[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/minimal.k, Revision 1.3

1.3     ! takayama    1: /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.2 2000/05/03 07:50:38 takayama Exp $ */
1.1       takayama    2: #define DEBUG 1
                      3: /* #define ORDINARY 1 */
                      4: /* Test sequences.
                      5:    Use load["minimal.k"];;
                      6:
                      7:    a=Sminimal(v);
                      8:    b=a[0];
                      9:    b[1]*b[0]:
                     10:    b[2]*b[1]:
                     11:
                     12:    a = test0();
                     13:    b = a[0];
                     14:    b[1]*b[0]:
                     15:    b[2]*b[1]:
                     16:    a = Sminimal(b[0]);
                     17:
                     18:    a = test1();
                     19:    b=a[0];
                     20:    b[1]*b[0]:
                     21:    b[2]*b[1]:
                     22:
                     23: */
                     24:
                     25:
                     26: load("cohom.k");
                     27: def load_tower() {
                     28:   if (Boundp("k0-tower.sm1.loaded")) {
                     29:   }else{
                     30:     sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");
                     31:     sm1(" /k0-tower.sm1.loaded 1 def ");
                     32:   }
                     33: }
                     34: load_tower();
                     35: SonAutoReduce = true;
                     36: def Factor(f) {
                     37:    sm1(f, " fctr /FunctionValue set");
                     38: }
                     39: def Reverse(f) {
                     40:    sm1(f," reverse /FunctionValue set");
                     41: }
                     42: def Sgroebner(f) {
                     43:    sm1(" [f] groebner /FunctionValue set");
                     44: }
                     45: def test0() {
                     46:   local f;
                     47:   Sweyl("x,y,z");
                     48:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     49:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     50:   frame=SresolutionFrame(f);
                     51:   Println(frame);
                     52:   /* return(frame); */
                     53:   return(SlaScala(f));
                     54: }
                     55: def test1() {
                     56:   local f;
                     57:   Sweyl("x,y,z");
                     58:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     59:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     60:   return(Sminimal(f));
                     61: }
                     62:
                     63:
                     64:
                     65: def Sweyl(v,w) {
                     66:   /* extern WeightOfSweyl ; */
                     67:   local ww,i,n;
                     68:   if(Length(Arglist) == 1) {
                     69:     sm1(" [v s_ring_of_differential_operators 0 [(schreyer) 1]] define_ring ");
                     70:     sm1(" define_ring_variables ");
                     71:
                     72:     sm1(" [ v to_records pop ] /ww set ");
                     73:     n = Length(ww);
                     74:     WeightOfSweyl = NewArray(n*4);
                     75:     for (i=0; i< n; i++) {
                     76:       WeightOfSweyl[2*i] = ww[i];
                     77:       WeightOfSweyl[2*i+1] = 1;
                     78:     }
                     79:     for (i=0; i< n; i++) {
                     80:       WeightOfSweyl[2*n+2*i] = AddString(["D",ww[i]]);
                     81:       WeightOfSweyl[2*n+2*i+1] = 1;
                     82:     }
                     83:
                     84:   }else{
                     85:     sm1(" [v s_ring_of_differential_operators w s_weight_vector 0 [(schreyer) 1]] define_ring ");
                     86:     sm1(" define_ring_variables ");
                     87:     WeightOfSweyl = w[0];
                     88:   }
                     89: }
                     90:
                     91:
                     92: def Spoly(f) {
                     93:   sm1(f, " toString tparse /FunctionValue set ");
                     94: }
                     95:
                     96: def SreplaceZeroByZeroPoly(f) {
                     97:   if (IsArray(f)) {
                     98:      return(Map(f,"SreplaceZeroByZeroPoly"));
                     99:   }else{
                    100:      if (IsInteger(f)) {
                    101:        return(Poly(ToString(f)));
                    102:      }else{
                    103:        return(f);
                    104:      }
                    105:   }
                    106: }
                    107: def Shomogenize(f) {
                    108:   f = SreplaceZeroByZeroPoly(f);
                    109:   if (IsArray(f)) {
                    110:     sm1(f," sHomogenize2  /FunctionValue set ");
                    111:     /* sm1(f," {sHomogenize2} map  /FunctionValue set ");  */
                    112:     /* Is it correct? Double check.*/
                    113:   }else{
                    114:     sm1(f, " sHomogenize /FunctionValue set ");
                    115:   }
                    116: }
                    117:
                    118: def StoTower() {
                    119:   sm1("  [(AvoidTheSameRing)] pushEnv [ [(AvoidTheSameRing) 0] system_variable (mmLarger) (tower) switch_function ] pop popEnv ");
                    120: }
                    121:
                    122: def SsetTower(tower) {
                    123: sm1(" [(AvoidTheSameRing)] pushEnv
                    124:       [ [(AvoidTheSameRing) 0] system_variable
                    125:         [(gbListTower) tower (list) dc] system_variable
                    126:       ] pop popEnv ");
                    127: }
                    128:
                    129: def SresolutionFrameWithTower(g,opt) {
                    130:   local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof,
                    131:         gbasis;
                    132:   if (Length(Arglist) >= 2) {
                    133:     if (IsInteger(opt)) count = opt;
                    134:   }else{
                    135:     count = -1;
                    136:   }
                    137:
                    138:   sm1(" setupEnvForResolution ");
                    139:   /* If I do not put this macro, homogenization
                    140:      make a strange behavior. For example,
                    141:      [(2*x*Dx + 3*y*Dy+6) (0)] homogenize returns
                    142:      [(2*x*Dx*h + 3*y*Dy*h+6*h^3) (0)].
