[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/minimal.k, Revision 1.18

1.18    ! takayama    1: /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.17 2000/07/26 12:56:36 takayama Exp $ */
1.1       takayama    2: #define DEBUG 1
                      3: /* #define ORDINARY 1 */
1.4       takayama    4: /* If you run this program on openxm version 1.1.2 (FreeBSD),
                      5:    make a symbolic link by the command
                      6:    ln -s /usr/bin/cpp /lib/cpp
                      7: */
1.6       takayama    8: #define OFFSET 0
                      9: /* #define OFFSET 20*/
1.1       takayama   10: /* Test sequences.
                     11:    Use load["minimal.k"];;
                     12:
                     13:    a=Sminimal(v);
                     14:    b=a[0];
                     15:    b[1]*b[0]:
                     16:    b[2]*b[1]:
                     17:
                     18:    a = test0();
                     19:    b = a[0];
                     20:    b[1]*b[0]:
                     21:    b[2]*b[1]:
                     22:    a = Sminimal(b[0]);
                     23:
                     24:    a = test1();
                     25:    b=a[0];
                     26:    b[1]*b[0]:
                     27:    b[2]*b[1]:
                     28:
                     29: */
                     30:
                     31:
                     32: load("cohom.k");
                     33: def load_tower() {
                     34:   if (Boundp("k0-tower.sm1.loaded")) {
                     35:   }else{
                     36:     sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");
                     37:     sm1(" /k0-tower.sm1.loaded 1 def ");
                     38:   }
1.7       takayama   39:   sm1(" oxNoX ");
1.1       takayama   40: }
                     41: load_tower();
                     42: SonAutoReduce = true;
                     43: def Factor(f) {
                     44:    sm1(f, " fctr /FunctionValue set");
                     45: }
                     46: def Reverse(f) {
                     47:    sm1(f," reverse /FunctionValue set");
                     48: }
                     49: def Sgroebner(f) {
                     50:    sm1(" [f] groebner /FunctionValue set");
                     51: }
                     52: def test0() {
                     53:   local f;
                     54:   Sweyl("x,y,z");
                     55:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     56:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     57:   frame=SresolutionFrame(f);
                     58:   Println(frame);
                     59:   /* return(frame); */
                     60:   return(SlaScala(f));
                     61: }
                     62: def test1() {
                     63:   local f;
                     64:   Sweyl("x,y,z");
                     65:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     66:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     67:   return(Sminimal(f));
                     68: }
                     69:
                     70:
                     71:
                     72: def Sweyl(v,w) {
                     73:   /* extern WeightOfSweyl ; */
                     74:   local ww,i,n;
                     75:   if(Length(Arglist) == 1) {
                     76:     sm1(" [v s_ring_of_differential_operators 0 [(schreyer) 1]] define_ring ");
                     77:     sm1(" define_ring_variables ");
                     78:
                     79:     sm1(" [ v to_records pop ] /ww set ");
                     80:     n = Length(ww);
                     81:     WeightOfSweyl = NewArray(n*4);
                     82:     for (i=0; i< n; i++) {
                     83:       WeightOfSweyl[2*i] = ww[i];
                     84:       WeightOfSweyl[2*i+1] = 1;
                     85:     }
                     86:     for (i=0; i< n; i++) {
                     87:       WeightOfSweyl[2*n+2*i] = AddString(["D",ww[i]]);
                     88:       WeightOfSweyl[2*n+2*i+1] = 1;
                     89:     }
                     90:
                     91:   }else{
                     92:     sm1(" [v s_ring_of_differential_operators w s_weight_vector 0 [(schreyer) 1]] define_ring ");
                     93:     sm1(" define_ring_variables ");
                     94:     WeightOfSweyl = w[0];
                     95:   }
                     96: }
                     97:
                     98:
                     99: def Spoly(f) {
                    100:   sm1(f, " toString tparse /FunctionValue set ");
                    101: }
                    102:
                    103: def SreplaceZeroByZeroPoly(f) {
                    104:   if (IsArray(f)) {
                    105:      return(Map(f,"SreplaceZeroByZeroPoly"));
                    106:   }else{
                    107:      if (IsInteger(f)) {
                    108:        return(Poly(ToString(f)));
                    109:      }else{
                    110:        return(f);
                    111:      }
                    112:   }
                    113: }
                    114: def Shomogenize(f) {
                    115:   f = SreplaceZeroByZeroPoly(f);
                    116:   if (IsArray(f)) {
                    117:     sm1(f," sHomogenize2  /FunctionValue set ");
                    118:     /* sm1(f," {sHomogenize2} map  /FunctionValue set ");  */
                    119:     /* Is it correct? Double check.*/
                    120:   }else{
                    121:     sm1(f, " sHomogenize /FunctionValue set ");
                    122:   }
                    123: }
                    124:
                    125: def StoTower() {
                    126:   sm1("  [(AvoidTheSameRing)] pushEnv [ [(AvoidTheSameRing) 0] system_variable (mmLarger) (tower) switch_function ] pop popEnv ");
                    127: }
                    128:
                    129: def SsetTower(tower) {
                    130: sm1(" [(AvoidTheSameRing)] pushEnv
                    131:       [ [(AvoidTheSameRing) 0] system_variable
                    132:         [(gbListTower) tower (list) dc] system_variable
                    133:       ] pop popEnv ");
1.14      takayama  134:       /* sm1("(hoge) message show_ring "); */
1.1       takayama  135: }
                    136:
                    137: def SresolutionFrameWithTower(g,opt) {
                    138:   local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof,
1.15      takayama  139:         gbasis, nohomog;
                    140:   nohomog = false;
                    141:   count = -1;
1.1       takayama  142:   if (Length(Arglist) >= 2) {
1.15      takayama  143:     if (IsInteger(opt)) {
                    144:       count = opt;
                    145:     }else if (IsString(opt)) {
                    146:       if (opt == "homogenized") {
                    147:          nohomog = true;
                    148:       }else{
                    149:          Println("Warning: unknown option");
                    150:          Println(opt);
                    151:       }
                    152:     }
1.1       takayama  153:   }else{
                    154:     count = -1;
                    155:   }
                    156:
                    157:   sm1(" setupEnvForResolution ");
                    158:   /* If I do not put this macro, homogenization
                    159:      make a strange behavior. For example,
                    160:      [(2*x*Dx + 3*y*Dy+6) (0)] homogenize returns
                    161:      [(2*x*Dx*h + 3*y*Dy*h+6*h^3) (0)].
                    162:      4/19, 2000.
