=================================================================== RCS file: /home/cvs/OpenXM/src/k097/lib/restriction/demo.k,v retrieving revision 1.2 retrieving revision 1.6 diff -u -p -r1.2 -r1.6 --- OpenXM/src/k097/lib/restriction/demo.k 2000/12/15 02:44:32 1.2 +++ OpenXM/src/k097/lib/restriction/demo.k 2001/01/05 11:14:29 1.6 @@ -1,4 +1,4 @@ -/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.1 2000/12/14 13:18:41 takayama Exp $ */ +/* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.5 2000/12/28 00:08:14 takayama Exp $ */ load["restriction.k"];; load("../ox/ox.k");; @@ -8,6 +8,7 @@ def demoSendAsirCommand(a) { a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; "); a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; "); + a.executeString(" def mygeneric_bfct(F,VV,DD,WW) { print([F,VV,DD,WW]); return(generic_bfct(F,VV,DD,WW));}; "); } as = startAsir(); @@ -32,6 +33,46 @@ def asirAnnfsXYZ(a,f) { return(b); } + +def asir_generic_bfct(a,ii,vv,dd,ww) { + local ans; + ans = a.rpc_str("mygeneric_bfct",[ii,vv,dd,ww]); + return(ans); +} +/* a=startAsir(); + asir_generic_bfct(a,[Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */ + +/* usage: misc/tmp/complex-ja.texi */ +def ChangeRing(f) { + local r; + r = GetRing(f); + if (Tag(r) == 14) { + SetRing(r); + return(true); + }else{ + return(false); + } +} + +def asir_BfRoots2(G) { + local bb,ans,ss; + sm1(" G flatten {dehomogenize} map /G set "); + ChangeRing(G); + ss = asir_generic_bfct(asssssir,G,[x,y],[Dx,Dy],[1,1]); + bb = [ss]; + sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); + return([ans, bb]); +} +def asir_BfRoots3(G) { + local bb,ans,ss; + sm1(" G flatten {dehomogenize} map /G set "); + ChangeRing(G); + ss = asir_generic_bfct(asssssir,G,[x,y,z],[Dx,Dy,Dz],[1,1,1]); + bb = [ss]; + sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set "); + return([ans, bb]); +} + def findMinSol(f) { sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set "); } @@ -67,7 +108,8 @@ def nonquasi2(p,q) { Res = Sminimal(pp); Res0 = Res[0]; Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); - R = BfRoots1(Res0[0],"x,y"); +/* R = BfRoots1(Res0[0],"x,y"); */ + R = asir_BfRoots2(Res0[0]); Println("Step3: computing the cohomology of the truncated complex."); Print("Roots and b-function are "); Println(R); R0 = R[0]; @@ -96,7 +138,8 @@ def DeRham2WithAsir(f) { Res = Sminimal(pp); Res0 = Res[0]; Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); - R = BfRoots1(Res0[0],"x,y"); + /* R = BfRoots1(Res0[0],"x,y"); */ + R = asir_BfRoots2(Res0[0]); Println("Step3: computing the cohomology of the truncated complex."); Print("Roots and b-function are "); Println(R); R0 = R[0]; @@ -115,7 +158,8 @@ def DeRham3WithAsir(f) { Res = Sminimal(pp); Res0 = Res[0]; Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0); - R = BfRoots1(Res0[0],"x,y,z"); + /* R = BfRoots1(Res0[0],"x,y,z"); */ + R = asir_BfRoots3(Res0[0]); Println("Step3: computing the cohomology of the truncated complex."); Print("Roots and b-function are "); Println(R); R0 = R[0];