! takayama 1443: /* This code still contains bugs. It sometimes outputs wrong answer. */
        !          1444: /* See test12() in minimal-test.k.  */
        !          1445: /* There may be remaining 1, too */
1.6       takayama 1446: def Sminimal_v(g) {
                   1447:   local r, freeRes, redundantTable, reducer, maxLevel,
                   1448:         minRes, seq, maxSeq, level, betti, q, bases, dr,
1.10      takayama 1449:         betti_levelplus, newbases, i, j,qq,tminRes;
1.6       takayama 1450:   r = Sschreyer(g);
                   1451:   sm1_pmat(r);
                   1452:   Debug_Sminimal_v = r;
                   1453:   Println(" Return value of Schreyer(g) is set to Debug_Sminimal_v");
                   1454:   /* Should I turn off the tower?? */
                   1455:   freeRes = r[0];
                   1456:   redundantTable = r[1];
                   1457:   reducer = r[2];
                   1458:   minRes = SnewArrayOfFormat(freeRes);
                   1459:   seq = 0;
                   1460:   maxSeq = SgetMaxSeq(redundantTable);
                   1461:   maxLevel = Length(freeRes);
                   1462:   for (level = 0; level < maxLevel; level++) {
                   1463:     minRes[level] = freeRes[level];
                   1464:   }
                   1465:   for (level = 0; level < maxLevel; level++) {
                   1466:       betti = Length(freeRes[level]);
                   1467:       for (q = betti-1; q>=0; q--) {
                   1468:         if (redundantTable[level,q] > 0) {
                   1469:           Print("[seq,level,q]="); Println([seq,level,q]);
                   1470:           if (level < maxLevel-1) {
                   1471:             bases = freeRes[level+1];
                   1472:             dr = reducer[level,q];
1.9       takayama 1473:             /* dr[q] = -1;  We do not need this in our reducer format. */
                   1474:             /* dr[q] should be a non-zero constant. */
1.6       takayama 1475:             newbases = SnewArrayOfFormat(bases);
                   1476:             betti_levelplus = Length(bases);
                   1477:             /*
                   1478:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                   1479:             */
                   1480:             for (i=0; i<betti_levelplus; i++) {
1.9       takayama 1481:               newbases[i] = dr[q]*bases[i] - bases[i,q]*dr;
1.6       takayama 1482:             }
                   1483:             Println(["level, q =", level,q]);
                   1484:             Println("bases="); sm1_pmat(bases);
                   1485:             Println("dr="); sm1_pmat(dr);
                   1486:             Println("newbases="); sm1_pmat(newbases);
                   1487:             minRes[level+1] = newbases;
                   1488:             freeRes = minRes;
                   1489: #ifdef DEBUG
1.9       takayama 1490:             for (qq=q; qq<betti; qq++) {
1.6       takayama 1491:                 for (i=0; i<betti_levelplus; i++) {
1.9       takayama 1492:                   if ((!IsZero(newbases[i,qq])) && (redundantTable[level,qq] >0)) {
1.6       takayama 1493:                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
                   1494:                     Print("redundantTable ="); sm1_pmat(redundantTable[level]);
                   1495:                     Error("Stop in Sminimal for debugging.");
                   1496:                   }
                   1497:                 }
                   1498:             }
                   1499: #endif
                   1500:           }
                   1501:         }
                   1502:       }
                   1503:    }
1.10      takayama 1504:    tminRes = Stetris(minRes,redundantTable);
                   1505:    return([SpruneZeroRow(tminRes), tminRes,
1.6       takayama 1506:           [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
                   1507:   /* r[4] is the redundantTable_ordinary */
                   1508:   /* r[0] is the freeResolution */
                   1509: }
                   1510:
                   1511: /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */
1.10      takayama 1512: /* x y (x+y-1)(x-2),  x^3-y^2, x^3 - y^2 z^2,
                   1513:    x y z (x+y+z-1) seems to be interesting, because the first syzygy
                   1514:   contains 1.
