[BACK]Return to demo.k CVS log [TXT][DIR] Up to [local] / OpenXM / src / k097 / lib / restriction

Annotation of OpenXM/src/k097/lib/restriction/demo.k, Revision 1.8

1.8     ! takayama    1: /* $OpenXM: OpenXM/src/k097/lib/restriction/demo.k,v 1.7 2001/01/26 12:24:57 takayama Exp $  */
1.1       takayama    2:
                      3: load["restriction.k"];;
                      4: load("../ox/ox.k");;
                      5:
                      6: def demoSendAsirCommand(a) {
                      7:   a.executeString("load(\"bfct\");");
                      8:   a.executeString(" def myann(F) { B=ann(eval_str(F)); print(B); return(map(dp_ptod,B,[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
1.2       takayama    9:   a.executeString(" def myann0(F) { B=ann0(eval_str(F)); print(B); return(map(dp_ptod,B[1],[hoge,x,y,z,s,hh,ee,dx,dy,dz,ds,dhh])); }; ");
1.1       takayama   10:   a.executeString(" def mybfct(F) { return(rtostr(bfct(eval_str(F)))); }; ");
1.4       takayama   11:   a.executeString(" def mygeneric_bfct(F,VV,DD,WW) { print([F,VV,DD,WW]); return(generic_bfct(F,VV,DD,WW));}; ");
1.1       takayama   12: }
                     13:
1.7       takayama   14: if (Boundp("NoX")) {
                     15:   as = Asir.generate(false);
                     16: }else{
                     17:   as = Asir.generate();
                     18: }
                     19:
1.1       takayama   20: asssssir = as;
                     21: demoSendAsirCommand(as);
                     22: RingD("x,y,z,s");
                     23:
                     24: def asirBfunction(a,f) {
                     25:   local p,b;
                     26:   p = ToString(f);
                     27:   Println(p);
                     28:   b = a.rpc("mybfct",[p]);
                     29:   sm1(" b . /b set ");
                     30:   return(b);
                     31: }
                     32:
                     33: def asirAnnfsXYZ(a,f) {
                     34:   local p,b;
                     35:   RingD("x,y,z,s");  /* Fix!! See the definition of myann() */
                     36:   p = ToString(f);
                     37:   b = a.rpc("myann",[p]);
                     38:   return(b);
                     39: }
                     40:
1.3       takayama   41:
1.4       takayama   42: def asir_generic_bfct(a,ii,vv,dd,ww) {
1.3       takayama   43:    local ans;
1.4       takayama   44:    ans = a.rpc_str("mygeneric_bfct",[ii,vv,dd,ww]);
1.3       takayama   45:    return(ans);
                     46: }
1.4       takayama   47: /* a=startAsir();
                     48:    asir_generic_bfct(a,[Dx^2+Dy^2-1,Dx*Dy-4],[x,y],[Dx,Dy],[1,1]): */
                     49:
                     50: /* usage: misc/tmp/complex-ja.texi */
1.6       takayama   51: def ChangeRing(f) {
1.5       takayama   52:   local r;
                     53:   r = GetRing(f);
                     54:   if (Tag(r) == 14) {
                     55:     SetRing(r);
                     56:     return(true);
                     57:   }else{
                     58:     return(false);
1.4       takayama   59:   }
                     60: }
1.3       takayama   61:
                     62: def asir_BfRoots2(G) {
                     63:    local bb,ans,ss;
                     64:    sm1(" G flatten {dehomogenize} map /G set ");
1.6       takayama   65:    ChangeRing(G);
1.4       takayama   66:    ss = asir_generic_bfct(asssssir,G,[x,y],[Dx,Dy],[1,1]);
1.3       takayama   67:    bb = [ss];
                     68:    sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
                     69:    return([ans, bb]);
                     70: }
                     71: def asir_BfRoots3(G) {
                     72:    local bb,ans,ss;
                     73:    sm1(" G flatten {dehomogenize} map /G set ");
1.6       takayama   74:    ChangeRing(G);
1.4       takayama   75:    ss = asir_generic_bfct(asssssir,G,[x,y,z],[Dx,Dy,Dz],[1,1,1]);
1.3       takayama   76:    bb = [ss];
                     77:    sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
                     78:    return([ans, bb]);
                     79: }
                     80:
1.8     ! takayama   81: def asir_BfRoots4(G) {
        !            82:    local bb,ans,ss;
        !            83:    sm1(" G flatten {dehomogenize} map /G set ");
        !            84:    ChangeRing(G);