                    163:   */
                    164:
                    165:   sm1(" (mmLarger) (matrix) switch_function ");
1.15      takayama  166:   if (! nohomog) {
                    167:     Println("Automatic homogenization.");
                    168:     g = Map(g,"Shomogenize");
                    169:   }else{
                    170:     Println("No automatic homogenization.");
                    171:   }
1.1       takayama  172:   if (SonAutoReduce) {
                    173:     sm1("[ (AutoReduce) ] system_variable /autof set ");
                    174:     sm1("[ (AutoReduce) 1 ] system_variable ");
                    175:   }
                    176:   gbasis = Sgroebner(g);
                    177:   g = gbasis[0];
                    178:   if (SonAutoReduce) {
                    179:     sm1("[ (AutoReduce) autof] system_variable  ");
                    180:   }
                    181:
                    182:   g = Init(g);
                    183:
                    184: /*  sm1(" setupEnvForResolution-sugar "); */
                    185:   /* -sugar is fine? */
                    186:   sm1(" setupEnvForResolution ");
                    187:
                    188:   Println(g);
                    189:   startingGB = g;
                    190:   /* ans = [ SzeroMap(g) ];  It has not been implemented. see resol1.withZeroMap */
                    191:   ans = [ ];
                    192:   gbTower = [ ];
                    193:   skelton = [ ];
                    194:   while (true) {
                    195:     /* sm1(g," res0Frame /ff set "); */
                    196:     withSkel = Sres0FrameWithSkelton(g);
                    197:     ff = withSkel[0];
                    198:     ans = Append(ans, ff[0]);
                    199:     gbTower = Join([ ff[1] ], gbTower);
                    200:     skelton = Join([ withSkel[1] ], skelton);
                    201:     g = ff[0];
                    202:     if (Length(g) == 0) break;
                    203:     SsetTower( gbTower );
                    204:     if (count == 0) break;
                    205:     count = count - 1;
                    206:   }
                    207:   return([ans,Reverse(gbTower),Join([ [ ] ], Reverse(skelton)),gbasis]);
                    208: }
                    209: HelpAdd(["SresolutionFrameWithTower",
                    210: ["It returs [resolution of the initial, gbTower, skelton, gbasis]",
1.15      takayama  211:  "option: \"homogenized\" (no automatic homogenization) ",
1.1       takayama  212:  "Example: Sweyl(\"x,y\");",
                    213:  "         a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]);
                    214:
                    215: def SresolutionFrame(f,opt) {
                    216:   local ans;
1.15      takayama  217:   ans = SresolutionFrameWithTower(f,opt);
1.1       takayama  218:   return(ans[0]);
                    219: }
                    220: /* ---------------------------- */
                    221: def ToGradedPolySet(g) {
                    222:   sm1(g," (gradedPolySet) dc /FunctionValue set ");
                    223: }
                    224:
                    225: def NewPolynomialVector(size) {
                    226:   sm1(size," (integer) dc newPolyVector /FunctionValue set ");
                    227: }
                    228:
                    229: def  SturnOffHomogenization() {
                    230:   sm1("
                    231:     [(Homogenize)] system_variable 1 eq
                    232:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message
                    233:       [(Homogenize) 0] system_variable
                    234:       [(ReduceLowerTerms) 0] system_variable
                    235:     } {  } ifelse
                    236:   ");
                    237: }
                    238: def  SturnOnHomogenization() {
                    239:   sm1("
                    240:     [(Homogenize)] system_variable 0 eq
                    241:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message
                    242:       [(Homogenize) 1] system_variable
                    243:       [(ReduceLowerTerms) 1] system_variable
                    244:     } {  } ifelse
                    245:   ");
                    246: }
                    247:
                    248: def SschreyerSkelton(g) {
                    249:   sm1(" [(schreyerSkelton) g] gbext /FunctionValue set ");
                    250: }
                    251: def Stoes(g) {
                    252:   if (IsArray(g)) {
                    253:     sm1(g," {toes} map /FunctionValue set ");
                    254:   }else{
                    255:     sm1(g," toes /FunctionValue set ");
                    256:   }
                    257: }
                    258: def Stoes_vec(g) {
                    259:     sm1(g," toes /FunctionValue set ");
                    260: }
                    261:
                    262: def Sres0Frame(g) {
                    263:   local ans;
                    264:   ans = Sres0FrameWithSkelton(g);
                    265:   return(ans[0]);
                    266: }
                    267: def Sres0FrameWithSkelton(g) {
                    268:   local t_syz, nexttower, m, t_gb, skel, betti,
                    269:         gg, k, i, j, pair, tmp, si, sj, grG, syzAll, gLength;
                    270:
                    271:   SturnOffHomogenization();
                    272:
                    273:   g = Stoes(g);
                    274:   skel = SschreyerSkelton(g);
                    275:   /* Print("Skelton is ");
                    276:   sm1_pmat(skel); */
                    277:   betti = Length(skel);
                    278:
                    279:   gLength = Length(g);
                    280:   grG = ToGradedPolySet(g);
                    281:   syzAll = NewPolynomialVector(betti);
                    282:   for (k=0; k<betti; k++) {
                    283:     pair = skel[k];
                    284:     i = pair[0,0];
                    285:     j = pair[0,1];
                    286:     si = pair[1,0];
                    287:     sj = pair[1,1];
                    288:     /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */
                    289:     Print(".");
                    290:
                    291:     t_syz = NewPolynomialVector(gLength);
                    292:     t_syz[i] = si;
                    293:     t_syz[j] = sj;
                    294:     syzAll[k] = t_syz;
                    295:   }
                    296:   t_syz = syzAll;
                    297:   Print("Done. betti="); Println(betti);
                    298:   /* Println(g);  g is in a format such as
                    299:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    300:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    301:     [y-es*x , 3*es^4*y*Dy-es^5*x , 3*es^5*y*Dy-es^6*x , ...]