                    143:      4/19, 2000.
                    144:   */
                    145:
                    146:   sm1(" (mmLarger) (matrix) switch_function ");
                    147:   g = Map(g,"Shomogenize");
                    148:   if (SonAutoReduce) {
                    149:     sm1("[ (AutoReduce) ] system_variable /autof set ");
                    150:     sm1("[ (AutoReduce) 1 ] system_variable ");
                    151:   }
                    152:   gbasis = Sgroebner(g);
                    153:   g = gbasis[0];
                    154:   if (SonAutoReduce) {
                    155:     sm1("[ (AutoReduce) autof] system_variable  ");
                    156:   }
                    157:
                    158:   g = Init(g);
                    159:
                    160: /*  sm1(" setupEnvForResolution-sugar "); */
                    161:   /* -sugar is fine? */
                    162:   sm1(" setupEnvForResolution ");
                    163:
                    164:   Println(g);
                    165:   startingGB = g;
                    166:   /* ans = [ SzeroMap(g) ];  It has not been implemented. see resol1.withZeroMap */
                    167:   ans = [ ];
                    168:   gbTower = [ ];
                    169:   skelton = [ ];
                    170:   while (true) {
                    171:     /* sm1(g," res0Frame /ff set "); */
                    172:     withSkel = Sres0FrameWithSkelton(g);
                    173:     ff = withSkel[0];
                    174:     ans = Append(ans, ff[0]);
                    175:     gbTower = Join([ ff[1] ], gbTower);
                    176:     skelton = Join([ withSkel[1] ], skelton);
                    177:     g = ff[0];
                    178:     if (Length(g) == 0) break;
                    179:     SsetTower( gbTower );
                    180:     if (count == 0) break;
                    181:     count = count - 1;
                    182:   }
                    183:   return([ans,Reverse(gbTower),Join([ [ ] ], Reverse(skelton)),gbasis]);
                    184: }
                    185: HelpAdd(["SresolutionFrameWithTower",
                    186: ["It returs [resolution of the initial, gbTower, skelton, gbasis]",
                    187:  "Example: Sweyl(\"x,y\");",
                    188:  "         a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]);
                    189:
                    190: def SresolutionFrame(f,opt) {
                    191:   local ans;
                    192:   ans = SresolutionFrameWithTower(f);
                    193:   return(ans[0]);
                    194: }
                    195: /* ---------------------------- */
                    196: def ToGradedPolySet(g) {
                    197:   sm1(g," (gradedPolySet) dc /FunctionValue set ");
                    198: }
                    199:
                    200: def NewPolynomialVector(size) {
                    201:   sm1(size," (integer) dc newPolyVector /FunctionValue set ");
                    202: }
                    203:
                    204: def  SturnOffHomogenization() {
                    205:   sm1("
                    206:     [(Homogenize)] system_variable 1 eq
                    207:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message
                    208:       [(Homogenize) 0] system_variable
                    209:       [(ReduceLowerTerms) 0] system_variable
                    210:     } {  } ifelse
                    211:   ");
                    212: }
                    213: def  SturnOnHomogenization() {
                    214:   sm1("
                    215:     [(Homogenize)] system_variable 0 eq
                    216:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message
                    217:       [(Homogenize) 1] system_variable
                    218:       [(ReduceLowerTerms) 1] system_variable
                    219:     } {  } ifelse
                    220:   ");
                    221: }
                    222:
                    223: def SschreyerSkelton(g) {
                    224:   sm1(" [(schreyerSkelton) g] gbext /FunctionValue set ");
                    225: }
                    226: def Stoes(g) {
                    227:   if (IsArray(g)) {
                    228:     sm1(g," {toes} map /FunctionValue set ");
                    229:   }else{
                    230:     sm1(g," toes /FunctionValue set ");
                    231:   }
                    232: }
                    233: def Stoes_vec(g) {
                    234:     sm1(g," toes /FunctionValue set ");
                    235: }
                    236:
                    237: def Sres0Frame(g) {
                    238:   local ans;
                    239:   ans = Sres0FrameWithSkelton(g);
                    240:   return(ans[0]);
                    241: }
                    242: def Sres0FrameWithSkelton(g) {
                    243:   local t_syz, nexttower, m, t_gb, skel, betti,
                    244:         gg, k, i, j, pair, tmp, si, sj, grG, syzAll, gLength;
                    245:
                    246:   SturnOffHomogenization();
                    247:
                    248:   g = Stoes(g);
                    249:   skel = SschreyerSkelton(g);
                    250:   /* Print("Skelton is ");
                    251:   sm1_pmat(skel); */
                    252:   betti = Length(skel);
                    253:
                    254:   gLength = Length(g);
                    255:   grG = ToGradedPolySet(g);
                    256:   syzAll = NewPolynomialVector(betti);
                    257:   for (k=0; k<betti; k++) {
                    258:     pair = skel[k];
                    259:     i = pair[0,0];
                    260:     j = pair[0,1];
                    261:     si = pair[1,0];
                    262:     sj = pair[1,1];
                    263:     /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */
                    264:     Print(".");
                    265:
                    266:     t_syz = NewPolynomialVector(gLength);
                    267:     t_syz[i] = si;
                    268:     t_syz[j] = sj;
                    269:     syzAll[k] = t_syz;
                    270:   }
                    271:   t_syz = syzAll;
                    272:   Print("Done. betti="); Println(betti);
                    273:   /* Println(g);  g is in a format such as
                    274:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    275:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    276:     [y-es*x , 3*es^4*y*Dy-es^5*x , 3*es^5*y*Dy-es^6*x , ...]
