[BACK]Return to minimal.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / minimal

Annotation of OpenXM/src/k097/lib/minimal/minimal.k, Revision 1.4

1.4     ! takayama    1: /* $OpenXM: OpenXM/src/k097/lib/minimal/minimal.k,v 1.3 2000/05/04 06:55:28 takayama Exp $ */
1.1       takayama    2: #define DEBUG 1
                      3: /* #define ORDINARY 1 */
1.4     ! takayama    4: /* If you run this program on openxm version 1.1.2 (FreeBSD),
        !             5:    make a symbolic link by the command
        !             6:    ln -s /usr/bin/cpp /lib/cpp
        !             7: */
1.1       takayama    8: /* Test sequences.
                      9:    Use load["minimal.k"];;
                     10:
                     11:    a=Sminimal(v);
                     12:    b=a[0];
                     13:    b[1]*b[0]:
                     14:    b[2]*b[1]:
                     15:
                     16:    a = test0();
                     17:    b = a[0];
                     18:    b[1]*b[0]:
                     19:    b[2]*b[1]:
                     20:    a = Sminimal(b[0]);
                     21:
                     22:    a = test1();
                     23:    b=a[0];
                     24:    b[1]*b[0]:
                     25:    b[2]*b[1]:
                     26:
                     27: */
                     28:
                     29:
                     30: load("cohom.k");
                     31: def load_tower() {
                     32:   if (Boundp("k0-tower.sm1.loaded")) {
                     33:   }else{
                     34:     sm1(" [(parse) (k0-tower.sm1) pushfile ] extension ");
                     35:     sm1(" /k0-tower.sm1.loaded 1 def ");
                     36:   }
                     37: }
                     38: load_tower();
                     39: SonAutoReduce = true;
                     40: def Factor(f) {
                     41:    sm1(f, " fctr /FunctionValue set");
                     42: }
                     43: def Reverse(f) {
                     44:    sm1(f," reverse /FunctionValue set");
                     45: }
                     46: def Sgroebner(f) {
                     47:    sm1(" [f] groebner /FunctionValue set");
                     48: }
                     49: def test0() {
                     50:   local f;
                     51:   Sweyl("x,y,z");
                     52:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     53:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     54:   frame=SresolutionFrame(f);
                     55:   Println(frame);
                     56:   /* return(frame); */
                     57:   return(SlaScala(f));
                     58: }
                     59: def test1() {
                     60:   local f;
                     61:   Sweyl("x,y,z");
                     62:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                     63:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                     64:   return(Sminimal(f));
                     65: }
                     66:
                     67:
                     68:
                     69: def Sweyl(v,w) {
                     70:   /* extern WeightOfSweyl ; */
                     71:   local ww,i,n;
                     72:   if(Length(Arglist) == 1) {
                     73:     sm1(" [v s_ring_of_differential_operators 0 [(schreyer) 1]] define_ring ");
                     74:     sm1(" define_ring_variables ");
                     75:
                     76:     sm1(" [ v to_records pop ] /ww set ");
                     77:     n = Length(ww);
                     78:     WeightOfSweyl = NewArray(n*4);
                     79:     for (i=0; i< n; i++) {
                     80:       WeightOfSweyl[2*i] = ww[i];
                     81:       WeightOfSweyl[2*i+1] = 1;
                     82:     }
                     83:     for (i=0; i< n; i++) {
                     84:       WeightOfSweyl[2*n+2*i] = AddString(["D",ww[i]]);
                     85:       WeightOfSweyl[2*n+2*i+1] = 1;
                     86:     }
                     87:
                     88:   }else{
                     89:     sm1(" [v s_ring_of_differential_operators w s_weight_vector 0 [(schreyer) 1]] define_ring ");
                     90:     sm1(" define_ring_variables ");
                     91:     WeightOfSweyl = w[0];
                     92:   }
                     93: }
                     94:
                     95:
                     96: def Spoly(f) {
                     97:   sm1(f, " toString tparse /FunctionValue set ");
                     98: }
                     99:
                    100: def SreplaceZeroByZeroPoly(f) {
                    101:   if (IsArray(f)) {
                    102:      return(Map(f,"SreplaceZeroByZeroPoly"));
                    103:   }else{
                    104:      if (IsInteger(f)) {
                    105:        return(Poly(ToString(f)));
                    106:      }else{
                    107:        return(f);
                    108:      }
                    109:   }
                    110: }
                    111: def Shomogenize(f) {
                    112:   f = SreplaceZeroByZeroPoly(f);
                    113:   if (IsArray(f)) {
                    114:     sm1(f," sHomogenize2  /FunctionValue set ");
                    115:     /* sm1(f," {sHomogenize2} map  /FunctionValue set ");  */
                    116:     /* Is it correct? Double check.*/
                    117:   }else{
                    118:     sm1(f, " sHomogenize /FunctionValue set ");
                    119:   }
                    120: }
                    121:
                    122: def StoTower() {
                    123:   sm1("  [(AvoidTheSameRing)] pushEnv [ [(AvoidTheSameRing) 0] system_variable (mmLarger) (tower) switch_function ] pop popEnv ");
                    124: }
                    125:
                    126: def SsetTower(tower) {
                    127: sm1(" [(AvoidTheSameRing)] pushEnv
                    128:       [ [(AvoidTheSameRing) 0] system_variable
                    129:         [(gbListTower) tower (list) dc] system_variable
                    130:       ] pop popEnv ");
                    131: }
                    132:
                    133: def SresolutionFrameWithTower(g,opt) {
                    134:   local gbTower, ans, ff, count, startingGB, opts, skelton,withSkel, autof,
                    135:         gbasis;
                    136:   if (Length(Arglist) >= 2) {
                    137:     if (IsInteger(opt)) count = opt;
                    138:   }else{
                    139:     count = -1;
                    140:   }
                    141:
                    142:   sm1(" setupEnvForResolution ");
                    143:   /* If I do not put this macro, homogenization
                    144:      make a strange behavior. For example,
                    145:      [(2*x*Dx + 3*y*Dy+6) (0)] homogenize returns
                    146:      [(2*x*Dx*h + 3*y*Dy*h+6*h^3) (0)].
