=================================================================== RCS file: /home/cvs/OpenXM/src/k097/lib/restriction/demo.k,v retrieving revision 1.1 retrieving revision 1.3 diff -u -p -r1.1 -r1.3 --- OpenXM/src/k097/lib/restriction/demo.k 2000/12/14 13:18:41 1.1 +++ OpenXM/src/k097/lib/restriction/demo.k 2000/12/27 08:09:27 1.3 @@ -1,4 +1,4 @@ -/* $OpenXM$ */ +/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.2 2000/12/15 02:44:32 takayama Exp $ */ load["restriction.k"];; load("../ox/ox.k");; @@ -6,6 +6,7 @@ load("../ox/ox.k");; def demoSendAsirCommand(a) { a.executeString("load(\"bfct\");"); a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); + a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); } @@ -31,6 +32,46 @@ def asirAnnfsXYZ(a,f) { return(b); } +def asir_rpc_old(argv_rpc_asir) { + sm1(" oxasir.ccc [ ] eq { + (Starting ox_asir server.) message + ox_asirConnectMethod + } { } ifelse "); + sm1(" oxasir.ccc argv_rpc_asir asir /FunctionValue set "); +} +def asir_define_own_functions() { + asir_rpc_old(["igcd",2,3]); + sm1(" oxasir.ccc (def mygeneric_bfct(Id,V,DV,W) { + return( rtostr(generic_bfct(Id,V,DV,W))); + }) oxsubmit "); +} + +def asir_generic_bfct(ii,vv,dd,ww) { + local ans; + ans = asir_rpc_old(["mygeneric_bfct",ii,vv,dd,ww]); + return(ans); +} +/* asir_generic_bfct([Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ + +def asir_BfRoots2(G) { + local bb,ans,ss; + sm1(" G flatten {dehomogenize} map /G set "); + asir_define_own_functions(); + ss = asir_generic_bfct(G,[x,y],[Dx,Dy],[1,1]); + bb = [ss]; + sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); + return([ans, bb]); +} +def asir_BfRoots3(G) { + local bb,ans,ss; + sm1(" G flatten {dehomogenize} map /G set "); + asir_define_own_functions(); + ss = asir_generic_bfct(G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); + bb = [ss]; + sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); + return([ans, bb]); +} + def findMinSol(f) { sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); } @@ -49,6 +90,7 @@ def asirAnnXYZ(a,f) { return(b); } + def nonquasi2(p,q) { local s,ans,f; f = x^p+y^q+x*y^(q-1); @@ -65,11 +107,62 @@ def nonquasi2(p,q) { Res = Sminimal(pp); Res0 = Res[0]; Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); - R = BfRoots1(Res0[0],"x,y"); +/* R = BfRoots1(Res0[0],"x,y"); */ + R = asir_BfRoots2(Res0[0]); Println("Step3: computing the cohomology of the truncated complex."); Print("Roots and b-function are "); Println(R); R0 = R[0]; Ans=Srestall(Res0, ["x", "y"], ["x", "y"], R0[Length(R0)-1]); Print("Answer is "); Println(Ans[0]); + return(Ans); +} + +def asirAnn0XYZ(a,f) { + local p,b,b0; + RingD("x,y,z,s"); /* Fix!! See the definition of myann() */ + p = ToString(f); + b = a.rpc("myann0",[p]); + Print("Annhilating ideal of f^r is "); Println(b); + return(b); +} + +def DeRham2WithAsir(f) { + local s; + s = ToString(f); + II = asirAnn0XYZ(asssssir,f); + Print("Step 1: Annhilating ideal (II)"); Println(II); + sm1(" II { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set "); + Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]); + pp = Map(II,"Spoly"); + Res = Sminimal(pp); + Res0 = Res[0]; + Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); + /* R = BfRoots1(Res0[0],"x,y"); */ + R = asir_BfRoots2(Res0[0]); + Println("Step3: computing the cohomology of the truncated complex."); + Print("Roots and b-function are "); Println(R); + R0 = R[0]; + Ans=Srestall(Res0, ["x", "y"], ["x", "y"],R0[Length(R0)-1] ); + Print("Answer is ");Println(Ans[0]); + return(Ans); +} +def DeRham3WithAsir(f) { + local s; + s = ToString(f); + II = asirAnn0XYZ(asssssir,f); + Print("Step 1: Annhilating ideal (II)"); Println(II); + sm1(" II { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /II set "); + Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]); + pp = Map(II,"Spoly"); + Res = Sminimal(pp); + Res0 = Res[0]; + Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); +/* R = BfRoots1(Res0[0],"x,y,z"); */ + R = asir_BfRoots3(Res0[0]); + Println("Step3: computing the cohomology of the truncated complex."); + Print("Roots and b-function are "); Println(R); + R0 = R[0]; + Ans=Srestall(Res0, ["x", "y", "z"], ["x", "y", "z"],R0[Length(R0)-1] ); + Print("Answer is ");Println(Ans[0]); return(Ans); }