                    302:     [3*es^3*y*Dy-es^5*x ]
                    303:   */
                    304:   nexttower = Init(g);
                    305:   SturnOnHomogenization();
                    306:   return([[t_syz, nexttower],skel]);
                    307: }
                    308:
                    309:
                    310: def StotalDegree(f) {
1.14      takayama  311:   local d0;
                    312:   sm1(" [(grade) f] gbext (universalNumber) dc /d0 set ");
                    313:   /* Print("degree of "); Print(f); Print(" is "); Println(d0); */
                    314:   return(d0);
1.1       takayama  315: }
                    316:
                    317: /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */
                    318: def Sord_w(f,w) {
                    319:   local neww,i,n;
                    320:   n = Length(w);
                    321:   neww = NewArray(n);
                    322:   for (i=0; i<n; i=i+2) {
                    323:     neww[i] = ToString(w[i]);
                    324:   }
                    325:   for (i=1; i<n; i=i+2) {
                    326:     neww[i] = IntegerToSm1Integer(w[i]);
                    327:   }
                    328:   sm1(" f neww ord_w (universalNumber) dc /FunctionValue set ");
                    329: }
                    330:
                    331:
                    332: /* This is not satisfactory. */
                    333: def SinitOfArray(f) {
                    334:   local p,pos,top;
                    335:   if (IsArray(f)) {
                    336:      sm1(f," toes init /p set ");
                    337:      sm1(p," (es). degree (universalNumber) dc /pos set ");
                    338:      return([Init(f[pos]),pos]);
                    339:   } else {
                    340:      return(Init(f));
                    341:   }
                    342: }
                    343:
                    344: def test_SinitOfArray() {
                    345:   local f, frame,p,tower,i,j,k;
                    346:   Sweyl("x,y,z");
                    347:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                    348:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                    349:   p=SresolutionFrameWithTower(f);
                    350:   sm1_pmat(p);
                    351:   sm1_pmat(SgenerateTable(p[1]));
                    352:   return(p);
                    353:   frame = p[0];
                    354:   sm1_pmat(p[1]);
                    355:   sm1_pmat(frame);
                    356:   sm1_pmat(Map(frame[0],"SinitOfArray"));
                    357:   sm1_pmat(Map(frame[1],"SinitOfArray"));
                    358:   return(p);
                    359: }
                    360:
                    361: /* f is assumed to be a monomial with toes. */
                    362: def Sdegree(f,tower,level) {
1.6       takayama  363:   local i,ww, wd;
                    364:   /* extern WeightOfSweyl; */
                    365:   ww = WeightOfSweyl;
1.5       takayama  366:   f = Init(f);
1.1       takayama  367:   if (level <= 1) return(StotalDegree(f));
                    368:   i = Degree(f,es);
1.6       takayama  369:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
                    370:
1.1       takayama  371: }
                    372:
                    373: def SgenerateTable(tower) {
                    374:   local height, n,i,j, ans, ans_at_each_floor;
1.16      takayama  375:
                    376:   /*
                    377:   Print("SgenerateTable: tower=");Println(tower);
                    378:   sm1(" print_switch_status "); */
1.1       takayama  379:   height = Length(tower);
                    380:   ans = NewArray(height);
                    381:   for (i=0; i<height; i++) {
                    382:     n = Length(tower[i]);
                    383:     ans_at_each_floor=NewArray(n);
                    384:     for (j=0; j<n; j++) {
1.6       takayama  385:       ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1)
                    386:                             + OFFSET;
1.1       takayama  387:       /* Println([i,j,ans_at_each_floor[j]]); */
                    388:     }
                    389:     ans[i] = ans_at_each_floor;
                    390:   }
                    391:   return(ans);
                    392: }
                    393: Sweyl("x,y,z");
                    394: v=[[2*x*Dx + 3*y*Dy+6, 0],
                    395:    [3*x^2*Dy + 2*y*Dx, 0],
                    396:    [0,  x^2+y^2],
                    397:    [0,  x*y]];
                    398: /*  SresolutionFrameWithTower(v); */
                    399:
                    400: def SnewArrayOfFormat(p) {
                    401:   if (IsArray(p)) {
                    402:      return(Map(p,"SnewArrayOfFormat"));
                    403:   }else{
                    404:      return(null);
                    405:   }
                    406: }
1.4       takayama  407: def ScopyArray(a) {
                    408:   local n, i,ans;
                    409:   n = Length(a);
                    410:   ans = NewArray(n);
                    411:   for (i=0; i<n; i++) {
                    412:     ans[i] = a[i];
                    413:   }
                    414:   return(ans);
                    415: }
1.1       takayama  416: def SminOfStrategy(a) {
                    417:   local n,i,ans,tt;
                    418:   ans = 100000; /* very big number */
                    419:   if (IsArray(a)) {
                    420:     n = Length(a);
                    421:     for (i=0; i<n; i++) {
                    422:       if (IsArray(a[i])) {
                    423:         tt = SminOfStrategy(a[i]);
                    424:         if (tt < ans) ans = tt;
                    425:       }else{
                    426:         if (a[i] < ans) ans = a[i];
                    427:       }
                    428:     }
                    429:   }else{
                    430:      if (a < ans) ans = a;
                    431:   }
                    432:   return(ans);
                    433: }
                    434: def SmaxOfStrategy(a) {
                    435:   local n,i,ans,tt;
                    436:   ans = -100000; /* very small number */
                    437:   if (IsArray(a)) {
                    438:     n = Length(a);
                    439:     for (i=0; i<n; i++) {
                    440:       if (IsArray(a[i])) {
                    441:         tt = SmaxOfStrategy(a[i]);
                    442:         if (tt > ans) ans = tt;
                    443:       }else{
                    444:         if (a[i] > ans) ans = a[i];
                    445:       }
                    446:     }
                    447:   }else{
                    448:      if (a > ans) ans = a;
                    449:   }
                    450:   return(ans);
                    451: }
                    452:
                    453:
1.15      takayama  454: def SlaScala(g,opt) {
1.1       takayama  455:   local rf, tower, reductionTable, skel, redundantTable, bases,
                    456:         strategy, maxOfStrategy, height, level, n, i,
                    457:         freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
1.4       takayama  458:         redundantTable_ordinary, redundant_seq_ordinary,
                    459:         reductionTable_tmp;
1.1       takayama  460:   /* extern WeightOfSweyl; */
                    461:   ww = WeightOfSweyl;
1.6       takayama  462:   Print("WeightOfSweyl="); Println(WeightOfSweyl);
1.15      takayama  463:   rf = SresolutionFrameWithTower(g,opt);
1.14      takayama  464:   Print("rf="); sm1_pmat(rf);
1.1       takayama  465:   redundant_seq = 1;   redundant_seq_ordinary = 1;
                    466:   tower = rf[1];
1.16      takayama  467:
                    468:   Println("Generating reduction table which gives an order of reduction.");
                    469:   Print("WeghtOfSweyl="); Println(WeightOfSweyl);
                    470:   Print("tower"); Println(tower);
1.1       takayama  471:   reductionTable = SgenerateTable(tower);
1.16      takayama  472:   Print("reductionTable="); sm1_pmat(reductionTable);
                    473:
1.1       takayama  474:   skel = rf[2];
                    475:   redundantTable = SnewArrayOfFormat(rf[1]);
                    476:   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
                    477:   reducer = SnewArrayOfFormat(rf[1]);
                    478:   freeRes = SnewArrayOfFormat(rf[1]);
                    479:   bettiTable = SsetBettiTable(rf[1],g);
                    480:
                    481:   strategy = SminOfStrategy( reductionTable );
                    482:   maxOfStrategy = SmaxOfStrategy( reductionTable );
                    483:   height = Length(reductionTable);
                    484:   while (strategy <= maxOfStrategy) {
                    485:     for (level = 0; level < height; level++) {
                    486:       n = Length(reductionTable[level]);
1.4       takayama  487:       reductionTable_tmp = ScopyArray(reductionTable[level]);
                    488:       while (SthereIs(reductionTable_tmp,strategy)) {
                    489:         i = SnextI(reductionTable_tmp,strategy,redundantTable,
                    490:                    skel,level,freeRes);
                    491:         Println([level,i]);
                    492:         reductionTable_tmp[i] = -200000;
1.1       takayama  493:         if (reductionTable[level,i] == strategy) {