                    147:      4/19, 2000.
                    148:   */
                    149:
                    150:   sm1(" (mmLarger) (matrix) switch_function ");
                    151:   g = Map(g,"Shomogenize");
                    152:   if (SonAutoReduce) {
                    153:     sm1("[ (AutoReduce) ] system_variable /autof set ");
                    154:     sm1("[ (AutoReduce) 1 ] system_variable ");
                    155:   }
                    156:   gbasis = Sgroebner(g);
                    157:   g = gbasis[0];
                    158:   if (SonAutoReduce) {
                    159:     sm1("[ (AutoReduce) autof] system_variable  ");
                    160:   }
                    161:
                    162:   g = Init(g);
                    163:
                    164: /*  sm1(" setupEnvForResolution-sugar "); */
                    165:   /* -sugar is fine? */
                    166:   sm1(" setupEnvForResolution ");
                    167:
                    168:   Println(g);
                    169:   startingGB = g;
                    170:   /* ans = [ SzeroMap(g) ];  It has not been implemented. see resol1.withZeroMap */
                    171:   ans = [ ];
                    172:   gbTower = [ ];
                    173:   skelton = [ ];
                    174:   while (true) {
                    175:     /* sm1(g," res0Frame /ff set "); */
                    176:     withSkel = Sres0FrameWithSkelton(g);
                    177:     ff = withSkel[0];
                    178:     ans = Append(ans, ff[0]);
                    179:     gbTower = Join([ ff[1] ], gbTower);
                    180:     skelton = Join([ withSkel[1] ], skelton);
                    181:     g = ff[0];
                    182:     if (Length(g) == 0) break;
                    183:     SsetTower( gbTower );
                    184:     if (count == 0) break;
                    185:     count = count - 1;
                    186:   }
                    187:   return([ans,Reverse(gbTower),Join([ [ ] ], Reverse(skelton)),gbasis]);
                    188: }
                    189: HelpAdd(["SresolutionFrameWithTower",
                    190: ["It returs [resolution of the initial, gbTower, skelton, gbasis]",
                    191:  "Example: Sweyl(\"x,y\");",
                    192:  "         a=SresolutionFrameWithTower([x^3,x*y,y^3-1]);"]]);
                    193:
                    194: def SresolutionFrame(f,opt) {
                    195:   local ans;
                    196:   ans = SresolutionFrameWithTower(f);
                    197:   return(ans[0]);
                    198: }
                    199: /* ---------------------------- */
                    200: def ToGradedPolySet(g) {
                    201:   sm1(g," (gradedPolySet) dc /FunctionValue set ");
                    202: }
                    203:
                    204: def NewPolynomialVector(size) {
                    205:   sm1(size," (integer) dc newPolyVector /FunctionValue set ");
                    206: }
                    207:
                    208: def  SturnOffHomogenization() {
                    209:   sm1("
                    210:     [(Homogenize)] system_variable 1 eq
                    211:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned off.) message
                    212:       [(Homogenize) 0] system_variable
                    213:       [(ReduceLowerTerms) 0] system_variable
                    214:     } {  } ifelse
                    215:   ");
                    216: }
                    217: def  SturnOnHomogenization() {
                    218:   sm1("
                    219:     [(Homogenize)] system_variable 0 eq
                    220:     { (Warning: Homogenization and ReduceLowerTerms options are automatically turned ON.) message
                    221:       [(Homogenize) 1] system_variable
                    222:       [(ReduceLowerTerms) 1] system_variable
                    223:     } {  } ifelse
                    224:   ");
                    225: }
                    226:
                    227: def SschreyerSkelton(g) {
                    228:   sm1(" [(schreyerSkelton) g] gbext /FunctionValue set ");
                    229: }
                    230: def Stoes(g) {
                    231:   if (IsArray(g)) {
                    232:     sm1(g," {toes} map /FunctionValue set ");
                    233:   }else{
                    234:     sm1(g," toes /FunctionValue set ");
                    235:   }
                    236: }
                    237: def Stoes_vec(g) {
                    238:     sm1(g," toes /FunctionValue set ");
                    239: }
                    240:
                    241: def Sres0Frame(g) {
                    242:   local ans;
                    243:   ans = Sres0FrameWithSkelton(g);
                    244:   return(ans[0]);
                    245: }
                    246: def Sres0FrameWithSkelton(g) {
                    247:   local t_syz, nexttower, m, t_gb, skel, betti,
                    248:         gg, k, i, j, pair, tmp, si, sj, grG, syzAll, gLength;
                    249:
                    250:   SturnOffHomogenization();
                    251:
                    252:   g = Stoes(g);
                    253:   skel = SschreyerSkelton(g);
                    254:   /* Print("Skelton is ");
                    255:   sm1_pmat(skel); */
                    256:   betti = Length(skel);
                    257:
                    258:   gLength = Length(g);
                    259:   grG = ToGradedPolySet(g);
                    260:   syzAll = NewPolynomialVector(betti);
                    261:   for (k=0; k<betti; k++) {
                    262:     pair = skel[k];
                    263:     i = pair[0,0];
                    264:     j = pair[0,1];
                    265:     si = pair[1,0];
                    266:     sj = pair[1,1];
                    267:     /* si g[i] + sj g[j] + \sum tmp[2][k] g[k] = 0 in res0 */
                    268:     Print(".");
                    269:
                    270:     t_syz = NewPolynomialVector(gLength);
                    271:     t_syz[i] = si;
                    272:     t_syz[j] = sj;
                    273:     syzAll[k] = t_syz;
                    274:   }
                    275:   t_syz = syzAll;
                    276:   Print("Done. betti="); Println(betti);
                    277:   /* Println(g);  g is in a format such as
                    278:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    279:     [e_*x^2 , e_*x*y , 2*x*Dx*h , ...]