        !            85:    ss = asir_generic_bfct(asssssir,G,[x,y,z,vv],[Dx,Dy,Dz,Dvv],[0,0,0,1]);
        !            86:    bb = [ss];
        !            87:    sm1(" bb 0 get findIntegralRoots { (universalNumber) dc } map /ans set ");
        !            88:    return([ans, bb]);
        !            89: }
        !            90:
1.1       takayama   91: def findMinSol(f) {
                     92:   sm1(" f (string) dc findIntegralRoots 0 get (universalNumber) dc /FunctionValue set ");
                     93: }
                     94:
                     95: def asirAnnXYZ(a,f) {
                     96:   local p,b,b0,k1;
                     97:   RingD("x,y,z,s");  /* Fix!! See the definition of myann() */
                     98:   p = ToString(f);
                     99:   b = a.rpc("myann",[p]);
                    100:   Print("Annhilating ideal with s is "); Println(b);
                    101:   b0 = asirBfunction(a,f);
                    102:   Print("bfunction is "); Println(b0);
                    103:   k1 = findMinSol(b0);
                    104:   Print("Minimal integral root is "); Println(k1);
                    105:   sm1(" b { [[(s). k1 (string) dc .]] replace } map /b set ");
                    106:   return(b);
                    107: }
                    108:
1.2       takayama  109:
1.1       takayama  110: def nonquasi2(p,q) {
                    111:   local s,ans,f;
1.7       takayama  112:
                    113:   sm1("0 set_timer "); sm1(" oxNoX ");
                    114:   asssssir.OnTimer();
                    115:
1.1       takayama  116:   f = x^p+y^q+x*y^(q-1);
                    117:   Print("f=");Println(f);
                    118:   s = ToString(f);
                    119:   sm1(" Onverbose ");
                    120:   ans = asirAnnfsXYZ(asssssir,f);
                    121:   sm1(" ans 0 get (ring) dc ring_def ");
                    122:   sm1("[ ans { [[(s). (-1).]] replace } map ] /II set ");
                    123:   Println("Step 1: Annhilating ideal (II)"); Println(II);
                    124:   sm1(" II 0 get { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set ");
                    125:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                    126:   pp = Map(II,"Spoly");
                    127:   Res = Sminimal(pp);
                    128:   Res0 = Res[0];
                    129:   Println("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
1.3       takayama  130: /*  R = BfRoots1(Res0[0],"x,y"); */
                    131:   R = asir_BfRoots2(Res0[0]);
1.1       takayama  132:   Println("Step3: computing the cohomology of the truncated complex.");
                    133:   Print("Roots and b-function are "); Println(R);
                    134:   R0 = R[0];
                    135:   Ans=Srestall(Res0, ["x", "y"],  ["x", "y"], R0[Length(R0)-1]);
1.7       takayama  136:
                    137:   Println("Timing data: sm1 "); sm1(" 1 set_timer ");
                    138:   Print("     ox_asir [CPU,GC]:  ");Println(asssssir.OffTimer());
                    139:
1.1       takayama  140:   Print("Answer is "); Println(Ans[0]);
1.2       takayama  141:   return(Ans);
                    142: }
                    143:
                    144: def asirAnn0XYZ(a,f) {
                    145:   local p,b,b0;
                    146:   RingD("x,y,z,s");  /* Fix!! See the definition of myann() */
                    147:   p = ToString(f);
                    148:   b = a.rpc("myann0",[p]);
                    149:   Print("Annhilating ideal of f^r is "); Println(b);
                    150:   return(b);
                    151: }
                    152:
                    153: def DeRham2WithAsir(f) {
                    154:   local s;
1.7       takayama  155:
                    156:   sm1("0 set_timer "); sm1(" oxNoX ");
                    157:   asssssir.OnTimer();
                    158:
1.2       takayama  159:   s = ToString(f);
                    160:   II = asirAnn0XYZ(asssssir,f);
                    161:   Print("Step 1: Annhilating ideal (II)"); Println(II);
                    162:   sm1(" II  { [(x) (y) (Dx) (Dy) ] laplace0 } map /II set ");
                    163:   Sweyl("x,y",[["x",-1,"y",-1,"Dx",1,"Dy",1]]);
                    164:   pp = Map(II,"Spoly");
                    165:   Res = Sminimal(pp);
                    166:   Res0 = Res[0];