1.16      takayama  494:            Print("Processing [level,i]= "); Print([level,i]);
1.1       takayama  495:            Print("   Strategy = "); Println(strategy);
                    496:            if (level == 0) {
                    497:              if (IsNull(redundantTable[level,i])) {
                    498:                bases = freeRes[level];
                    499:                /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
                    500:                pos = SwhereInGB(tower[0,i],rf[3,0]);
                    501:                bases[i] = rf[3,0,pos];
                    502:                redundantTable[level,i] = 0;
                    503:                redundantTable_ordinary[level,i] = 0;
                    504:                freeRes[level] = bases;
                    505:                /* Println(["GB=",i,bases,tower[0,i]]); */
                    506:              }
                    507:            }else{ /* level >= 1 */
                    508:              if (IsNull(redundantTable[level,i])) {
                    509:                bases = freeRes[level];
                    510:                f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    511:                if (f[0] != Poly("0")) {
                    512:                   place = f[3];
                    513:                   /* (level-1, place) is the place for f[0],
                    514:                      which is a newly obtained  GB. */
                    515: #ifdef ORDINARY
                    516:                   redundantTable[level-1,place] = redundant_seq;
                    517:                   redundant_seq++;
                    518: #else
                    519:                   if (f[4] > f[5]) {
                    520:                     /* Zero in the gr-module */
                    521:                     Print("v-degree of [org,remainder] = ");
                    522:                     Println([f[4],f[5]]);
                    523:                     Print("[level,i] = "); Println([level,i]);
                    524:                     redundantTable[level-1,place] = 0;
                    525:                   }else{
                    526:                     redundantTable[level-1,place] = redundant_seq;
                    527:                     redundant_seq++;
                    528:                   }
                    529: #endif
                    530:                   redundantTable_ordinary[level-1,place]
                    531:                      =redundant_seq_ordinary;
                    532:                   redundant_seq_ordinary++;
                    533:                   bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
                    534:                   redundantTable[level,i] = 0;
                    535:                   redundantTable_ordinary[level,i] = 0;
                    536:                   /* i must be equal to f[2], I think. Double check. */
                    537:                   freeRes[level] = bases;
                    538:                   bases = freeRes[level-1];
                    539:                   bases[place] = f[0];
                    540:                   freeRes[level-1] = bases;
                    541:                   reducer[level-1,place] = f[1];
                    542:                }else{
                    543:                   redundantTable[level,i] = 0;
                    544:                   bases = freeRes[level];
                    545:                   bases[i] = f[1];  /* Put the syzygy. */
                    546:                   freeRes[level] = bases;
                    547:                }
                    548:              }
                    549:            } /* end of level >= 1 */
                    550:         }
                    551:       }
                    552:     }
                    553:     strategy++;
                    554:   }
                    555:   n = Length(freeRes);
                    556:   freeResV = SnewArrayOfFormat(freeRes);
                    557:   for (i=0; i<n; i++) {
                    558:     bases = freeRes[i];
                    559:     bases = Sbases_to_vec(bases,bettiTable[i]);
                    560:     freeResV[i] = bases;
                    561:   }
1.17      takayama  562:   return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary,rf]);
1.1       takayama  563: }
1.4       takayama  564:
                    565: def SthereIs(reductionTable_tmp,strategy) {
                    566:   local n,i;
                    567:   n = Length(reductionTable_tmp);
                    568:   for (i=0; i<n; i++) {
                    569:     if (reductionTable_tmp[i] == strategy) {
                    570:       return(true);
                    571:     }
                    572:   }
                    573:   return(false);
                    574: }
                    575:
                    576: def SnextI(reductionTable_tmp,strategy,redundantTable,
                    577:                                   skel,level,freeRes)
                    578: {
                    579:    local ii,n,p,myindex,i,j,bases;
                    580:    n = Length(reductionTable_tmp);
                    581:    if (level == 0) {
                    582:      for (ii=0; ii<n; ii++) {
                    583:        if (reductionTable_tmp[ii] == strategy) {
                    584:           return(ii);
                    585:         }
                    586:       }
                    587:    }else{
                    588:      for (ii=0; ii<n; ii++) {
                    589:        if (reductionTable_tmp[ii] == strategy) {
                    590:          p = skel[level,ii];
                    591:          myindex = p[0];
                    592:          i = myindex[0]; j = myindex[1];
                    593:          bases = freeRes[level-1];
                    594:          if (IsNull(bases[i]) || IsNull(bases[j])) {
                    595:
                    596:          }else{
                    597:            return(ii);
                    598:          }
                    599:        }
                    600:      }
                    601:    }
1.5       takayama  602:    Print("reductionTable_tmp=");
1.4       takayama  603:    Println(reductionTable_tmp);
1.5       takayama  604:    Println("See also reductionTable, strategy, level,i");
1.4       takayama  605:    Error("SnextI: bases[i] or bases[j] is null for all combinations.");
                    606: }
                    607:
                    608:
1.1       takayama  609:
                    610: def SsetBettiTable(freeRes,g) {
                    611:   local level,i, n,bases,ans;
                    612:   ans = NewArray(Length(freeRes)+1);
                    613:   n = Length(freeRes);
                    614:   if (IsArray(g[0])) {
                    615:     ans[0] = Length(g[0]);
                    616:   }else{
                    617:     ans[0] = 1;
                    618:   }
                    619:   for (level=0; level<n; level++) {
                    620:     bases = freeRes[level];
                    621:     if (IsArray(bases)) {
                    622:       ans[level+1] = Length(bases);
                    623:     }else{
                    624:       ans[level+1] = 1;
                    625:     }
                    626:   }
                    627:   return(ans);
                    628: }
                    629:
                    630: def SwhereInGB(f,tower) {
                    631:   local i,n,p,q;
                    632:   n = Length(tower);
                    633:   for (i=0; i<n; i++) {
                    634:     p = MonomialPart(tower[i]);
                    635:     q = MonomialPart(f);
                    636:     if (p == q) return(i);
                    637:   }
                    638:   Println([f,tower]);
                    639:   Error("whereInGB : [f,myset]: f could not be found in the myset.");
                    640: }
                    641: def SunitOfFormat(pos,forms) {
                    642:   local ans,i,n;
                    643:   n = Length(forms);
                    644:   ans = NewArray(n);
                    645:   for (i=0; i<n; i++) {
                    646:     if (i != pos) {
                    647:       ans[i] = Poly("0");
                    648:     }else{
                    649:       ans[i] = Poly("1");
                    650:     }
                    651:   }
                    652:   return(ans);
                    653: }
                    654:
                    655: def Error(s) {
                    656:   sm1(" s error ");
                    657: }
                    658:
                    659: def IsNull(s) {
                    660:   if (Stag(s) == 0) return(true);
                    661:   else return(false);
                    662: }
                    663:
                    664: def StowerOf(tower,level) {
                    665:   local ans,i;
                    666:   ans = [ ];
                    667:   if (level == 0) return([[]]);
                    668:   for (i=0; i<level; i++) {
                    669:     ans = Append(ans,tower[i]);
                    670:   }
                    671:   return(Reverse(ans));
                    672: }
                    673:
                    674: def Sspolynomial(f,g) {
                    675:   if (IsArray(f)) {
                    676:     f = Stoes_vec(f);
                    677:   }
                    678:   if (IsArray(g)) {