                    280:     [y-es*x , 3*es^4*y*Dy-es^5*x , 3*es^5*y*Dy-es^6*x , ...]
                    281:     [3*es^3*y*Dy-es^5*x ]
                    282:   */
                    283:   nexttower = Init(g);
                    284:   SturnOnHomogenization();
                    285:   return([[t_syz, nexttower],skel]);
                    286: }
                    287:
                    288:
                    289: def StotalDegree(f) {
                    290:   sm1(" [(grade) f] gbext (universalNumber) dc /FunctionValue set ");
                    291: }
                    292:
                    293: /* Sord_w(x^2*Dx*Dy,[x,-1,Dx,1]); */
                    294: def Sord_w(f,w) {
                    295:   local neww,i,n;
                    296:   n = Length(w);
                    297:   neww = NewArray(n);
                    298:   for (i=0; i<n; i=i+2) {
                    299:     neww[i] = ToString(w[i]);
                    300:   }
                    301:   for (i=1; i<n; i=i+2) {
                    302:     neww[i] = IntegerToSm1Integer(w[i]);
                    303:   }
                    304:   sm1(" f neww ord_w (universalNumber) dc /FunctionValue set ");
                    305: }
                    306:
                    307:
                    308: /* This is not satisfactory. */
                    309: def SinitOfArray(f) {
                    310:   local p,pos,top;
                    311:   if (IsArray(f)) {
                    312:      sm1(f," toes init /p set ");
                    313:      sm1(p," (es). degree (universalNumber) dc /pos set ");
                    314:      return([Init(f[pos]),pos]);
                    315:   } else {
                    316:      return(Init(f));
                    317:   }
                    318: }
                    319:
                    320: def test_SinitOfArray() {
                    321:   local f, frame,p,tower,i,j,k;
                    322:   Sweyl("x,y,z");
                    323:   f = [x^2+y^2+z^2, x*y+x*z+y*z, x*z^2+y*z^2, y^3-x^2*z - x*y*z+y*z^2,
                    324:        -y^2*z^2 + x*z^3 + y*z^3, -z^4];
                    325:   p=SresolutionFrameWithTower(f);
                    326:   sm1_pmat(p);
                    327:   sm1_pmat(SgenerateTable(p[1]));
                    328:   return(p);
                    329:   frame = p[0];
                    330:   sm1_pmat(p[1]);
                    331:   sm1_pmat(frame);
                    332:   sm1_pmat(Map(frame[0],"SinitOfArray"));
                    333:   sm1_pmat(Map(frame[1],"SinitOfArray"));
                    334:   return(p);
                    335: }
                    336:
                    337: /* f is assumed to be a monomial with toes. */
                    338: def Sdegree(f,tower,level) {
                    339:   local i;
                    340:   if (level <= 1) return(StotalDegree(f));
                    341:   i = Degree(f,es);
                    342:   return(StotalDegree(f)+Sdegree(tower[level-2,i],tower,level-1));
                    343: }
                    344:
                    345: def SgenerateTable(tower) {
                    346:   local height, n,i,j, ans, ans_at_each_floor;
                    347:   height = Length(tower);
                    348:   ans = NewArray(height);
                    349:   for (i=0; i<height; i++) {
                    350:     n = Length(tower[i]);
                    351:     ans_at_each_floor=NewArray(n);
                    352:     for (j=0; j<n; j++) {
                    353:       ans_at_each_floor[j] = Sdegree(tower[i,j],tower,i+1)-(i+1);
                    354:       /* Println([i,j,ans_at_each_floor[j]]); */
                    355:     }
                    356:     ans[i] = ans_at_each_floor;
                    357:   }
                    358:   return(ans);
                    359: }
                    360: Sweyl("x,y,z");
                    361: v=[[2*x*Dx + 3*y*Dy+6, 0],
                    362:    [3*x^2*Dy + 2*y*Dx, 0],
                    363:    [0,  x^2+y^2],
                    364:    [0,  x*y]];
                    365: /*  SresolutionFrameWithTower(v); */
                    366:
                    367: def SnewArrayOfFormat(p) {
                    368:   if (IsArray(p)) {
                    369:      return(Map(p,"SnewArrayOfFormat"));
                    370:   }else{
                    371:      return(null);
                    372:   }
                    373: }
1.4     ! takayama  374: def ScopyArray(a) {
        !           375:   local n, i,ans;
        !           376:   n = Length(a);
        !           377:   ans = NewArray(n);
        !           378:   for (i=0; i<n; i++) {
        !           379:     ans[i] = a[i];
        !           380:   }
        !           381:   return(ans);
        !           382: }
1.1       takayama  383: def SminOfStrategy(a) {
                    384:   local n,i,ans,tt;
                    385:   ans = 100000; /* very big number */
                    386:   if (IsArray(a)) {
                    387:     n = Length(a);
                    388:     for (i=0; i<n; i++) {
                    389:       if (IsArray(a[i])) {
                    390:         tt = SminOfStrategy(a[i]);
                    391:         if (tt < ans) ans = tt;
                    392:       }else{
                    393:         if (a[i] < ans) ans = a[i];
                    394:       }
                    395:     }
                    396:   }else{
                    397:      if (a < ans) ans = a;
                    398:   }
                    399:   return(ans);
                    400: }
                    401: def SmaxOfStrategy(a) {
                    402:   local n,i,ans,tt;
                    403:   ans = -100000; /* very small number */
                    404:   if (IsArray(a)) {
                    405:     n = Length(a);
                    406:     for (i=0; i<n; i++) {
                    407:       if (IsArray(a[i])) {
                    408:         tt = SmaxOfStrategy(a[i]);
                    409:         if (tt > ans) ans = tt;
                    410:       }else{
                    411:         if (a[i] > ans) ans = a[i];
                    412:       }
                    413:     }
                    414:   }else{
                    415:      if (a > ans) ans = a;
                    416:   }
                    417:   return(ans);