                    167:   Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
1.3       takayama  168:   /* R = BfRoots1(Res0[0],"x,y"); */
                    169:   R = asir_BfRoots2(Res0[0]);
1.2       takayama  170:   Println("Step3: computing the cohomology of the truncated complex.");
                    171:   Print("Roots and b-function are "); Println(R);
                    172:   R0 = R[0];
                    173:   Ans=Srestall(Res0, ["x", "y"],  ["x", "y"],R0[Length(R0)-1] );
1.7       takayama  174:
                    175:   Println("Timing data: sm1 "); sm1(" 1 set_timer ");
                    176:   Print("     ox_asir [CPU,GC]:  ");Println(asssssir.OffTimer());
                    177:
1.2       takayama  178:   Print("Answer is ");Println(Ans[0]);
                    179:   return(Ans);
                    180: }
                    181: def DeRham3WithAsir(f) {
                    182:   local s;
1.7       takayama  183:
                    184:   sm1("0 set_timer "); sm1(" oxNoX ");
                    185:   asssssir.OnTimer();
                    186:
1.2       takayama  187:   s = ToString(f);
                    188:   II = asirAnn0XYZ(asssssir,f);
                    189:   Print("Step 1: Annhilating ideal (II)"); Println(II);
                    190:   sm1(" II  { [(x) (y) (z) (Dx) (Dy) (Dz)] laplace0 } map /II set ");
                    191:   Sweyl("x,y,z",[["x",-1,"y",-1,"z",-1,"Dx",1,"Dy",1,"Dz",1]]);
                    192:   pp = Map(II,"Spoly");
                    193:   Res = Sminimal(pp);
                    194:   Res0 = Res[0];
                    195:   Print("Step2: (-1,1)-minimal resolution (Res0) "); sm1_pmat(Res0);
1.4       takayama  196:   /* R = BfRoots1(Res0[0],"x,y,z");  */
1.3       takayama  197:   R = asir_BfRoots3(Res0[0]);
1.2       takayama  198:   Println("Step3: computing the cohomology of the truncated complex.");
                    199:   Print("Roots and b-function are "); Println(R);
                    200:   R0 = R[0];
                    201:   Ans=Srestall(Res0, ["x", "y", "z"],  ["x", "y", "z"],R0[Length(R0)-1] );
1.7       takayama  202:
                    203:   Println("Timing data: sm1 "); sm1(" 1 set_timer ");
                    204:   Print("     ox_asir [CPU,GC]:  ");Println(asssssir.OffTimer());
                    205:
1.2       takayama  206:   Print("Answer is ");Println(Ans[0]);
1.1       takayama  207:   return(Ans);
                    208: }
1.7       takayama  209:
                    210: /*  test data
                    211:
                    212:    NoX=true;
                    213:    nonquasi2(4,5);
                    214:    nonquasi2(4,6);
                    215:    nonquasi2(4,7);
                    216:    nonquasi2(4,8);
                    217:    nonquasi2(4,9);
                    218:    nonquasi2(4,10);
                    219:
                    220:    nonquasi2(5,6);
                    221:    nonquasi2(6,7);
                    222:    nonquasi2(7,8);
                    223:    nonquasi2(8,9);
                    224:    nonquasi2(9,10);
                    225: */
                    226:
                    227:    P2 = [
                    228:      "x^3-y^2",
                    229:      "y^2-x^3-x-1",
                    230:      "y^2-x^5-x-1",
                    231:      "y^2-x^7-x-1",
                    232:      "y^2-x^9-x-1",
                    233:      "y^2-x^11-x-1"
                    234:    ];
                    235:
                    236:    P3 = [
                    237:      "x^3-y^2*z^2",
                    238:      "x^2*z+y^3+y^2*z+z^3",
                    239:      "y*z^2+x^3+x^2*y^2+y^6",
                    240:      "x*z^2+x^2*y+x*y^3+y^5"
                    241:    ];
                    242:
                    243:
1.8     ! takayama  244: def diff_tmp(ff,xx) {
        !           245:   local g;
        !           246:   g = xx*ff;
        !           247:   return( Replace(g,[[xx,Poly("0")],[h,Poly("1")]]));
        !           248: }
        !           249:
        !           250: def Localize3WithAsir(I,f) {
        !           251:   local s;
1.7       takayama  252:
1.8     ! takayama  253:   sm1("0 set_timer "); sm1(" oxNoX ");
        !           254:   asssssir.OnTimer();
        !           255:
        !           256:   RingD("x,y,z,vv");
        !           257:   /* BUG: use of RingD("x,y,z,v") causes an expected error.