                    277:     [3*es^3*y*Dy-es^5*x ]
                    278:   */
                    279:   nexttower = Init(g);
                    280:   SturnOnHomogenization();
                    281:   return([[t_syz, nexttower],skel]);
                    282: }
                    283:
                    284:
                    285: def StotalDegree(f) {
                    286:   sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set ");
                    287: }
                    288:
                    289: /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */
                    290: def Sord_w(f,w) {
                    291:   local neww,i,n;
                    292:   n = Length(w);
                    293:   neww = NewArray(n);
                    294:   for (i=0; i<n; i=i+2) {
                    295:     neww[i] = ToString(w[i]);
                    296:   }
                    297:   for (i=1; i<n; i=i+2) {
                    298:     neww[i] = IntegerToSm1Integer(w[i]);
                    299:   }
                    300:   sm1(" f neww ord_w (universalNumber) dc /FunctionValue set ");
                    301: }
                    302:
                    303:
                    304: /* This is not satisfactory. */
                    305: def SinitOfArray(f) {
                    306:   local p,pos,top;
                    307:   if (IsArray(f)) {
                    308:      sm1(f," toes init /p set ");
                    309:      sm1(p," (es). degree (universalNumber) dc /pos set ");
                    310:      return([Init(f[pos]),pos]);
                    311:   } else {
                    312:      return(Init(f));
                    313:   }
                    314: }
                    315:
                    316: def test_SinitOfArray() {
                    317:   local f, frame,p,tower,i,j,k;
                    318:   Sweyl("x,y,z");
                    319:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                    320:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                    321:   p=SresolutionFrameWithTower(f);
                    322:   sm1_pmat(p);
                    323:   sm1_pmat(SgenerateTable(p[1]));
                    324:   return(p);
                    325:   frame = p[0];
                    326:   sm1_pmat(p[1]);
                    327:   sm1_pmat(frame);
                    328:   sm1_pmat(Map(frame[0],"SinitOfArray"));
                    329:   sm1_pmat(Map(frame[1],"SinitOfArray"));
                    330:   return(p);
                    331: }
                    332:
                    333: /* f is assumed to be a monomial with toes. */
                    334: def Sdegree(f,tower,level) {
                    335:   local i;
                    336:   if (level <= 1) return(StotalDegree(f));
                    337:   i = Degree(f,es);
                    338:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
                    339: }
                    340:
                    341: def SgenerateTable(tower) {
                    342:   local height, n,i,j, ans, ans_at_each_floor;
                    343:   height = Length(tower);
                    344:   ans = NewArray(height);
                    345:   for (i=0; i<height; i++) {
                    346:     n = Length(tower[i]);
                    347:     ans_at_each_floor=NewArray(n);
                    348:     for (j=0; j<n; j++) {
                    349:       ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1);
                    350:       /* Println([i,j,ans_at_each_floor[j]]); */
                    351:     }
                    352:     ans[i] = ans_at_each_floor;
                    353:   }
                    354:   return(ans);
                    355: }
                    356: Sweyl("x,y,z");
                    357: v=[[2*x*Dx + 3*y*Dy+6, 0],
                    358:    [3*x^2*Dy + 2*y*Dx, 0],
                    359:    [0,  x^2+y^2],
                    360:    [0,  x*y]];
                    361: /*  SresolutionFrameWithTower(v); */
                    362:
                    363: def SnewArrayOfFormat(p) {
                    364:   if (IsArray(p)) {
                    365:      return(Map(p,"SnewArrayOfFormat"));
                    366:   }else{
                    367:      return(null);
                    368:   }
                    369: }
                    370: def SminOfStrategy(a) {
                    371:   local n,i,ans,tt;
                    372:   ans = 100000; /* very big number */
                    373:   if (IsArray(a)) {
                    374:     n = Length(a);
                    375:     for (i=0; i<n; i++) {
                    376:       if (IsArray(a[i])) {
                    377:         tt = SminOfStrategy(a[i]);
                    378:         if (tt < ans) ans = tt;
                    379:       }else{
                    380:         if (a[i] < ans) ans = a[i];
                    381:       }
                    382:     }
                    383:   }else{
                    384:      if (a < ans) ans = a;
                    385:   }
                    386:   return(ans);
                    387: }
                    388: def SmaxOfStrategy(a) {
                    389:   local n,i,ans,tt;
                    390:   ans = -100000; /* very small number */
                    391:   if (IsArray(a)) {
                    392:     n = Length(a);
                    393:     for (i=0; i<n; i++) {
                    394:       if (IsArray(a[i])) {
                    395:         tt = SmaxOfStrategy(a[i]);
                    396:         if (tt > ans) ans = tt;
                    397:       }else{
                    398:         if (a[i] > ans) ans = a[i];
                    399:       }
                    400:     }
                    401:   }else{
                    402:      if (a > ans) ans = a;
                    403:   }