                    679:     g = Stoes_vec(g);
                    680:   }
                    681:   sm1("f g spol /FunctionValue set");
                    682: }
                    683:
                    684: def MonomialPart(f) {
                    685:   sm1(" [(lmonom) f] gbext /FunctionValue set ");
                    686: }
                    687:
1.14      takayama  688: /* WARNING:
                    689:   When you use SwhereInTower, you have to change gbList
                    690:   as below. Ofcourse, you should restrore the gbList
                    691:   SsetTower(StowerOf(tower,level));
                    692:   pos = SwhereInTower(syzHead,tower[level]);
                    693: */
1.1       takayama  694: def SwhereInTower(f,tower) {
                    695:   local i,n,p,q;
                    696:   if (f == Poly("0")) return(-1);
                    697:   n = Length(tower);
                    698:   for (i=0; i<n; i++) {
                    699:     p = MonomialPart(tower[i]);
                    700:     q = MonomialPart(f);
                    701:     if (p == q) return(i);
                    702:   }
                    703:   Println([f,tower]);
                    704:   Error("[f,tower]: f could not be found in the tower.");
                    705: }
                    706:
                    707: def Stag(f) {
                    708:   sm1(f," tag (universalNumber) dc /FunctionValue set");
                    709: }
                    710:
                    711: def SpairAndReduction(skel,level,ii,freeRes,tower,ww) {
                    712:   local i, j, myindex, p, bases, tower2, gi, gj,
                    713:        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
                    714:        vdeg,vdeg_reduced;
                    715:   Println("SpairAndReduction:");
                    716:
                    717:   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
                    718:   p = skel[level,ii];
                    719:   myindex = p[0];
                    720:   i = myindex[0]; j = myindex[1];
                    721:   bases = freeRes[level-1];
                    722:   Println(["p and bases ",p,bases]);
                    723:   if (IsNull(bases[i]) || IsNull(bases[j])) {
                    724:     Println([level,i,j,bases[i],bases[j]]);
                    725:     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
                    726:   }
                    727:
                    728:   tower2 = StowerOf(tower,level-1);
                    729:   SsetTower(tower2);
1.14      takayama  730:   Println(["level=",level]);
                    731:   Println(["tower2=",tower2]);
1.1       takayama  732:   /** sm1(" show_ring ");   */
                    733:
                    734:   gi = Stoes_vec(bases[i]);
                    735:   gj = Stoes_vec(bases[j]);
                    736:
                    737:   ssp = Sspolynomial(gi,gj);
                    738:   si = ssp[0,0];
                    739:   sj = ssp[0,1];
                    740:   syzHead = si*es^i;
                    741:   /* This will be the head term, I think. But, double check. */
                    742:   Println([si*es^i,sj*es^j]);
                    743:
                    744:   Print("[gi, gj] = "); Println([gi,gj]);
                    745:   sm1(" [(Homogenize)] system_variable message ");
                    746:   Print("Reduce the element "); Println(si*gi+sj*gj);
                    747:   Print("by  "); Println(bases);
                    748:
                    749:   tmp = Sreduction(si*gi+sj*gj, bases);
                    750:
                    751:   Print("result is "); Println(tmp);
                    752:
1.3       takayama  753:   /* This is essential part for V-minimal resolution. */
                    754:   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
                    755:   vdeg = SvDegree(si*gi,tower,level-1,ww);
1.1       takayama  756:   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);
                    757:   Print("vdegree of the original = "); Println(vdeg);
                    758:   Print("vdegree of the remainder = "); Println(vdeg_reduced);
                    759:
                    760:   t_syz = tmp[2];
                    761:   si = si*tmp[1]+t_syz[i];
                    762:   sj = sj*tmp[1]+t_syz[j];
                    763:   t_syz[i] = si;
                    764:   t_syz[j] = sj;
1.14      takayama  765:
                    766:   SsetTower(StowerOf(tower,level));
1.1       takayama  767:   pos = SwhereInTower(syzHead,tower[level]);
1.14      takayama  768:
                    769:   SsetTower(StowerOf(tower,level-1));
1.1       takayama  770:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
                    771:   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced];
                    772:   /* pos is the place to put syzygy at level. */
                    773:   /* pos2 is the place to put a new GB at level-1. */
                    774:   Println(ans);
                    775:   return(ans);
                    776: }
                    777:
                    778: def Sreduction(f,myset) {
                    779:   local n, indexTable, set2, i, j, tmp, t_syz;
                    780:   n = Length(myset);
                    781:   indexTable = NewArray(n);
                    782:   set2 = [ ];
                    783:   j = 0;
                    784:   for (i=0; i<n; i++) {
                    785:     if (IsNull(myset[i])) {
                    786:       indexTable[i] = -1;
                    787: /*    }else if (myset[i] == Poly("0")) {
                    788:       indexTable[i] = -1;  */
                    789:     }else{
                    790:       set2 = Append(set2,Stoes_vec(myset[i]));
                    791:       indexTable[i] = j;
                    792:       j++;
                    793:     }
                    794:   }
                    795:   sm1(" f toes set2 (gradedPolySet) dc reduction /tmp set ");
                    796:   t_syz = NewArray(n);
                    797:   for (i=0; i<n; i++) {
                    798:     if (indexTable[i] != -1) {
                    799:       t_syz[i] = tmp[2, indexTable[i]];
                    800:     }else{
                    801:       t_syz[i] = Poly("0");
                    802:     }
                    803:   }
                    804:   return([tmp[0],tmp[1],t_syz]);
                    805: }
                    806:
                    807: def Warning(s) {
                    808:   Print("Warning: ");
                    809:   Println(s);
                    810: }
                    811: def RingOf(f) {
                    812:   local r;
                    813:   if (IsPolynomial(f)) {
                    814:     if (f != Poly("0")) {
                    815:       sm1(f," (ring) dc /r set ");
                    816:     }else{
                    817:       sm1(" [(CurrentRingp)] system_variable /r set ");
                    818:     }
                    819:   }else{
                    820:     Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
                    821:     sm1(" [(CurrentRingp)] system_variable /r set ");
                    822:   }
                    823:   return(r);
                    824: }
                    825:
                    826: def Sfrom_es(f,size) {
                    827:   local c,ans, i, d, myes, myee, j,n,r,ans2;
                    828:   if (Length(Arglist) < 2) size = -1;
                    829:   if (IsArray(f)) return(f);
                    830:   r = RingOf(f);
                    831:   myes = PolyR("es",r);
                    832:   myee = PolyR("e_",r);
                    833:   if (Degree(f,myee) > 0 && size == -1) {
                    834:     if (size == -1) {
                    835:        sm1(f," (array) dc /ans set");
                    836:        return(ans);
                    837:     }
                    838:   }
                    839:
                    840: /*
                    841:     Coefficients(x^2-1,x):
                    842:     [    [    2 , 0 ]  , [    1 , -1 ]  ]
                    843: */
                    844:   if (Degree(f,myee) > 0) {
                    845:     c = Coefficients(f,myee);
                    846:   }else{
                    847:     c = Coefficients(f,myes);
                    848:   }
                    849:   if (size < 0) {
                    850:     size = c[0,0]+1;
                    851:   }
                    852:   ans = NewArray(size);
                    853:   for (i=0; i<size; i++) {ans[i] = 0;}
                    854:   n = Length(c[0]);
                    855:   for (j=0; j<n; j++) {
                    856:     d = c[0,j];
                    857:     ans[d] = c[1,j];
                    858:   }
                    859:   return(ans);
                    860: }
                    861:
                    862: def Sbases_to_vec(bases,size) {
                    863:   local n, giveSize, newbases,i;
                    864:   /*  bases = [1+es*x, [1,2,3*x]] */
                    865:   if (Length(Arglist) > 1) {
                    866:     giveSize = true;
                    867:   }else{
                    868:     giveSize = false;
                    869:   }
                    870:   n = Length(bases);
                    871:   newbases = NewArray(n);
                    872:   for (i=0; i<n; i++) {
                    873:      if (giveSize) {
                    874:        newbases[i] = Sfrom_es(bases[i], size);