        !           258:     [x2,x3,x4,x4] in mygeneric_bfct.  (should be [x2,x3,x4,x5]).
        !           259:   */
        !           260:   f = ReParse(f);
        !           261:   I = ReParse(I);
        !           262:   /* Test data. */
        !           263:   /*
        !           264:   f = x^3-y^2*z^2;
        !           265:   I = [f^2*Dx-3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z];
        !           266:
        !           267:   f = x^3-y^2;
        !           268:   I = [f^2*Dx-diff_tmp(f,Dx), f^2*Dy-diff_tmp(f,Dy), Dz];
        !           269:   */
        !           270:
        !           271:   r1 = Dx-vv^2*diff_tmp(f,Dx)*Dvv;
        !           272:   r2 = Dy-vv^2*diff_tmp(f,Dy)*Dvv;
        !           273:   r3 = Dz-vv^2*diff_tmp(f,Dz)*Dvv;
        !           274:   II = ReParse(I);
        !           275:   sm1(" II { [[(Dx). r1] [(Dy). r2] [(Dz). r3]] replace } map dehomogenize /II set ");
        !           276:
        !           277:   Print("Step 1: phi(J)"); Println(II);
        !           278:   II = Join(II,[vv*f-1]);
        !           279:   Print("Step 2: <phi(J),vf-1>"); Println(II);
        !           280:
        !           281:   Println("Step3: computing the integral.");
        !           282:   sm1(" II  { [(x) (y) (z) (vv) (Dx) (Dy) (Dz) (Dvv)] laplace0 } map /JJ set ");
        !           283:   Sweyl("x,y,z,vv",[["vv",-1,"Dvv",1]]);
        !           284:   pp = Map(JJ,"Spoly");
        !           285:   R = asir_BfRoots4(pp);
        !           286:   Print("Roots and b-function are "); Println(R);
        !           287:
        !           288:   R0 = R[0];
        !           289:   k1 = R0[Length(R0)-1];
        !           290:   sm1(" [(parse) (intw.sm1) pushfile] extension /intw.verbose 1 def ");
        !           291:   sm1(" [II [(vv) (x) (y) (z)] [(vv) -1 (Dvv) 1] k1 (integer) dc] integral-k1 /Ans set ");
        !           292:
        !           293:   Println("Timing data: sm1 "); sm1(" 1 set_timer ");
        !           294:   Print("     ox_asir [CPU,GC]:  ");Println(asssssir.OffTimer());
        !           295:
        !           296:   Print("Answer is ");Println(Ans);
        !           297:   return(Ans);
        !           298: }
        !           299:
        !           300:
        !           301: def Ltest2() {
        !           302:   RingD("x,y,z");
        !           303:   f = x^3-y^2;
        !           304:   I = [f^2*Dx-diff_tmp(f,Dx), f^2*Dy-diff_tmp(f,Dy), Dz];
        !           305:   return( Localize3WithAsir(I,f) );
        !           306: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>