                    404:   return(ans);
                    405: }
                    406:
                    407:
                    408: def SlaScala(g) {
                    409:   local rf, tower, reductionTable, skel, redundantTable, bases,
                    410:         strategy, maxOfStrategy, height, level, n, i,
                    411:         freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
                    412:         redundantTable_ordinary, redundant_seq_ordinary;
                    413:   /* extern WeightOfSweyl; */
                    414:   ww = WeightOfSweyl;
                    415:   Print("WeghtOfSweyl="); Println(WeightOfSweyl);
                    416:   rf = SresolutionFrameWithTower(g);
                    417:   redundant_seq = 1;   redundant_seq_ordinary = 1;
                    418:   tower = rf[1];
                    419:   reductionTable = SgenerateTable(tower);
                    420:   skel = rf[2];
                    421:   redundantTable = SnewArrayOfFormat(rf[1]);
                    422:   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
                    423:   reducer = SnewArrayOfFormat(rf[1]);
                    424:   freeRes = SnewArrayOfFormat(rf[1]);
                    425:   bettiTable = SsetBettiTable(rf[1],g);
                    426:
                    427:   strategy = SminOfStrategy( reductionTable );
                    428:   maxOfStrategy = SmaxOfStrategy( reductionTable );
                    429:   height = Length(reductionTable);
                    430:   while (strategy <= maxOfStrategy) {
                    431:     for (level = 0; level < height; level++) {
                    432:       n = Length(reductionTable[level]);
                    433:       for (i=0; i<n; i++) {
                    434:         if (reductionTable[level,i] == strategy) {
                    435:            Print("Processing "); Print([level,i]);
                    436:            Print("   Strategy = "); Println(strategy);
                    437:            if (level == 0) {
                    438:              if (IsNull(redundantTable[level,i])) {
                    439:                bases = freeRes[level];
                    440:                /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
                    441:                pos = SwhereInGB(tower[0,i],rf[3,0]);
                    442:                bases[i] = rf[3,0,pos];
                    443:                redundantTable[level,i] = 0;
                    444:                redundantTable_ordinary[level,i] = 0;
                    445:                freeRes[level] = bases;
                    446:                /* Println(["GB=",i,bases,tower[0,i]]); */
                    447:              }
                    448:            }else{ /* level >= 1 */
                    449:              if (IsNull(redundantTable[level,i])) {
                    450:                bases = freeRes[level];
                    451:                f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    452:                if (f[0] != Poly("0")) {
                    453:                   place = f[3];
                    454:                   /* (level-1, place) is the place for f[0],
                    455:                      which is a newly obtained  GB. */
                    456: #ifdef ORDINARY
                    457:                   redundantTable[level-1,place] = redundant_seq;
                    458:                   redundant_seq++;
                    459: #else
                    460:                   if (f[4] > f[5]) {
                    461:                     /* Zero in the gr-module */
                    462:                     Print("v-degree of [org,remainder] = ");
                    463:                     Println([f[4],f[5]]);
                    464:                     Print("[level,i] = "); Println([level,i]);
                    465:                     redundantTable[level-1,place] = 0;
                    466:                   }else{
                    467:                     redundantTable[level-1,place] = redundant_seq;
                    468:                     redundant_seq++;
                    469:                   }
                    470: #endif
                    471:                   redundantTable_ordinary[level-1,place]
                    472:                      =redundant_seq_ordinary;
                    473:                   redundant_seq_ordinary++;
                    474:                   bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
                    475:                   redundantTable[level,i] = 0;
                    476:                   redundantTable_ordinary[level,i] = 0;
                    477:                   /* i must be equal to f[2], I think. Double check. */
                    478:                   freeRes[level] = bases;
                    479:                   bases = freeRes[level-1];
                    480:                   bases[place] = f[0];
                    481:                   freeRes[level-1] = bases;
                    482:                   reducer[level-1,place] = f[1];
                    483:                }else{
                    484:                   redundantTable[level,i] = 0;
                    485:                   bases = freeRes[level];
                    486:                   bases[i] = f[1];  /* Put the syzygy. */
                    487:                   freeRes[level] = bases;
                    488:                }
                    489:              }
                    490:            } /* end of level >= 1 */
                    491:         }
                    492:       }
                    493:     }
                    494:     strategy++;
                    495:   }
                    496:   n = Length(freeRes);