                    875:      }else{
                    876:        newbases[i] = Sfrom_es(bases[i]);
                    877:      }
                    878:   }
                    879:   return(newbases);
                    880: }
                    881:
1.14      takayama  882: HelpAdd(["Sminimal",
1.18    ! takayama  883: ["It constructs the V-minimal free resolution by LaScala's algorithm",
1.15      takayama  884:  "option: \"homogenized\" (no automatic homogenization ",
1.14      takayama  885:  "Example:  Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
                    886:  "          v=[[2*x*Dx + 3*y*Dy+6, 0],",
                    887:  "             [3*x^2*Dy + 2*y*Dx, 0],",
                    888:  "             [0,  x^2+y^2],",
                    889:  "             [0,  x*y]];",
                    890:  "         a=Sminimal(v);",
                    891:  "         Sweyl(\"x,y\",[[\"x\",-1,\"y\",-1,\"Dx\",1,\"Dy\",1]]);",
                    892:  "         b = ReParse(a[0]); sm1_pmat(b); ",
                    893:  "         IsExact_h(b,[x,y]):",
                    894:  "Note:  a[0] is the V-minimal resolution. a[3] is the Schreyer resolution."]]);
                    895:
1.15      takayama  896: def Sminimal(g,opt) {
1.1       takayama  897:   local r, freeRes, redundantTable, reducer, maxLevel,
                    898:         minRes, seq, maxSeq, level, betti, q, bases, dr,
1.14      takayama  899:         betti_levelplus, newbases, i, j,qq, tminRes;
1.16      takayama  900:   if (Length(Arglist) < 2) {
                    901:      opt = null;
                    902:   }
                    903:   ScheckIfSchreyer("Sminimal:0");
1.15      takayama  904:   r = SlaScala(g,opt);
1.1       takayama  905:   /* Should I turn off the tower?? */
1.16      takayama  906:   ScheckIfSchreyer("Sminimal:1");
1.1       takayama  907:   freeRes = r[0];
                    908:   redundantTable = r[1];
                    909:   reducer = r[2];
                    910:   minRes = SnewArrayOfFormat(freeRes);
                    911:   seq = 0;
                    912:   maxSeq = SgetMaxSeq(redundantTable);
                    913:   maxLevel = Length(freeRes);
                    914:   for (level = 0; level < maxLevel; level++) {
                    915:     minRes[level] = freeRes[level];
                    916:   }
                    917:   seq=maxSeq+1;
                    918:   while (seq > 1) {
                    919:     seq--;
                    920:     for (level = 0; level < maxLevel; level++) {
                    921:       betti = Length(freeRes[level]);
                    922:       for (q = 0; q<betti; q++) {
                    923:         if (redundantTable[level,q] == seq) {
                    924:           Print("[seq,level,q]="); Println([seq,level,q]);
                    925:           if (level < maxLevel-1) {
                    926:             bases = freeRes[level+1];
                    927:             dr = reducer[level,q];
                    928:             dr[q] = -1;
                    929:             newbases = SnewArrayOfFormat(bases);
                    930:             betti_levelplus = Length(bases);
                    931:             /*
                    932:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                    933:             */
                    934:             for (i=0; i<betti_levelplus; i++) {
                    935:               newbases[i] = bases[i] + bases[i,q]*dr;
                    936:             }
                    937:             Println(["level, q =", level,q]);
                    938:             Println("bases="); sm1_pmat(bases);
                    939:             Println("dr="); sm1_pmat(dr);
                    940:             Println("newbases="); sm1_pmat(newbases);
                    941:             minRes[level+1] = newbases;
                    942:             freeRes = minRes;
                    943: #ifdef DEBUG
                    944:             for (qq=0; qq<betti; qq++) {
                    945:               if ((redundantTable[level,qq] >= seq) &&
                    946:                   (redundantTable[level,qq] <= maxSeq)) {
                    947:                 for (i=0; i<betti_levelplus; i++) {
                    948:                   if (!IsZero(newbases[i,qq])) {
                    949:                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
                    950:                     Print("redundantTable ="); sm1_pmat(redundantTable[level]);
                    951:                     Error("Stop in Sminimal for debugging.");
                    952:                   }
                    953:                 }
                    954:               }
                    955:             }
                    956: #endif
                    957:           }
                    958:         }
                    959:       }
                    960:     }
                    961:    }
1.14      takayama  962:    tminRes = Stetris(minRes,redundantTable);
                    963:    return([SpruneZeroRow(tminRes), tminRes,
1.17      takayama  964:           [ minRes, redundantTable, reducer,r[3],r[4]],r[0],r[5]]);
1.1       takayama  965:   /* r[4] is the redundantTable_ordinary */
1.3       takayama  966:   /* r[0] is the freeResolution */
1.17      takayama  967:   /* r[5] is the skelton */
1.1       takayama  968: }
                    969:
                    970:
                    971: def IsZero(f) {
                    972:   if (IsPolynomial(f)) {
                    973:     return( f == Poly("0"));
                    974:   }else if (IsInteger(f)) {
                    975:     return( f == 0);
                    976:   }else if (IsSm1Integer(f)) {
                    977:     return( f == true );
                    978:   }else if (IsDouble(f)) {
                    979:     return( f == 0.0 );
                    980:   }else if (IsRational(f)) {
                    981:     return(IsZero(Denominator(f)));
                    982:   }else{
                    983:     Error("IsZero: cannot deal with this data type.");
                    984:   }
                    985: }
                    986: def SgetMaxSeq(redundantTable) {
                    987:    local level,i,n,ans, levelMax,bases;
                    988:    levelMax = Length( redundantTable );
                    989:    ans = 0;
                    990:    for (level = 0; level < levelMax; level++) {
                    991:      bases = redundantTable[level];
                    992:      n = Length(bases);
                    993:      for (i=0; i<n; i++) {
                    994:        if (IsInteger( bases[i] )) {
                    995:           if (bases[i] > ans) {
                    996:              ans = bases[i];
                    997:           }
                    998:        }
                    999:      }
                   1000:    }
                   1001:    return(ans);
                   1002: }
                   1003:
                   1004: def Stetris(freeRes,redundantTable) {
                   1005:   local level, i, j, resLength, minRes,
                   1006:         bases, newbases, newbases2;
                   1007:   minRes = SnewArrayOfFormat(freeRes);
                   1008:   resLength = Length( freeRes );
                   1009:   for (level=0; level<resLength; level++) {
                   1010:     bases = freeRes[level];
                   1011:     newbases = SnewArrayOfFormat(bases);
                   1012:     betti = Length(bases); j = 0;
                   1013:     /* Delete rows */
                   1014:     for (i=0; i<betti; i++) {
                   1015:       if (redundantTable[level,i] < 1) {
                   1016:          newbases[j] = bases[i];
                   1017:          j++;
                   1018:       }
                   1019:     }
                   1020:     bases = SfirstN(newbases,j);
                   1021:     if (level > 0) {
                   1022:       /* Delete columns */
                   1023:       newbases = Transpose(bases);
                   1024:       betti = Length(newbases); j = 0;
                   1025:       newbases2 = SnewArrayOfFormat(newbases);
                   1026:       for (i=0; i<betti; i++) {
                   1027:         if (redundantTable[level-1,i] < 1) {
                   1028:            newbases2[j] = newbases[i];
                   1029:            j++;
                   1030:         }
                   1031:       }
                   1032:       newbases = Transpose(SfirstN(newbases2,j));
                   1033:     }else{
                   1034:       newbases = bases;
                   1035:     }
                   1036:     Println(["level=", level]);
                   1037:     sm1_pmat(bases);
                   1038:     sm1_pmat(newbases);
                   1039:
                   1040:     minRes[level] = newbases;
                   1041:   }
                   1042:   return(minRes);
                   1043: }
                   1044:
                   1045: def SfirstN(bases,k) {
                   1046:    local ans,i;
                   1047:    ans = NewArray(k);
                   1048:    for (i=0; i<k; i++) {
                   1049:      ans[i] = bases[i];
                   1050:    }
                   1051:    return(ans);
                   1052: }
                   1053:
                   1054:
                   1055: /* usage:  tt is tower. ww is weight.