                   1515: */
                   1516:
                   1517: def CopyArray(m) {
                   1518:   local ans,i,n;
                   1519:   if (IsArray(m)) {
                   1520:      n = Length(m);
                   1521:      ans = NewArray(n);
                   1522:      for (i=0; i<n; i++) {
                   1523:        ans[i] = CopyArray(m[i]);
                   1524:      }
                   1525:      return(ans);
                   1526:   }else{
                   1527:      return(m);
                   1528:   }
                   1529: }
                   1530: HelpAdd(["CopyArray",
                   1531: ["It duplicates the argument array recursively.",
                   1532:  "Example: m=[1,[2,3]];",
                   1533:  "         a=CopyArray(m); a[1] = \"Hello\";",
                   1534:  "         Println(m); Println(a);"]]);
                   1535:
                   1536: def IsZeroVector(m) {
                   1537:   local n,i;
                   1538:   n = Length(m);
                   1539:   for (i=0; i<n; i++) {
                   1540:     if (!IsZero(m[i])) {
                   1541:       return(false);
                   1542:     }
                   1543:   }
                   1544:   return(true);
                   1545: }
                   1546:
                   1547: def SpruneZeroRow(res) {
                   1548:   local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes;
                   1549:
                   1550:   minRes = CopyArray(res);
                   1551:   n = Length(minRes);
                   1552:   for (i=0; i<n; i++) {
                   1553:     base = minRes[i];
                   1554:     m = Length(base);
                   1555:     if (i != n-1) {
                   1556:       base2 = minRes[i+1];
                   1557:       base2 = Transpose(base2);
                   1558:     }
                   1559:     newbase = [ ];
                   1560:     newbase2 = [ ];
                   1561:     for (j=0; j<m; j++) {
                   1562:       if (!IsZeroVector(base[j])) {
                   1563:         newbase = Append(newbase,base[j]);
                   1564:         if (i != n-1) {
                   1565:           newbase2 = Append(newbase2,base2[j]);
                   1566:         }
                   1567:       }
                   1568:     }
                   1569:     minRes[i] = newbase;
                   1570:     if (i != n-1) {
                   1571:       if (newbase2 == [ ]) {
                   1572:         minRes[i+1] = [ ];
                   1573:       }else{
                   1574:         minRes[i+1] = Transpose(newbase2);
                   1575:       }
                   1576:     }
                   1577:   }
                   1578:
                   1579:   newMinRes = [ ];
                   1580:   n = Length(minRes);
                   1581:   i = 0;
                   1582:   while (i < n ) {
                   1583:     base = minRes[i];
                   1584:     if (base == [ ]) {
                   1585:       i = n; /* break; */
                   1586:     }else{
                   1587:       newMinRes = Append(newMinRes,base);
                   1588:     }
                   1589:     i++;
                   1590:   }
                   1591:   return(newMinRes);
                   1592: }
                   1593:
                   1594: def testAnnfs2(f) {
                   1595:   local a,i,n;
                   1596:   a = Sannfs2(f);
                   1597:   b=a[0];
                   1598:   n = Length(b);
                   1599:   Println("------ V-minimal free resolution -----");
                   1600:   sm1_pmat(b);
                   1601:   Println("----- Is it complex?  ---------------");
                   1602:   for (i=0; i<n-1; i++) {
                   1603:     Println(b[i+1]*b[i]);
                   1604:   }
                   1605:   return(a);
                   1606: }
                   1607: def testAnnfs3(f) {
                   1608:   local a,i,n;
                   1609:   a = Sannfs3(f);
                   1610:   b=a[0];
                   1611:   n = Length(b);
                   1612:   Println("------ V-minimal free resolution -----");
                   1613:   sm1_pmat(b);
                   1614:   Println("----- Is it complex?  ---------------");
                   1615:   for (i=0; i<n-1; i++) {
                   1616:     Println(b[i+1]*b[i]);
                   1617:   }
1.11      takayama 1618:   return(a);
                   1619: }
                   1620:
                   1621: def ToString_array(p) {
                   1622:   local ans;
                   1623:   if (IsArray(p)) {
                   1624:     ans = Map(p,"ToString_array");
                   1625:   }else{
                   1626:     ans = ToString(p);