                    418: }
                    419:
                    420:
                    421: def SlaScala(g) {
                    422:   local rf, tower, reductionTable, skel, redundantTable, bases,
                    423:         strategy, maxOfStrategy, height, level, n, i,
                    424:         freeRes,place, f, reducer,pos, redundant_seq,bettiTable,freeResV,ww,
1.4     ! takayama  425:         redundantTable_ordinary, redundant_seq_ordinary,
        !           426:         reductionTable_tmp;
1.1       takayama  427:   /* extern WeightOfSweyl; */
                    428:   ww = WeightOfSweyl;
                    429:   Print("WeghtOfSweyl="); Println(WeightOfSweyl);
                    430:   rf = SresolutionFrameWithTower(g);
                    431:   redundant_seq = 1;   redundant_seq_ordinary = 1;
                    432:   tower = rf[1];
                    433:   reductionTable = SgenerateTable(tower);
                    434:   skel = rf[2];
                    435:   redundantTable = SnewArrayOfFormat(rf[1]);
                    436:   redundantTable_ordinary = SnewArrayOfFormat(rf[1]);
                    437:   reducer = SnewArrayOfFormat(rf[1]);
                    438:   freeRes = SnewArrayOfFormat(rf[1]);
                    439:   bettiTable = SsetBettiTable(rf[1],g);
                    440:
                    441:   strategy = SminOfStrategy( reductionTable );
                    442:   maxOfStrategy = SmaxOfStrategy( reductionTable );
                    443:   height = Length(reductionTable);
                    444:   while (strategy <= maxOfStrategy) {
                    445:     for (level = 0; level < height; level++) {
                    446:       n = Length(reductionTable[level]);
1.4     ! takayama  447:       reductionTable_tmp = ScopyArray(reductionTable[level]);
        !           448:       while (SthereIs(reductionTable_tmp,strategy)) {
        !           449:         i = SnextI(reductionTable_tmp,strategy,redundantTable,
        !           450:                    skel,level,freeRes);
        !           451:         Println([level,i]);
        !           452:         reductionTable_tmp[i] = -200000;
1.1       takayama  453:         if (reductionTable[level,i] == strategy) {
                    454:            Print("Processing "); Print([level,i]);
                    455:            Print("   Strategy = "); Println(strategy);
                    456:            if (level == 0) {
                    457:              if (IsNull(redundantTable[level,i])) {
                    458:                bases = freeRes[level];
                    459:                /* Println(["At floor : GB=",i,bases,tower[0,i]]); */
                    460:                pos = SwhereInGB(tower[0,i],rf[3,0]);
                    461:                bases[i] = rf[3,0,pos];
                    462:                redundantTable[level,i] = 0;
                    463:                redundantTable_ordinary[level,i] = 0;
                    464:                freeRes[level] = bases;
                    465:                /* Println(["GB=",i,bases,tower[0,i]]); */
                    466:              }
                    467:            }else{ /* level >= 1 */
                    468:              if (IsNull(redundantTable[level,i])) {
                    469:                bases = freeRes[level];
                    470:                f = SpairAndReduction(skel,level,i,freeRes,tower,ww);
                    471:                if (f[0] != Poly("0")) {
                    472:                   place = f[3];
                    473:                   /* (level-1, place) is the place for f[0],
                    474:                      which is a newly obtained  GB. */
                    475: #ifdef ORDINARY
                    476:                   redundantTable[level-1,place] = redundant_seq;
                    477:                   redundant_seq++;
                    478: #else
                    479:                   if (f[4] > f[5]) {
                    480:                     /* Zero in the gr-module */
                    481:                     Print("v-degree of [org,remainder] = ");
                    482:                     Println([f[4],f[5]]);
                    483:                     Print("[level,i] = "); Println([level,i]);
                    484:                     redundantTable[level-1,place] = 0;
                    485:                   }else{
                    486:                     redundantTable[level-1,place] = redundant_seq;
                    487:                     redundant_seq++;
                    488:                   }
                    489: #endif
                    490:                   redundantTable_ordinary[level-1,place]
                    491:                      =redundant_seq_ordinary;
                    492:                   redundant_seq_ordinary++;
                    493:                   bases[i] = SunitOfFormat(place,f[1])-f[1];  /* syzygy */
                    494:                   redundantTable[level,i] = 0;
                    495:                   redundantTable_ordinary[level,i] = 0;
                    496:                   /* i must be equal to f[2], I think. Double check. */
                    497:                   freeRes[level] = bases;
                    498:                   bases = freeRes[level-1];
                    499:                   bases[place] = f[0];
                    500:                   freeRes[level-1] = bases;
                    501:                   reducer[level-1,place] = f[1];
                    502:                }else{
                    503:                   redundantTable[level,i] = 0;
                    504:                   bases = freeRes[level];
                    505:                   bases[i] = f[1];  /* Put the syzygy. */
                    506:                   freeRes[level] = bases;
                    507:                }
                    508:              }
                    509:            } /* end of level >= 1 */
                    510:         }
                    511:       }
                    512:     }
                    513:     strategy++;
                    514:   }
                    515:   n = Length(freeRes);
                    516:   freeResV = SnewArrayOfFormat(freeRes);
                    517:   for (i=0; i<n; i++) {