                   1056:     a = SresolutionFrameWithTower(v);
                   1057:     tt = a[1];
                   1058:     ww = [x,1,y,1,Dx,1,Dy,1];
                   1059:     SvDegree(x*es,tt,1,ww):
                   1060:
                   1061: In(17)=tt:
                   1062: [[2*x*Dx , e_*x^2 , e_*x*y , 3*x^2*Dy , e_*y^3 , 9*x*y*Dy^2 , 27*y^2*Dy^3 ]  ,
                   1063:  [es*y , 3*es^3*y*Dy , 3*es^5*y*Dy , 3*x*Dy , es^2*y^2 , 9*y*Dy^2 ]  ,
                   1064:  [3*es^3*y*Dy ]  ]
                   1065: In(18)=SvDegree(x*es,tt,1,ww):
                   1066: 3
                   1067: In(19)=SvDegree(x*es^3,tt,1,ww):
                   1068: 4
                   1069: In(20)=SvDegree(x,tt,2,ww):
                   1070: 4
                   1071:
                   1072: */
                   1073: def SvDegree(f,tower,level,w) {
                   1074:   local i,ans;
                   1075:   if (IsZero(f)) return(null);
1.3       takayama 1076:   f = Init(f);
1.1       takayama 1077:   if (level <= 0) {
                   1078:     return(Sord_w(f,w));
                   1079:   }
                   1080:   i = Degree(f,es);
                   1081:   ans = Sord_w(f,w) +
                   1082:         SvDegree(tower[level-1,i],tower,level-1,w);
                   1083:   return(ans);
                   1084: }
                   1085:
1.2       takayama 1086: def Sannfs(f,v) {
                   1087:   local f2;
                   1088:   f2 = ToString(f);
                   1089:   if (IsArray(v)) {
                   1090:      v = Map(v,"ToString");
                   1091:   }
                   1092:   sm1(" [f2 v] annfs /FunctionValue set ");
                   1093: }
                   1094:
                   1095: /* Sannfs2("x^3-y^2"); */
                   1096: def Sannfs2(f) {
                   1097:   local p,pp;
                   1098:   p = Sannfs(f,"x,y");
1.6       takayama 1099:   sm1(" p 0 get { [(x) (y) (Dx) (Dy)] laplace0 } map /p set ");
                   1100:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                   1101:   pp = Map(p,"Spoly");
1.18    ! takayama 1102:   return(Sminimal(pp));
1.6       takayama 1103: }
                   1104:
1.10      takayama 1105: HelpAdd(["Sannfs2",
                   1106: ["Sannfs2(f) constructs the V-minimal free resolution for the weight (-1,1)",
                   1107:  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y.",
1.18    ! takayama 1108:  "See also Sminimal, Sannfs3.",
1.10      takayama 1109:  "Example: a=Sannfs2(\"x^3-y^2\");",
                   1110:  "         b=a[0]; sm1_pmat(b);",
                   1111:  "         b[1]*b[0]:",
                   1112:  "Example: a=Sannfs2(\"x*y*(x-y)*(x+y)\");",
                   1113:  "         b=a[0]; sm1_pmat(b);",
                   1114:  "         b[1]*b[0]:"
                   1115: ]]);
1.18    ! takayama 1116: /* Some samples.
        !          1117:   The betti numbers of most examples are 2,1. (0-th and 1-th).
        !          1118:   a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2.
        !          1119:   a=Sannfs2("x^3-y^2-x");
        !          1120:   a=Sannfs2("x*y*(x-y)");
        !          1121: */
1.10      takayama 1122:
1.11      takayama 1123:
1.3       takayama 1124: def Sannfs3(f) {
                   1125:   local p,pp;
                   1126:   p = Sannfs(f,"x,y,z");
1.6       takayama 1127:   sm1(" p 0 get { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /p set ");
1.3       takayama 1128:   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
1.6       takayama 1129:   pp = Map(p,"Spoly");
1.18    ! takayama 1130:   return(Sminimal(pp));
1.3       takayama 1131: }
                   1132:
1.10      takayama 1133: HelpAdd(["Sannfs3",
                   1134: ["Sannfs3(f) constructs the V-minimal free resolution for the weight (-1,1)",
                   1135:  "of the Laplace transform of the annihilating ideal of the polynomial f in x,y,z.",
1.18    ! takayama 1136:  "See also Sminimal, Sannfs2.",
1.10      takayama 1137:  "Example: a=Sannfs3(\"x^3-y^2*z^2\");",
                   1138:  "         b=a[0]; sm1_pmat(b);",
                   1139:  "         b[1]*b[0]: b[2]*b[1]:"]]);
                   1140:
1.2       takayama 1141:
1.6       takayama 1142:
                   1143: /* Sannfs2("x*y*(x-y)*(x+y)"); is a test problem */
1.10      takayama 1144: /* x y (x+y-1)(x-2),  x^3-y^2, x^3 - y^2 z^2,
                   1145:    x y z (x+y+z-1) seems to be interesting, because the first syzygy
                   1146:   contains 1.