                   1627:   }
                   1628:   return(ans);
                   1629: }
                   1630:
                   1631: /* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */
                   1632:
                   1633: def sm1_res_div(I,J,V) {
                   1634:   I = ToString_array(I);
                   1635:   J = ToString_array(J);
                   1636:   V = ToString_array(V);
                   1637:   sm1(" [[ I J]  V ] res*div /FunctionValue set ");
                   1638: }
                   1639:
                   1640: /* It has not yet been working */
                   1641: def sm1_res_kernel_image(m,n,v) {
                   1642:   m = ToString_array(m);
                   1643:   n = ToString_array(n);
                   1644:   v = ToString_array(v);
                   1645:   sm1(" [m n v] res-kernel-image /FunctionValue set ");
                   1646: }
                   1647: def Skernel(m,v) {
                   1648:   m = ToString_array(m);
                   1649:   v = ToString_array(v);
                   1650:   sm1(" [ m v ] syz /FunctionValue set ");
                   1651: }
                   1652:
                   1653: def test3() {
                   1654:   local a1,a2,b1,b2;
                   1655:   a1 = Sannfs3("x^3-y^2*z^2");
                   1656:   a1 = a1[0];
                   1657:   a2 = Sannfs3_laScala2("x^3-y^2*z^2");
                   1658:   a2 = a2[0];
                   1659:   b1 = a1[1];
                   1660:   b2 = a2[1];
                   1661:   sm1_pmat(b2);
                   1662:   Println("  OVER ");
                   1663:   sm1_pmat(b1);
                   1664:   return([sm1_res_div(b2,b1,["x","y","z"]),b2,b1,a2,a1]);
                   1665: }
                   1666:
                   1667: def test4() {
                   1668:   local a,b;
                   1669:   a = Sannfs3_laScala2("x^3-y^2*z^2");
                   1670:   b = a[0];
                   1671:   sm1_pmat( sm1_res_kernel_image(b[0],b[1],[x,y,z]));
                   1672:   sm1_pmat( sm1_res_kernel_image(b[1],b[2],[x,y,z]));
                   1673:   return(a);
                   1674: }
                   1675:
                   1676: def sm1_gb(f,v) {
                   1677:   f =ToString_array(f);
                   1678:   v = ToString_array(v);
                   1679:   sm1(" [f v] gb /FunctionValue set ");
1.13      takayama 1680: }
                   1681:
1.11      takayama 1682:
1.12      takayama 1683: def SisComplex(a) {
                   1684:   local n,i,j,k,b,p,q;
                   1685:   n = Length(a);
                   1686:   for (i=0; i<n-1; i++) {
                   1687:     if (Length(a[i+1]) != 0) {
                   1688:       b = a[i+1]*a[i];
                   1689:       p = Length(b); q = Length(b[0]);
                   1690:       for (j=0; j<p; j++) {
                   1691:         for (k=0; k<q; k++) {
                   1692:           if (!IsZero(b[j,k])) {
                   1693:              Print("Is is not complex at ");
                   1694:              Println([i,j,k]);
                   1695:              return(false);
                   1696:           }
                   1697:         }
                   1698:       }
                   1699:     }
                   1700:   }
                   1701:   return(true);
1.14    ! takayama 1702: }
        !          1703:
        !          1704: def IsExact_h(c,v) {
        !          1705:   local a;
        !          1706:   v = ToString_array(v);
        !          1707:   a = [c,v];
        !          1708:   sm1(a," isExact_h /FunctionValue set ");
        !          1709: }
        !          1710: HelpAdd(["IsExact_h",
        !          1711: ["IsExact_h(complex,var): bool",
        !          1712:  "It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)",
        !          1713:  "cf. ReParse"
        !          1714: ]]);
        !          1715:
        !          1716: def ReParse(a) {
        !          1717:   local c;
        !          1718:   if (IsArray(a)) {
        !          1719:     c = Map(a,"ReParse");
        !          1720:   }else{
        !          1721:     sm1(a," toString . /c set");
        !          1722:   }
        !          1723:   return(c);
        !          1724: }
        !          1725: HelpAdd(["ReParse",
        !          1726: ["Reparse(obj): obj",
        !          1727:  "It parses the given object in the current ring.",
        !          1728:  "Outputs from SlaScala, Sschreyer may cause a trouble in other functions,",
        !          1729:  "because it uses the Schreyer order.",
        !          1730:  "In this case, ReParse the outputs from these functions.",
        !          1731:  "cf. IsExaxt_h"
        !          1732: ]]);

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>