                    518:     bases = freeRes[i];
                    519:     bases = Sbases_to_vec(bases,bettiTable[i]);
                    520:     freeResV[i] = bases;
                    521:   }
                    522:   return([freeResV, redundantTable,reducer,bettiTable,redundantTable_ordinary]);
                    523: }
1.4     ! takayama  524:
        !           525: def SthereIs(reductionTable_tmp,strategy) {
        !           526:   local n,i;
        !           527:   n = Length(reductionTable_tmp);
        !           528:   for (i=0; i<n; i++) {
        !           529:     if (reductionTable_tmp[i] == strategy) {
        !           530:       return(true);
        !           531:     }
        !           532:   }
        !           533:   return(false);
        !           534: }
        !           535:
        !           536: def SnextI(reductionTable_tmp,strategy,redundantTable,
        !           537:                                   skel,level,freeRes)
        !           538: {
        !           539:    local ii,n,p,myindex,i,j,bases;
        !           540:    n = Length(reductionTable_tmp);
        !           541:    if (level == 0) {
        !           542:      for (ii=0; ii<n; ii++) {
        !           543:        if (reductionTable_tmp[ii] == strategy) {
        !           544:           return(ii);
        !           545:         }
        !           546:       }
        !           547:    }else{
        !           548:      for (ii=0; ii<n; ii++) {
        !           549:        if (reductionTable_tmp[ii] == strategy) {
        !           550:          p = skel[level,ii];
        !           551:          myindex = p[0];
        !           552:          i = myindex[0]; j = myindex[1];
        !           553:          bases = freeRes[level-1];
        !           554:          if (IsNull(bases[i]) || IsNull(bases[j])) {
        !           555:
        !           556:          }else{
        !           557:            return(ii);
        !           558:          }
        !           559:        }
        !           560:      }
        !           561:    }
        !           562:    Println(reductionTable_tmp);
        !           563:    Error("SnextI: bases[i] or bases[j] is null for all combinations.");
        !           564: }
        !           565:
        !           566:
1.1       takayama  567:
                    568: def SsetBettiTable(freeRes,g) {
                    569:   local level,i, n,bases,ans;
                    570:   ans = NewArray(Length(freeRes)+1);
                    571:   n = Length(freeRes);
                    572:   if (IsArray(g[0])) {
                    573:     ans[0] = Length(g[0]);
                    574:   }else{
                    575:     ans[0] = 1;
                    576:   }
                    577:   for (level=0; level<n; level++) {
                    578:     bases = freeRes[level];
                    579:     if (IsArray(bases)) {
                    580:       ans[level+1] = Length(bases);
                    581:     }else{
                    582:       ans[level+1] = 1;
                    583:     }
                    584:   }
                    585:   return(ans);
                    586: }
                    587:
                    588: def SwhereInGB(f,tower) {
                    589:   local i,n,p,q;
                    590:   n = Length(tower);
                    591:   for (i=0; i<n; i++) {
                    592:     p = MonomialPart(tower[i]);
                    593:     q = MonomialPart(f);
                    594:     if (p == q) return(i);
                    595:   }
                    596:   Println([f,tower]);
                    597:   Error("whereInGB : [f,myset]: f could not be found in the myset.");
                    598: }
                    599: def SunitOfFormat(pos,forms) {
                    600:   local ans,i,n;
                    601:   n = Length(forms);
                    602:   ans = NewArray(n);
                    603:   for (i=0; i<n; i++) {
                    604:     if (i != pos) {
                    605:       ans[i] = Poly("0");
                    606:     }else{
                    607:       ans[i] = Poly("1");
                    608:     }
                    609:   }
                    610:   return(ans);
                    611: }
                    612:
                    613: def Error(s) {
                    614:   sm1(" s error ");
                    615: }
                    616:
                    617: def IsNull(s) {
                    618:   if (Stag(s) == 0) return(true);
                    619:   else return(false);
                    620: }
                    621:
                    622: def StowerOf(tower,level) {
                    623:   local ans,i;
                    624:   ans = [ ];
                    625:   if (level == 0) return([[]]);
                    626:   for (i=0; i<level; i++) {
                    627:     ans = Append(ans,tower[i]);
                    628:   }
                    629:   return(Reverse(ans));
                    630: }
                    631:
                    632: def Sspolynomial(f,g) {
                    633:   if (IsArray(f)) {
                    634:     f = Stoes_vec(f);
                    635:   }
                    636:   if (IsArray(g)) {
                    637:     g = Stoes_vec(g);
                    638:   }
                    639:   sm1("f g spol /FunctionValue set");
                    640: }
                    641:
                    642: def MonomialPart(f) {
                    643:   sm1(" [(lmonom) f] gbext /FunctionValue set ");
                    644: }
                    645:
                    646: def SwhereInTower(f,tower) {
                    647:   local i,n,p,q;
                    648:   if (f == Poly("0")) return(-1);
                    649:   n = Length(tower);
                    650:   for (i=0; i<n; i++) {
                    651:     p = MonomialPart(tower[i]);
                    652:     q = MonomialPart(f);
                    653:     if (p == q) return(i);
                    654:   }
                    655:   Println([f,tower]);
                    656:   Error("[f,tower]: f could not be found in the tower.");
                    657: }
                    658:
                    659: def Stag(f) {
                    660:   sm1(f," tag (universalNumber) dc /FunctionValue set");