                    497:   freeResV = SnewArrayOfFormat(freeRes);
                    498:   for (i=0; i<n; i++) {
                    499:     bases = freeRes[i];
                    500:     bases = Sbases_to_vec(bases,bettiTable[i]);
                    501:     freeResV[i] = bases;
                    502:   }
                    503:   return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
                    504: }
                    505:
                    506: def SsetBettiTable(freeRes,g) {
                    507:   local level,i, n,bases,ans;
                    508:   ans = NewArray(Length(freeRes)+1);
                    509:   n = Length(freeRes);
                    510:   if (IsArray(g[0])) {
                    511:     ans[0] = Length(g[0]);
                    512:   }else{
                    513:     ans[0] = 1;
                    514:   }
                    515:   for (level=0; level<n; level++) {
                    516:     bases = freeRes[level];
                    517:     if (IsArray(bases)) {
                    518:       ans[level+1] = Length(bases);
                    519:     }else{
                    520:       ans[level+1] = 1;
                    521:     }
                    522:   }
                    523:   return(ans);
                    524: }
                    525:
                    526: def SwhereInGB(f,tower) {
                    527:   local i,n,p,q;
                    528:   n = Length(tower);
                    529:   for (i=0; i<n; i++) {
                    530:     p = MonomialPart(tower[i]);
                    531:     q = MonomialPart(f);
                    532:     if (p == q) return(i);
                    533:   }
                    534:   Println([f,tower]);
                    535:   Error("whereInGB : [f,myset]: f could not be found in the myset.");
                    536: }
                    537: def SunitOfFormat(pos,forms) {
                    538:   local ans,i,n;
                    539:   n = Length(forms);
                    540:   ans = NewArray(n);
                    541:   for (i=0; i<n; i++) {
                    542:     if (i != pos) {
                    543:       ans[i] = Poly("0");
                    544:     }else{
                    545:       ans[i] = Poly("1");
                    546:     }
                    547:   }
                    548:   return(ans);
                    549: }
                    550:
                    551: def Error(s) {
                    552:   sm1(" s error ");
                    553: }
                    554:
                    555: def IsNull(s) {
                    556:   if (Stag(s) == 0) return(true);
                    557:   else return(false);
                    558: }
                    559:
                    560: def StowerOf(tower,level) {
                    561:   local ans,i;
                    562:   ans = [ ];
                    563:   if (level == 0) return([[]]);
                    564:   for (i=0; i<level; i++) {
                    565:     ans = Append(ans,tower[i]);
                    566:   }
                    567:   return(Reverse(ans));
                    568: }
                    569:
                    570: def Sspolynomial(f,g) {
                    571:   if (IsArray(f)) {
                    572:     f = Stoes_vec(f);
                    573:   }
                    574:   if (IsArray(g)) {
                    575:     g = Stoes_vec(g);
                    576:   }
                    577:   sm1("f g spol /FunctionValue set");
                    578: }
                    579:
                    580: def MonomialPart(f) {
                    581:   sm1(" [(lmonom) f] gbext /FunctionValue set ");
                    582: }
                    583:
                    584: def SwhereInTower(f,tower) {
                    585:   local i,n,p,q;
                    586:   if (f == Poly("0")) return(-1);
                    587:   n = Length(tower);
                    588:   for (i=0; i<n; i++) {
                    589:     p = MonomialPart(tower[i]);
                    590:     q = MonomialPart(f);
                    591:     if (p == q) return(i);
                    592:   }
                    593:   Println([f,tower]);
                    594:   Error("[f,tower]: f could not be found in the tower.");
                    595: }
                    596:
                    597: def Stag(f) {
                    598:   sm1(f," tag (universalNumber) dc /FunctionValue set");
                    599: }
                    600:
                    601: def SpairAndReduction(skel,level,ii,freeRes,tower,ww) {
                    602:   local i, j, myindex, p, bases, tower2, gi, gj,
                    603:        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
                    604:        vdeg,vdeg_reduced;
                    605:   Println("SpairAndReduction:");
                    606:
                    607:   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
                    608:   p = skel[level,ii];
                    609:   myindex = p[0];
                    610:   i = myindex[0]; j = myindex[1];
                    611:   bases = freeRes[level-1];
                    612:   Println(["p and bases ",p,bases]);
                    613:   if (IsNull(bases[i]) || IsNull(bases[j])) {
                    614:     Println([level,i,j,bases[i],bases[j]]);
                    615:     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
                    616:   }
                    617:
                    618:   tower2 = StowerOf(tower,level-1);
                    619:   SsetTower(tower2);
                    620:   /** sm1(" show_ring ");   */
                    621:
                    622:   gi = Stoes_vec(bases[i]);
                    623:   gj = Stoes_vec(bases[j]);
                    624:
                    625:   ssp = Sspolynomial(gi,gj);
                    626:   si = ssp[0,0];