                   1147: */
                   1148:
                   1149: def CopyArray(m) {
                   1150:   local ans,i,n;
                   1151:   if (IsArray(m)) {
                   1152:      n = Length(m);
                   1153:      ans = NewArray(n);
                   1154:      for (i=0; i<n; i++) {
                   1155:        ans[i] = CopyArray(m[i]);
                   1156:      }
                   1157:      return(ans);
                   1158:   }else{
                   1159:      return(m);
                   1160:   }
                   1161: }
                   1162: HelpAdd(["CopyArray",
                   1163: ["It duplicates the argument array recursively.",
                   1164:  "Example: m=[1,[2,3]];",
                   1165:  "         a=CopyArray(m); a[1] = \"Hello\";",
                   1166:  "         Println(m); Println(a);"]]);
                   1167:
                   1168: def IsZeroVector(m) {
                   1169:   local n,i;
                   1170:   n = Length(m);
                   1171:   for (i=0; i<n; i++) {
                   1172:     if (!IsZero(m[i])) {
                   1173:       return(false);
                   1174:     }
                   1175:   }
                   1176:   return(true);
                   1177: }
                   1178:
                   1179: def SpruneZeroRow(res) {
                   1180:   local minRes, n,i,j,m, base,base2,newbase,newbase2, newMinRes;
                   1181:
                   1182:   minRes = CopyArray(res);
                   1183:   n = Length(minRes);
                   1184:   for (i=0; i<n; i++) {
                   1185:     base = minRes[i];
                   1186:     m = Length(base);
                   1187:     if (i != n-1) {
                   1188:       base2 = minRes[i+1];
                   1189:       base2 = Transpose(base2);
                   1190:     }
                   1191:     newbase = [ ];
                   1192:     newbase2 = [ ];
                   1193:     for (j=0; j<m; j++) {
                   1194:       if (!IsZeroVector(base[j])) {
                   1195:         newbase = Append(newbase,base[j]);
                   1196:         if (i != n-1) {
                   1197:           newbase2 = Append(newbase2,base2[j]);
                   1198:         }
                   1199:       }
                   1200:     }
                   1201:     minRes[i] = newbase;
                   1202:     if (i != n-1) {
                   1203:       if (newbase2 == [ ]) {
                   1204:         minRes[i+1] = [ ];
                   1205:       }else{
                   1206:         minRes[i+1] = Transpose(newbase2);
                   1207:       }
                   1208:     }
                   1209:   }
                   1210:
                   1211:   newMinRes = [ ];
                   1212:   n = Length(minRes);
                   1213:   i = 0;
                   1214:   while (i < n ) {
                   1215:     base = minRes[i];
                   1216:     if (base == [ ]) {
                   1217:       i = n; /* break; */
                   1218:     }else{
                   1219:       newMinRes = Append(newMinRes,base);
                   1220:     }
                   1221:     i++;
                   1222:   }
                   1223:   return(newMinRes);
                   1224: }
                   1225:
                   1226: def testAnnfs2(f) {
                   1227:   local a,i,n;
                   1228:   a = Sannfs2(f);
                   1229:   b=a[0];
                   1230:   n = Length(b);
                   1231:   Println("------ V-minimal free resolution -----");
                   1232:   sm1_pmat(b);
                   1233:   Println("----- Is it complex?  ---------------");
                   1234:   for (i=0; i<n-1; i++) {
                   1235:     Println(b[i+1]*b[i]);
                   1236:   }
                   1237:   return(a);
                   1238: }
                   1239: def testAnnfs3(f) {
                   1240:   local a,i,n;
                   1241:   a = Sannfs3(f);
                   1242:   b=a[0];
                   1243:   n = Length(b);
                   1244:   Println("------ V-minimal free resolution -----");
                   1245:   sm1_pmat(b);
                   1246:   Println("----- Is it complex?  ---------------");
                   1247:   for (i=0; i<n-1; i++) {
                   1248:     Println(b[i+1]*b[i]);
                   1249:   }
1.11      takayama 1250:   return(a);
                   1251: }
                   1252:
                   1253: def ToString_array(p) {
                   1254:   local ans;
                   1255:   if (IsArray(p)) {
                   1256:     ans = Map(p,"ToString_array");
                   1257:   }else{
                   1258:     ans = ToString(p);
                   1259:   }
                   1260:   return(ans);
                   1261: }
                   1262:
                   1263: /* sm1_res_div([[x],[y]],[[x^2],[x*y],[y^2]],[x,y]): */
                   1264:
                   1265: def sm1_res_div(I,J,V) {
                   1266:   I = ToString_array(I);
                   1267:   J = ToString_array(J);
                   1268:   V = ToString_array(V);
                   1269:   sm1(" [[ I J]  V ] res*div /FunctionValue set ");
                   1270: }
                   1271:
                   1272: /* It has not yet been working */
                   1273: def sm1_res_kernel_image(m,n,v) {
                   1274:   m = ToString_array(m);
                   1275:   n = ToString_array(n);
                   1276:   v = ToString_array(v);
                   1277:   sm1(" [m n v] res-kernel-image /FunctionValue set ");
                   1278: }
                   1279: def Skernel(m,v) {
                   1280:   m = ToString_array(m);
                   1281:   v = ToString_array(v);
                   1282:   sm1(" [ m v ] syz /FunctionValue set ");
                   1283: }
                   1284:
                   1285:
                   1286: def sm1_gb(f,v) {
                   1287:   f =ToString_array(f);
                   1288:   v = ToString_array(v);
                   1289:   sm1(" [f v] gb /FunctionValue set ");
1.13      takayama 1290: }
                   1291:
1.11      takayama 1292:
1.12      takayama 1293: def SisComplex(a) {
                   1294:   local n,i,j,k,b,p,q;
                   1295:   n = Length(a);
                   1296:   for (i=0; i<n-1; i++) {
                   1297:     if (Length(a[i+1]) != 0) {
                   1298:       b = a[i+1]*a[i];
                   1299:       p = Length(b); q = Length(b[0]);
                   1300:       for (j=0; j<p; j++) {
                   1301:         for (k=0; k<q; k++) {
                   1302:           if (!IsZero(b[j,k])) {
                   1303:              Print("Is is not complex at ");
                   1304:              Println([i,j,k]);
                   1305:              return(false);
                   1306:           }
                   1307:         }
                   1308:       }
                   1309:     }
                   1310:   }
                   1311:   return(true);
1.14      takayama 1312: }
                   1313:
                   1314: def IsExact_h(c,v) {
                   1315:   local a;
                   1316:   v = ToString_array(v);
                   1317:   a = [c,v];
                   1318:   sm1(a," isExact_h /FunctionValue set ");
                   1319: }
                   1320: HelpAdd(["IsExact_h",
                   1321: ["IsExact_h(complex,var): bool",
                   1322:  "It checks the given complex is exact or not in D<h> (homogenized Weyl algebra)",
                   1323:  "cf. ReParse"
                   1324: ]]);
                   1325:
                   1326: def ReParse(a) {
                   1327:   local c;
                   1328:   if (IsArray(a)) {
                   1329:     c = Map(a,"ReParse");
                   1330:   }else{
                   1331:     sm1(a," toString . /c set");
                   1332:   }
                   1333:   return(c);
                   1334: }
                   1335: HelpAdd(["ReParse",
                   1336: ["Reparse(obj): obj",
                   1337:  "It parses the given object in the current ring.",
                   1338:  "Outputs from SlaScala, Sschreyer may cause a trouble in other functions,",
                   1339:  "because it uses the Schreyer order.",
                   1340:  "In this case, ReParse the outputs from these functions.",
                   1341:  "cf. IsExaxt_h"
                   1342: ]]);
1.16      takayama 1343:
                   1344: def ScheckIfSchreyer(s) {
                   1345:   local ss;
                   1346:   sm1(" (report) (grade) switch_function /ss set ");
                   1347:   if (ss != "module1v") {
                   1348:      Print("ScheckIfSchreyer: from "); Println(s);
                   1349:      Error("grade is not module1v");
                   1350:   }
                   1351:   /*
                   1352:   sm1(" (report) (mmLarger) switch_function /ss set ");
                   1353:   if (ss != "tower") {
                   1354:      Print("ScheckIfSchreyer: from "); Println(s);
                   1355:      Error("mmLarger is not tower");
                   1356:   }
                   1357:   */
                   1358:   sm1(" [(Schreyer)] system_variable (universalNumber) dc /ss set ");
                   1359:   if (ss != 1) {
                   1360:      Print("ScheckIfSchreyer: from "); Println(s);
                   1361:      Error("Schreyer order is not set.");
                   1362:   }
                   1363:   /* More check will be necessary. */
                   1364:   return(true);
                   1365: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>