                    661: }
                    662:
                    663: def SpairAndReduction(skel,level,ii,freeRes,tower,ww) {
                    664:   local i, j, myindex, p, bases, tower2, gi, gj,
                    665:        si, sj, tmp, t_syz, pos, ans, ssp, syzHead,pos2,
                    666:        vdeg,vdeg_reduced;
                    667:   Println("SpairAndReduction:");
                    668:
                    669:   if (level < 1) Error("level should be >= 1 in SpairAndReduction.");
                    670:   p = skel[level,ii];
                    671:   myindex = p[0];
                    672:   i = myindex[0]; j = myindex[1];
                    673:   bases = freeRes[level-1];
                    674:   Println(["p and bases ",p,bases]);
                    675:   if (IsNull(bases[i]) || IsNull(bases[j])) {
                    676:     Println([level,i,j,bases[i],bases[j]]);
                    677:     Error("level, i, j : bases[i], bases[j]  must not be NULL.");
                    678:   }
                    679:
                    680:   tower2 = StowerOf(tower,level-1);
                    681:   SsetTower(tower2);
                    682:   /** sm1(" show_ring ");   */
                    683:
                    684:   gi = Stoes_vec(bases[i]);
                    685:   gj = Stoes_vec(bases[j]);
                    686:
                    687:   ssp = Sspolynomial(gi,gj);
                    688:   si = ssp[0,0];
                    689:   sj = ssp[0,1];
                    690:   syzHead = si*es^i;
                    691:   /* This will be the head term, I think. But, double check. */
                    692:   Println([si*es^i,sj*es^j]);
                    693:
                    694:   Print("[gi, gj] = "); Println([gi,gj]);
                    695:   sm1(" [(Homogenize)] system_variable message ");
                    696:   Print("Reduce the element "); Println(si*gi+sj*gj);
                    697:   Print("by  "); Println(bases);
                    698:
                    699:   tmp = Sreduction(si*gi+sj*gj, bases);
                    700:
                    701:   Print("result is "); Println(tmp);
                    702:
1.3       takayama  703:   /* This is essential part for V-minimal resolution. */
                    704:   /* vdeg = SvDegree(si*gi+sj*gj,tower,level-1,ww); */
                    705:   vdeg = SvDegree(si*gi,tower,level-1,ww);
1.1       takayama  706:   vdeg_reduced = SvDegree(tmp[0],tower,level-1,ww);
                    707:   Print("vdegree of the original = "); Println(vdeg);
                    708:   Print("vdegree of the remainder = "); Println(vdeg_reduced);
                    709:
                    710:   t_syz = tmp[2];
                    711:   si = si*tmp[1]+t_syz[i];
                    712:   sj = sj*tmp[1]+t_syz[j];
                    713:   t_syz[i] = si;
                    714:   t_syz[j] = sj;
                    715:   pos = SwhereInTower(syzHead,tower[level]);
                    716:   pos2 = SwhereInTower(tmp[0],tower[level-1]);
                    717:   ans = [tmp[0],t_syz,pos,pos2,vdeg,vdeg_reduced];
                    718:   /* pos is the place to put syzygy at level. */
                    719:   /* pos2 is the place to put a new GB at level-1. */
                    720:   Println(ans);
                    721:   return(ans);
                    722: }
                    723:
                    724: def Sreduction(f,myset) {
                    725:   local n, indexTable, set2, i, j, tmp, t_syz;
                    726:   n = Length(myset);
                    727:   indexTable = NewArray(n);
                    728:   set2 = [ ];
                    729:   j = 0;
                    730:   for (i=0; i<n; i++) {
                    731:     if (IsNull(myset[i])) {
                    732:       indexTable[i] = -1;
                    733: /*    }else if (myset[i] == Poly("0")) {
                    734:       indexTable[i] = -1;  */
                    735:     }else{
                    736:       set2 = Append(set2,Stoes_vec(myset[i]));
                    737:       indexTable[i] = j;
                    738:       j++;
                    739:     }
                    740:   }
                    741:   sm1(" f toes set2 (gradedPolySet) dc reduction /tmp set ");
                    742:   t_syz = NewArray(n);
                    743:   for (i=0; i<n; i++) {
                    744:     if (indexTable[i] != -1) {
                    745:       t_syz[i] = tmp[2, indexTable[i]];
                    746:     }else{
                    747:       t_syz[i] = Poly("0");
                    748:     }
                    749:   }
                    750:   return([tmp[0],tmp[1],t_syz]);
                    751: }
                    752:
                    753: def Warning(s) {
                    754:   Print("Warning: ");
                    755:   Println(s);
                    756: }
                    757: def RingOf(f) {
                    758:   local r;
                    759:   if (IsPolynomial(f)) {
                    760:     if (f != Poly("0")) {
                    761:       sm1(f," (ring) dc /r set ");
                    762:     }else{
                    763:       sm1(" [(CurrentRingp)] system_variable /r set ");
                    764:     }
                    765:   }else{
                    766:     Warning("RingOf(f): the argument f must be a polynomial. Return the current ring.");
                    767:     sm1(" [(CurrentRingp)] system_variable /r set ");
                    768:   }
                    769:   return(r);
                    770: }
                    771:
                    772: def Sfrom_es(f,size) {
                    773:   local c,ans, i, d, myes, myee, j,n,r,ans2;
                    774:   if (Length(Arglist) < 2) size = -1;
                    775:   if (IsArray(f)) return(f);
                    776:   r = RingOf(f);
                    777:   myes = PolyR("es",r);
                    778:   myee = PolyR("e_",r);
                    779:   if (Degree(f,myee) > 0 && size == -1) {
                    780:     if (size == -1) {
                    781:        sm1(f," (array) dc /ans set");
                    782:        return(ans);
                    783:     }
                    784:   }
                    785:
                    786: /*