                    627:   sj = ssp[0,1];
                    628:   syzHead = si*es^i;
                    629:   /* This will be the head term, I think. But, double check. */
                    630:   Println([si*es^i,sj*es^j]);
                    631:
                    632:   Print("[gi, gj] = "); Println([gi,gj]);
                    633:   sm1(" [(Homogenize)] system_variable message ");
                    634:   Print("Reduce the element "); Println(si*gi+sj*gj);
                    635:   Print("by  "); Println(bases);
                    636:
                    637:   tmp = Sreduction(si*gi+sj*gj, bases);
                    638:
                    639:   Print("result is "); Println(tmp);
                    640:
1.3     ! takayama  641:   /* This is essential part for V-minimal resolution. */
        !           642:   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
        !           643:   vdeg = SvDegree(si*gi,tower,level-1,ww);
1.1       takayama  644:   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);
                    645:   Print("vdegree of the original = "); Println(vdeg);
                    646:   Print("vdegree of the remainder = "); Println(vdeg_reduced);
                    647:
                    648:   t_syz = tmp[2];
                    649:   si = si*tmp[1]+t_syz[i];
                    650:   sj = sj*tmp[1]+t_syz[j];
                    651:   t_syz[i] = si;
                    652:   t_syz[j] = sj;
                    653:   pos = SwhereInTower(syzHead,tower[level]);
                    654:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
                    655:   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced];
                    656:   /* pos is the place to put syzygy at level. */
                    657:   /* pos2 is the place to put a new GB at level-1. */
                    658:   Println(ans);
                    659:   return(ans);
                    660: }
                    661:
                    662: def Sreduction(f,myset) {
                    663:   local n, indexTable, set2, i, j, tmp, t_syz;
                    664:   n = Length(myset);
                    665:   indexTable = NewArray(n);
                    666:   set2 = [ ];
                    667:   j = 0;
                    668:   for (i=0; i<n; i++) {
                    669:     if (IsNull(myset[i])) {
                    670:       indexTable[i] = -1;
                    671: /*    }else if (myset[i] == Poly("0")) {
                    672:       indexTable[i] = -1;  */
                    673:     }else{
                    674:       set2 = Append(set2,Stoes_vec(myset[i]));
                    675:       indexTable[i] = j;
                    676:       j++;
                    677:     }
                    678:   }
                    679:   sm1(" f toes set2 (gradedPolySet) dc reduction /tmp set ");
                    680:   t_syz = NewArray(n);
                    681:   for (i=0; i<n; i++) {
                    682:     if (indexTable[i] != -1) {
                    683:       t_syz[i] = tmp[2, indexTable[i]];
                    684:     }else{
                    685:       t_syz[i] = Poly("0");
                    686:     }
                    687:   }
                    688:   return([tmp[0],tmp[1],t_syz]);
                    689: }
                    690:
                    691: def Warning(s) {
                    692:   Print("Warning: ");
                    693:   Println(s);
                    694: }
                    695: def RingOf(f) {
                    696:   local r;
                    697:   if (IsPolynomial(f)) {
                    698:     if (f != Poly("0")) {
                    699:       sm1(f," (ring) dc /r set ");
                    700:     }else{
                    701:       sm1(" [(CurrentRingp)] system_variable /r set ");
                    702:     }
                    703:   }else{
                    704:     Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
                    705:     sm1(" [(CurrentRingp)] system_variable /r set ");
                    706:   }
                    707:   return(r);
                    708: }
                    709:
                    710: def Sfrom_es(f,size) {
                    711:   local c,ans, i, d, myes, myee, j,n,r,ans2;
                    712:   if (Length(Arglist) < 2) size = -1;
                    713:   if (IsArray(f)) return(f);
                    714:   r = RingOf(f);
                    715:   myes = PolyR("es",r);
                    716:   myee = PolyR("e_",r);
                    717:   if (Degree(f,myee) > 0 && size == -1) {
                    718:     if (size == -1) {
                    719:        sm1(f," (array) dc /ans set");
                    720:        return(ans);
                    721:     }
                    722:   }
                    723:
                    724: /*
                    725:     Coefficients(x^2-1,x):
                    726:     [    [    2 , 0 ]  , [    1 , -1 ]  ]
                    727: */
                    728:   if (Degree(f,myee) > 0) {
                    729:     c = Coefficients(f,myee);
                    730:   }else{
                    731:     c = Coefficients(f,myes);
                    732:   }
                    733:   if (size < 0) {
                    734:     size = c[0,0]+1;
                    735:   }
                    736:   ans = NewArray(size);
                    737:   for (i=0; i<size; i++) {ans[i] = 0;}
                    738:   n = Length(c[0]);
                    739:   for (j=0; j<n; j++) {
                    740:     d = c[0,j];
                    741:     ans[d] = c[1,j];
                    742:   }
                    743:   return(ans);
                    744: }
                    745:
                    746: def Sbases_to_vec(bases,size) {
                    747:   local n, giveSize, newbases,i;