                    787:     Coefficients(x^2-1,x):
                    788:     [    [    2 , 0 ]  , [    1 , -1 ]  ]
                    789: */
                    790:   if (Degree(f,myee) > 0) {
                    791:     c = Coefficients(f,myee);
                    792:   }else{
                    793:     c = Coefficients(f,myes);
                    794:   }
                    795:   if (size < 0) {
                    796:     size = c[0,0]+1;
                    797:   }
                    798:   ans = NewArray(size);
                    799:   for (i=0; i<size; i++) {ans[i] = 0;}
                    800:   n = Length(c[0]);
                    801:   for (j=0; j<n; j++) {
                    802:     d = c[0,j];
                    803:     ans[d] = c[1,j];
                    804:   }
                    805:   return(ans);
                    806: }
                    807:
                    808: def Sbases_to_vec(bases,size) {
                    809:   local n, giveSize, newbases,i;
                    810:   /*  bases = [1+es*x, [1,2,3*x]] */
                    811:   if (Length(Arglist) > 1) {
                    812:     giveSize = true;
                    813:   }else{
                    814:     giveSize = false;
                    815:   }
                    816:   n = Length(bases);
                    817:   newbases = NewArray(n);
                    818:   for (i=0; i<n; i++) {
                    819:      if (giveSize) {
                    820:        newbases[i] = Sfrom_es(bases[i], size);
                    821:      }else{
                    822:        newbases[i] = Sfrom_es(bases[i]);
                    823:      }
                    824:   }
                    825:   return(newbases);
                    826: }
                    827:
                    828: def Sminimal(g) {
                    829:   local r, freeRes, redundantTable, reducer, maxLevel,
                    830:         minRes, seq, maxSeq, level, betti, q, bases, dr,
                    831:         betti_levelplus, newbases, i, j,qq;
                    832:   r = SlaScala(g);
                    833:   /* Should I turn off the tower?? */
                    834:   freeRes = r[0];
                    835:   redundantTable = r[1];
                    836:   reducer = r[2];
                    837:   minRes = SnewArrayOfFormat(freeRes);
                    838:   seq = 0;
                    839:   maxSeq = SgetMaxSeq(redundantTable);
                    840:   maxLevel = Length(freeRes);
                    841:   for (level = 0; level < maxLevel; level++) {
                    842:     minRes[level] = freeRes[level];
                    843:   }
                    844:   seq=maxSeq+1;
                    845:   while (seq > 1) {
                    846:     seq--;
                    847:     for (level = 0; level < maxLevel; level++) {
                    848:       betti = Length(freeRes[level]);
                    849:       for (q = 0; q<betti; q++) {
                    850:         if (redundantTable[level,q] == seq) {
                    851:           Print("[seq,level,q]="); Println([seq,level,q]);
                    852:           if (level < maxLevel-1) {
                    853:             bases = freeRes[level+1];
                    854:             dr = reducer[level,q];
                    855:             dr[q] = -1;
                    856:             newbases = SnewArrayOfFormat(bases);
                    857:             betti_levelplus = Length(bases);
                    858:             /*
                    859:                bases[i,j] ---> bases[i,j]+bases[i,q]*dr[j]
                    860:             */
                    861:             for (i=0; i<betti_levelplus; i++) {
                    862:               newbases[i] = bases[i] + bases[i,q]*dr;
                    863:             }
                    864:             Println(["level, q =", level,q]);
                    865:             Println("bases="); sm1_pmat(bases);
                    866:             Println("dr="); sm1_pmat(dr);
                    867:             Println("newbases="); sm1_pmat(newbases);
                    868:             minRes[level+1] = newbases;
                    869:             freeRes = minRes;
                    870: #ifdef DEBUG
                    871:             for (qq=0; qq<betti; qq++) {
                    872:               if ((redundantTable[level,qq] >= seq) &&
                    873:                   (redundantTable[level,qq] <= maxSeq)) {
                    874:                 for (i=0; i<betti_levelplus; i++) {
                    875:                   if (!IsZero(newbases[i,qq])) {
                    876:                     Println(["[i,qq]=",[i,qq]," is not zero in newbases."]);
                    877:                     Print("redundantTable ="); sm1_pmat(redundantTable[level]);
                    878:                     Error("Stop in Sminimal for debugging.");
                    879:                   }
                    880:                 }
                    881:               }
                    882:             }
                    883: #endif
                    884:           }
                    885:         }
                    886:       }
                    887:     }
                    888:    }
                    889:    return([Stetris(minRes,redundantTable),
1.3       takayama  890:           [ minRes, redundantTable, reducer,r[3],r[4]],r[0]]);
1.1       takayama  891:   /* r[4] is the redundantTable_ordinary */
1.3       takayama  892:   /* r[0] is the freeResolution */
1.1       takayama  893: }
                    894:
                    895:
                    896: def IsZero(f) {
                    897:   if (IsPolynomial(f)) {
                    898:     return( f == Poly("0"));
                    899:   }else if (IsInteger(f)) {
                    900:     return( f == 0);
                    901:   }else if (IsSm1Integer(f)) {
                    902:     return( f == true );
                    903:   }else if (IsDouble(f)) {
                    904:     return( f == 0.0 );
                    905:   }else if (IsRational(f)) {
                    906:     return(IsZero(Denominator(f)));
                    907:   }else{
                    908:     Error("IsZero: cannot deal with this data type.");
                    909:   }
                    910: }
                    911: def SgetMaxSeq(redundantTable) {
                    912:    local level,i,n,ans, levelMax,bases;
                    913:    levelMax = Length( redundantTable );
                    914:    ans = 0;
                    915:    for (level = 0; level < levelMax; level++) {
                    916:      bases = redundantTable[level];
                    917:      n = Length(bases);
                    918:      for (i=0; i<n; i++) {
                    919:        if (IsInteger( bases[i] )) {
                    920:           if (bases[i] > ans) {
                    921:              ans = bases[i];
                    922:           }
                    923:        }
                    924:      }
                    925:    }
                    926:    return(ans);
                    927: }
                    928:
                    929: def Stetris(freeRes,redundantTable) {
                    930:   local level, i, j, resLength, minRes,
                    931:         bases, newbases, newbases2;
                    932:   minRes = SnewArrayOfFormat(freeRes);
                    933:   resLength = Length( freeRes );
                    934:   for (level=0; level<resLength; level++) {
                    935:     bases = freeRes[level];
                    936:     newbases = SnewArrayOfFormat(bases);
                    937:     betti = Length(bases); j = 0;
                    938:     /* Delete rows */
                    939:     for (i=0; i<betti; i++) {
                    940:       if (redundantTable[level,i] < 1) {
                    941:          newbases[j] = bases[i];
                    942:          j++;
                    943:       }
                    944:     }
                    945:     bases = SfirstN(newbases,j);
                    946:     if (level > 0) {
                    947:       /* Delete columns */
                    948:       newbases = Transpose(bases);
                    949:       betti = Length(newbases); j = 0;
                    950:       newbases2 = SnewArrayOfFormat(newbases);
                    951:       for (i=0; i<betti; i++) {
                    952:         if (redundantTable[level-1,i] < 1) {
                    953:            newbases2[j] = newbases[i];
                    954:            j++;
                    955:         }
                    956:       }
                    957:       newbases = Transpose(SfirstN(newbases2,j));
                    958:     }else{
                    959:       newbases = bases;
                    960:     }
                    961:     Println(["level=", level]);
                    962:     sm1_pmat(bases);
                    963:     sm1_pmat(newbases);
                    964:
                    965:     minRes[level] = newbases;
                    966:   }
                    967:   return(minRes);
                    968: }
                    969:
                    970: def SfirstN(bases,k) {
                    971:    local ans,i;
                    972:    ans = NewArray(k);
                    973:    for (i=0; i<k; i++) {
                    974:      ans[i] = bases[i];
                    975:    }
                    976:    return(ans);
                    977: }
                    978:
                    979:
                    980: /* usage:  tt is tower. ww is weight.
                    981:     a = SresolutionFrameWithTower(v);
                    982:     tt = a[1];
                    983:     ww = [x,1,y,1,Dx,1,Dy,1];
                    984:     SvDegree(x*es,tt,1,ww):
                    985:
                    986: In(17)=tt:
                    987: [[2*x*Dx , e_*x^2 , e_*x*y , 3*x^2*Dy , e_*y^3 , 9*x*y*Dy^2 , 27*y^2*Dy^3 ]  ,
                    988:  [es*y , 3*es^3*y*Dy , 3*es^5*y*Dy , 3*x*Dy , es^2*y^2 , 9*y*Dy^2 ]  ,
                    989:  [3*es^3*y*Dy ]  ]
                    990: In(18)=SvDegree(x*es,tt,1,ww):
                    991: 3
                    992: In(19)=SvDegree(x*es^3,tt,1,ww):
                    993: 4
                    994: In(20)=SvDegree(x,tt,2,ww):
                    995: 4
                    996:
                    997: */
                    998: def SvDegree(f,tower,level,w) {
                    999:   local i,ans;
                   1000:   if (IsZero(f)) return(null);
1.3       takayama 1001:   f = Init(f);
1.1       takayama 1002:   if (level <= 0) {
                   1003:     return(Sord_w(f,w));
                   1004:   }
                   1005:   i = Degree(f,es);
                   1006:   ans = Sord_w(f,w) +
                   1007:         SvDegree(tower[level-1,i],tower,level-1,w);
                   1008:   return(ans);
                   1009: }
                   1010:
1.2       takayama 1011: def Sannfs(f,v) {
                   1012:   local f2;
                   1013:   f2 = ToString(f);
                   1014:   if (IsArray(v)) {
                   1015:      v = Map(v,"ToString");
                   1016:   }
                   1017:   sm1(" [f2 v] annfs /FunctionValue set ");
                   1018: }
                   1019:
                   1020: /* Sannfs2("x^3-y^2"); */
                   1021: def Sannfs2(f) {
                   1022:   local p,pp;
                   1023:   p = Sannfs(f,"x,y");
                   1024:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                   1025:   pp = Map(p[0],"Spoly");
                   1026:   return(Sminimal(pp));
                   1027: }
                   1028:
1.3       takayama 1029: def Sannfs3(f) {
                   1030:   local p,pp;
                   1031:   p = Sannfs(f,"x,y,z");
                   1032:   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
                   1033:   pp = Map(p[0],"Spoly");
                   1034:   return(Sminimal(pp));
                   1035: }
                   1036:
1.2       takayama 1037: /*
                   1038:   The betti numbers of most examples are 2,1. (0-th and 1-th).
                   1039:   a=Sannfs2("x*y*(x+y-1)"); ==> The betti numbers are 3, 2.
                   1040:   a=Sannfs2("x^3-y^2-x");    : it causes an error. It should be fixed.
1.3       takayama 1041:   a=Sannfs2("x*y*(x-y)");    : it causes an error. It should be fixed.
1.2       takayama 1042:
                   1043: */
                   1044:
                   1045:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>