                    748:   /*  bases = [1+es*x, [1,2,3*x]] */
                    749:   if (Length(Arglist) > 1) {
                    750:     giveSize = true;
                    751:   }else{
                    752:     giveSize = false;
                    753:   }
                    754:   n = Length(bases);
                    755:   newbases = NewArray(n);
                    756:   for (i=0; i<n; i++) {
                    757:      if (giveSize) {
                    758:        newbases[i] = Sfrom_es(bases[i], size);
                    759:      }else{
                    760:        newbases[i] = Sfrom_es(bases[i]);
                    761:      }
                    762:   }
                    763:   return(newbases);
                    764: }
                    765:
                    766: def Sminimal(g) {
                    767:   local r, freeRes, redundantTable, reducer, maxLevel,
                    768:         minRes, seq, maxSeq, level, betti, q, bases, dr,
                    769:         betti_levelplus, newbases, i, j,qq;
                    770:   r = SlaScala(g);
                    771:   /* Should I turn off the tower?? */
                    772:   freeRes = r[0];
                    773:   redundantTable = r[1];
                    774:   reducer = r[2];
                    775:   minRes = SnewArrayOfFormat(freeRes);
                    776:   seq = 0;
                    777:   maxSeq = SgetMaxSeq(redundantTable);
                    778:   maxLevel = Length(freeRes);
                    779:   for (level = 0; level < maxLevel; level++) {
                    780:     minRes[level] = freeRes[level];
                    781:   }
                    782:   seq=maxSeq+1;
                    783:   while (seq > 1) {
                    784:     seq--;
                    785:     for (level = 0; level < maxLevel; level++) {
                    786:       betti = Length(freeRes[level]);
                    787:       for (q = 0; q<betti; q++) {
                    788:         if (redundantTable[level,q] == seq) {
                    789:           Print("[seq,level,q]="); Println([seq,level,q]);
                    790:           if (level < maxLevel-1) {
                    791:             bases = freeRes[level+1];
                    792:             dr = reducer[level,q];
                    793:             dr[q] = -1;
                    794:             newbases = SnewArrayOfFormat(bases);
                    795:             betti_levelplus = Length(bases);
                    796:             /*
                    797:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                    798:             */
                    799:             for (i=0; i<betti_levelplus; i++) {
                    800:               newbases[i] = bases[i] + bases[i,q]*dr;
                    801:             }
                    802:             Println(["level, q =", level,q]);
                    803:             Println("bases="); sm1_pmat(bases);
                    804:             Println("dr="); sm1_pmat(dr);
                    805:             Println("newbases="); sm1_pmat(newbases);
                    806:             minRes[level+1] = newbases;
                    807:             freeRes = minRes;
                    808: #ifdef DEBUG
                    809:             for (qq=0; qq<betti; qq++) {
                    810:               if ((redundantTable[level,qq] >= seq) &&
                    811:                   (redundantTable[level,qq] <= maxSeq)) {
                    812:                 for (i=0; i<betti_levelplus; i++) {
                    813:                   if (!IsZero(newbases[i,qq])) {
                    814:                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
                    815:                     Print("redundantTable ="); sm1_pmat(redundantTable[level]);
                    816:                     Error("Stop in Sminimal for debugging.");
                    817:                   }
                    818:                 }
                    819:               }
                    820:             }
                    821: #endif
                    822:           }
                    823:         }
                    824:       }
                    825:     }
                    826:    }
                    827:    return([Stetris(minRes,redundantTable),
1.3     ! takayama  828:           [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
1.1       takayama  829:   /* r[4] is the redundantTable_ordinary */
1.3     ! takayama  830:   /* r[0] is the freeResolution */
1.1       takayama  831: }
                    832:
                    833:
                    834: def IsZero(f) {
                    835:   if (IsPolynomial(f)) {
                    836:     return( f == Poly("0"));
                    837:   }else if (IsInteger(f)) {
                    838:     return( f == 0);
                    839:   }else if (IsSm1Integer(f)) {
                    840:     return( f == true );
                    841:   }else if (IsDouble(f)) {
                    842:     return( f == 0.0 );
                    843:   }else if (IsRational(f)) {
                    844:     return(IsZero(Denominator(f)));
                    845:   }else{
                    846:     Error("IsZero: cannot deal with this data type.");
                    847:   }
                    848: }
                    849: def SgetMaxSeq(redundantTable) {
                    850:    local level,i,n,ans, levelMax,bases;
                    851:    levelMax = Length( redundantTable );
                    852:    ans = 0;
                    853:    for (level = 0; level < levelMax; level++) {
                    854:      bases = redundantTable[level];
                    855:      n = Length(bases);
                    856:      for (i=0; i<n; i++) {
                    857:        if (IsInteger( bases[i] )) {
                    858:           if (bases[i] > ans) {
                    859:              ans = bases[i];
                    860:           }
                    861:        }
                    862:      }
                    863:    }
                    864:    return(ans);
                    865: }
                    866:
                    867: def Stetris(freeRes,redundantTable) {
                    868:   local level, i, j, resLength, minRes,
                    869:         bases, newbases, newbases2;
                    870:   minRes = SnewArrayOfFormat(freeRes);
                    871:   resLength = Length( freeRes );
                    872:   for (level=0; level<resLength; level++) {
                    873:     bases = freeRes[level];
                    874:     newbases = SnewArrayOfFormat(bases);
                    875:     betti = Length(bases); j = 0;
                    876:     /* Delete rows */
                    877:     for (i=0; i<betti; i++) {
                    878:       if (redundantTable[level,i] < 1) {
                    879:          newbases[j] = bases[i];
                    880:          j++;
                    881:       }
                    882:     }
                    883:     bases = SfirstN(newbases,j);
                    884:     if (level > 0) {
                    885:       /* Delete columns */
                    886:       newbases = Transpose(bases);
                    887:       betti = Length(newbases); j = 0;
                    888:       newbases2 = SnewArrayOfFormat(newbases);
                    889:       for (i=0; i<betti; i++) {
                    890:         if (redundantTable[level-1,i] < 1) {
                    891:            newbases2[j] = newbases[i];
                    892:            j++;
                    893:         }
                    894:       }
                    895:       newbases = Transpose(SfirstN(newbases2,j));
                    896:     }else{
                    897:       newbases = bases;
                    898:     }
                    899:     Println(["level=", level]);
                    900:     sm1_pmat(bases);
                    901:     sm1_pmat(newbases);
                    902:
                    903:     minRes[level] = newbases;
                    904:   }
                    905:   return(minRes);
                    906: }
                    907:
                    908: def SfirstN(bases,k) {
                    909:    local ans,i;
                    910:    ans = NewArray(k);
                    911:    for (i=0; i<k; i++) {
                    912:      ans[i] = bases[i];
                    913:    }
                    914:    return(ans);
                    915: }
                    916:
                    917:
                    918: /* usage:  tt is tower. ww is weight.
                    919:     a = SresolutionFrameWithTower(v);
                    920:     tt = a[1];
                    921:     ww = [x,1,y,1,Dx,1,Dy,1];
                    922:     SvDegree(x*es,tt,1,ww):
                    923:
                    924: In(17)=tt:
                    925: [[2*x*Dx , e_*x^2 , e_*x*y , 3*x^2*Dy , e_*y^3 , 9*x*y*Dy^2 , 27*y^2*Dy^3 ]  ,
                    926:  [es*y , 3*es^3*y*Dy , 3*es^5*y*Dy , 3*x*Dy , es^2*y^2 , 9*y*Dy^2 ]  ,
                    927:  [3*es^3*y*Dy ]  ]
                    928: In(18)=SvDegree(x*es,tt,1,ww):
                    929: 3
                    930: In(19)=SvDegree(x*es^3,tt,1,ww):
                    931: 4
                    932: In(20)=SvDegree(x,tt,2,ww):
                    933: 4
                    934:
                    935: */
                    936: def SvDegree(f,tower,level,w) {
                    937:   local i,ans;
                    938:   if (IsZero(f)) return(null);
1.3     ! takayama  939:   f = Init(f);
1.1       takayama  940:   if (level <= 0) {
                    941:     return(Sord_w(f,w));
                    942:   }
                    943:   i = Degree(f,es);
                    944:   ans = Sord_w(f,w) +
                    945:         SvDegree(tower[level-1,i],tower,level-1,w);
                    946:   return(ans);
                    947: }
                    948:
1.2       takayama  949: def Sannfs(f,v) {
                    950:   local f2;
                    951:   f2 = ToString(f);
                    952:   if (IsArray(v)) {
                    953:      v = Map(v,"ToString");
                    954:   }
                    955:   sm1(" [f2 v] annfs /FunctionValue set ");
                    956: }
                    957:
                    958: /* Sannfs2("x^3-y^2"); */
                    959: def Sannfs2(f) {
                    960:   local p,pp;
                    961:   p = Sannfs(f,"x,y");
                    962:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                    963:   pp = Map(p[0],"Spoly");
                    964:   return(Sminimal(pp));
                    965: }
                    966:
1.3     ! takayama  967: def Sannfs3(f) {
        !           968:   local p,pp;
        !           969:   p = Sannfs(f,"x,y,z");
        !           970:   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
        !           971:   pp = Map(p[0],"Spoly");
        !           972:   return(Sminimal(pp));
        !           973: }
        !           974:
1.2       takayama  975: /*
                    976:   The betti numbers of most examples are 2,1. (0-th and 1-th).
                    977:   a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2.
                    978:   a=Sannfs2("x^3-y^2-x");    : it causes an error. It should be fixed.
1.3     ! takayama  979:   a=Sannfs2("x*y*(x-y)");    : it causes an error. It should be fixed.
1.2       takayama  980:
                    981: */
                    982:
                    983:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>